
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

Dynamic Execution of Engineering Processes in
Cyber-Physical Systems of Systems Toolchains

Federico Montori , Member, IEEE, Marek S. Tatara , Member, IEEE, and Pál Varga, Senior Member, IEEE

Abstract— Engineering tools support the process of creating,
operating, maintaining, and evolving systems throughout their
lifecycle. Toolchains are sequences of tools that build on each
others’ output during this procedure. The complete chain of tools
itself may not even be recognized by the humans who utilize
them, people may just recognize the right tool being used at
the right place in time. Modern engineering processes, however,
do not value such ad-hoc choice of tooling, because of their
uncontrolled nature. Building upon the Extended Automation
Engineering Model defined by the IEC 81346 standard, this
paper proposes to automate the toolchain building and execution
process for Cyber-Physical System of Systems (CPSoS), utilizing
key principles of the Eclipse Arrowhead framework. The
proposed toolchain automation solution addresses issues such
as tool interoperability, interaction, automation, and dynamic
choreography. The feasibility of this set of integrated concepts is
validated through an Arrowhead-based toolchain choreography
demonstration.

Note to Practitioners—The paper discusses approaches to
the automated execution of various industry-related processes.
As the processes are becoming more complex and involve
numerous systems which have to be orchestrated, a simple and
preprogrammed workflow is not enough anymore. Therefore,
building on top of the principles of the Eclipse Arrowhead
framework, an adequate model of toolchains, allowing for
their automated execution, is proposed. Different approaches
to supervision of toolchain execution are discussed showing
the benefits of reaching higher automation levels. Further, four
adoption levels are introduced, which are a measure of the
toolchain automation progress. Finally, a simplified demonstrator
is shown and steps to elevate it to higher adoption levels are
highlighted. To ensure that the approach is industry-oriented,
several examples of how the proposed methodology can be used
in the industrial context are discussed.

Index Terms— Toolchains, industry 4.0, interoperability, engi-
neering process, IoT automation, service oriented architecture,
service orchestration, service choreography.

Manuscript received 4 December 2023; revised 26 January 2024;
accepted 31 January 2024. This article was recommended for publication
by Associate Editor V. Villani and Editor B. Vogel-Heuser upon evaluation
of the reviewers’ comments. This work was supported in part the Electronic
Components and Systems for European Leadership (ECSEL) under Grant
826452 and in part by the European Union Horizon 2020 research and
innovation programme. (Federico Montori, Marek S. Tatara, and Pál Varga
contributed equally to this work.) (Corresponding author: Federico Montori.)

Federico Montori is with the Department of Computer Science and
Engineering, University of Bologna, 40126 Bologna, Italy (e-mail:
federico.montori2@unibo.it).

Marek S. Tatara is with the Faculty of Electronics, Telecommunications and
Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland, and
also with DAC.digital, 80-233 Gdańsk, Poland.

Pál Varga is with the Department of Telecommunications and Media
Informatics, Budapest University of Technology and Economics, 1111
Budapest, Hungary.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2024.3362132.

Digital Object Identifier 10.1109/TASE.2024.3362132

I. INTRODUCTION

HETEROGENEOUS, dynamically changing System of
Systems (SoS) must work in an effective and sustainable

way. In order to reach this, we must start with proper
planning – although the engineering procedure does not end
with maintenance but continues in evolution circles. The
generic engineering process needs a closer look here and,
inevitably, the tools used in the process steps. Unavailable or
inappropriate tools slow down the given step in the process,
which then becomes a bottleneck – eventually for the whole
supply chain. Choosing and using the appropriate tool at the
given step of the engineering procedure should be planned
well. Nevertheless, just like the dynamic reconfiguration of
SoS on the fly, the engineering procedure itself requires
solutions for choosing or changing tools at certain steps.
The motivation for dynamic toolchains – the sequence of
engineering tools – traces back to the information sharing
requirements of Industry 4.0. As the elements of distributed
SoS change over time, interoperability becomes a natural
requirement, as well. This goes together with integrability,
since legacy and new systems need to work together. When the
tools form a toolchain, the output of one becomes the input of
the next – in an ideal situation, without any human interference
or data format manipulation. This semantic interoperability
by itself is a huge challenge – offering a promising gain
of complete toolchain automation. The goal is exactly this
toolchain automation, although with dynamically changeable
tools controlled by a choreography mechanism to complete
the engineering procedure.

There are various, overwhelmingly complex theoretical and
practical problems arising when addressing this domain set.
Our approach towards the solution is to apply the same
concepts for tool interoperability as for SoS interoperability.
The distributed nature of SoS requires the exact opposite of
monolith thinking: implementations based on Service-Oriented
Architectures (SOA) or microservices, which are very similar
service-based concepts.1 Many of these issues are inherently
addressed by the Eclipse Arrowhead framework [1], which is
utilized when proposing toolchain-related solutions. The initial
step towards automation is the modeling of the toolchain – for
which the IEC 81346 [2] standard can be extended to fit an
evolving lifecycle-type reality of the industry. In case there
are more tools to choose from at each lifecycle step, the SOA
approach helps in the actual matchmaking of interacting tools.

1Nota Bene: in this paper we use and refer to the SOA concept because
of its systems engineering angle, but the ideas utilized here apply to the
microservices domain as well.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-9943-4209
https://orcid.org/0000-0001-9753-8429


2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

The tool input/output format mismatch problem still needs
to be solved at each lifecycle step. The orchestration should
make schematic matching possible – if not by design then
by summoning semantic adaptors as it is done within Eclipse
Arrowhead in facing interoperability issues [3], [4].

In this paper, we suggest using Arrowhead Orchestration
and Choreography to step through the lifecycle with
dynamically chosen tools. Namely, we suggest addressing the
issue of dynamic tool selection through the Orchestration
of Eclipse Arrowhead. Moreover, the workflow execution
across the toolchain is suggested to be controlled by the
Choreographer of Eclipse Arrowhead. This ensures to keep
track of the process and to push it to the next engineering step
according to a toolchain recipe. The concepts of orchestration
and choreography are widespread in service computing,
sometimes addressed as duals; in this work, we will make
orthogonal use of them, following the theory for which
they should coexist [5]. As greenfield Arrowhead-compatible
systems and tools are rare, adoption levels are also defined
here – so users can decide at what level can/will they adopt
the Arrowhead concepts at the toolchain level.

It is worth mentioning that the solution presented in this
paper specifically refers to a subset of Industry 4.0 use
cases, as it is primarily targeting the Arrowhead Community.
Engineering Processes within such an environment are CPSoS
driven by software organized in SOA, thus, although hetero-
geneous, our solution does not aim to be all-encompassing.
On the other hand, though, we estimate our proposal to have
a significant resonance, as the Arrowhead Community (see the
beginning of Section III) is widespread. The contributions of
this paper are threefold. It provides

1) an overview of Engineering Processes and shows the gap
for toolchain automation;

2) a solution by applying the SOA-based Arrowhead
Workflow Choreography idea to the SoS toolchain
domain;

3) the definition and usage of Adoption Levels for toolchain
integration.

These contributions are connected in a linear way: the gaps
are identified, the automation can be solved through applying
Arrowhead Choreography, which then becomes the highest
level of adoption for the ecosystem stakeholders. Given the
definitions in this paper, stakeholders can clearly identify
which Arrowhead adoption level they need, and how to
approach its application to their case. Furthermore – as it
turns out – the highest level of Arrowhead adaptation is when
the process workflow is conducted through an automatized
execution, enabled by the Choreographer. The proposed set of
solutions is validated through a demonstrator.

The particular challenges related to Cyber-Physical
Systems-of-Systems the Authors attempt to address in this
paper are the following:

• Seamless interoperability [6] between various systems in
SoS

• Automated and coordinated execution of toolchains [7]
in service-oriented architecture

• Quantification of the maturity level allowing for further
toolchains automation

Fig. 1. The three main groups of objectives of this paper.

The Cyber-Physical context is included here by taking into
account the entire lifecycle of the engineering process, as well
as the effect of real-world data (including human-in-the-loop)
on the execution of particular workflows. In order to show how
these challenges can be addressed in the industrial context,
four use cases will be used to visualize how the proposed
methodology can be applied, namely: sensor reconfiguration
for haulers in the milk collection and delivery process, robotic
operation supervision, automotive assembly plant, and sensor
onboarding.

Our contributions are also illustrated in Figure 1, where the
logic behind each conceptual step is clarified through images,
focusing on how each contribution uses the output of the
previous one. In order to support structured understanding,
each contribution got a dedicated section, as specified in
the paper organization that follows: Section II gives a
background overview of the work related to engineering
processes; Section III details the proposed toolchain model
and its elements (accomplishes contribution 1); Section IV
describes the ways of supervising the toolchain execution
process (accomplishes contribution 2); Section V puts the
presented approach in the perspective of Eclipse Arrowhead,
showing its practical feasibility through framework adoption
levels, accomplishing contribution 3; Section VI demonstrates
the contributions through working examples; Section VII
concludes the paper.

II. RELATED WORK

The ultimate aim of the engineering processes for systems
is to have a structured way of handling their birth,
integration, and evolution throughout the lifecycle. The IEC
81346 standard [2] provides a widely accepted designation
method for a common, structural description of systems from
different aspects. These aspects describe the system either
from the product aspect, the functional aspect, or the location
aspect, and these structures can be visualized in parallel as
well. The IEC 81346 standard also gives examples of domain-
specific usage. The methods described in this paper build upon

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


MONTORI et al.: DYNAMIC EXECUTION OF ENGINEERING PROCESSES IN CPSOS TOOLCHAINS 3

the engineering process defined by IEC 81346, which has
been further extended within the European ECSEL project
“Arrowhead Tools.2” The basic idea of the toolchain model
has been described in [8], providing definitions of tools and
toolchains in the Arrowhead perspective. The phases and the
ontology of the Arrowhead Engineering Process (Arrowhead-
EP) model are described by [9]. This was extended by a
feasibility and use-case study on large-scale IoT ecosystems
in [10], and further detailed through multi-stakeholder use-
cases in [9]. The latter deals in depth with the Arrowhead-EP
and gives guidelines on how to identify the phases in legacy
engineering processes, however, it does not give the means
to actuate a proper orchestration nor a choreography on top
of such a framework. For the sake of integrity, we briefly
recall the toolchain model in the current paper (Section III).
A methodology to design business process models in BPMN
according to the ANSI/ISA-95 for is presented in [11],
although – as many similar works – merely focuses on
manufacturing. Such process description mappings are used
by all the workflow management and execution approaches
presented in this paper. A current review of workflow
management in smart manufacturing is presented in [12].

Model-Based System Engineering (MBSE) has a key role
in the lifecycle of modern SoS. A systematic review of
MBSE approaches is provided in [13]. A good summary
of current tools and toolchains in the Cyber-Physical SoS
(CPSoS) domain can be found in [14]. A good example of
integrating MBSE to the toolchain for software development
is [15]. This approach can be expanded for CPSoS – by
also having feedback from the live system changes to the
model changes – is described by [16]. There are various
concrete toolchains used in software development. Without
going into a comparative study, the widely used DevOps
approach with CI/CD (Continuous Integration / Continuous
Delivery) toolchaining is gaining worldwide acceptance [17],
and its combination with the SOA approach is even applied
for cloud software development [18]. This best practice has
been suggested for application for CPSoS in [19]. It is clear
that common information formats help system interoperability.
Unfortunately, but naturally, many ontologies, object models,
and communication semantics exist, hence neither object
connection in plant descriptions nor data exchange among
systems are completely straightforward. One prominent
example of describing production plants through hierarchical
object information is the IEC62424 standard [20], also known
as CAEX (Computer Aided Engineering Exchange). The
ISO15926 standard [21] aims at data integration, sharing,
and exchange mainly for industrial automation systems and
process plants – including a generic data model. Recently,
the OPC-UA has been emerging due to its capabilities to
fit the SOA approach, its wide extensions to TCP/IP-based
application protocols, and its APIs to various programming
languages [22].

Model-driven development (MDD) and SOA have already
been used in various domains, such as the Ambient Assisted
Living (AAL) area. The EU IST project MPOWER applied

2https://tools.arrowhead.eu/home/

the SOA and MDD principles in various AAL scenarios [23],
however, their focus remained merely on the development
part of the toolchain. The SPIRIT framework [24] uses an
SOA-based MBSE approach for toolchain handling, but it
focuses only 3 engineering process phases, all in design time.
There is also a recently presented, unified MBSE design
platform framework [25] that supports modeling information
exchange between different engineering tools. The aim here
is similar to one of ours, namely to allow toolchain input-
output information seamlessly to flow among engineering
tools, however, it specifically targets information exchange
among modeling tools, which limits its direct usability in
current toolchains. The concept of Domain Specific Systems
Engineering (DSSE) is described and applied as an MBSE
approach for Cyber-Physical Systems by the authors of [26].
The solution is thorough in the way it is describing Process
and Architectural models and their connections, but on the
other hand, it does not suggest any tool discovery or execution
methods.

Specifically for manufacturing production, the authors
of [27] survey the motivations and approaches on why
and how Manufacturing Engineering Systems (MES) evolve
for Industry4.0, whereas [28] provides an overview for
MES-integrated digital twin frameworks. Smart factory recon-
figuration for healthcare [29] and Edge-Cloud collaborative
manufacturing [30] are further concrete examples of using
SOA and microservice approaches at the MES and the
manufacturing edge-cloud infrastructures, respectively.

Altogether, we found only these few traces in scientific
literature of automated discovery of engineering tools. When
it comes to CPSoS – and not merely production, or office
workflow or cloud software engineering –, parts of the
problem-space are addressed by different papers, but not as
a whole. Regarding automatic information passing among
tools throughout such a complete toolchain, we failed to find
publications outside the Arrowhead Tools ECSEL project.
Moreover, the toolchain choreography through the complete
engineering process is a completely unaddressed issue for
which the current paper is the first one that provides a solution.
These issues, namely (i) automated tool discovery (ii) together
with automatic information passing among the tools, and
(iii) automatized execution of the overall engineering process
constitute clear research gaps in the domain – which should
be addressed together.

III. THE PROPOSED TOOLCHAIN MODEL

This section defines the main concepts upon which we build
our proposal: The Arrowhead Framework, the Arrowhead
Engineering Process, and Arrowhead Tools and Toolchains.
These are widely adopted within the Arrowhead Community,
which is the main target for our solution. The community
started with the Arrowhead project,3 which kicked off in
2013 and was carried out by more than 80 EU partners (one
of the biggest EU projects at its time). Later on, many other
projects continued on the same path, such as Productive 4.0,
FAR-EDGE, building up a dynamic, heterogeneous, and vast

3https://cordis.europa.eu/project/id/332987

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

community. Specifically, the present contribution was a result
of the Arrowhead Tools project, which shared the participation
of more than 90 EU partners from 18 countries, all bringing
in their different use cases to a reference architecture: the
Arrowhead Framework. We believe that our solution can
be a reference for many use cases outside the Arrowhead
community, however, the community is specifically our target.

A. The Arrowhead Framework

The initial goal of the Arrowhead Framework [3] was to
address interoperability and integration [31] issues of the
Industry 4.0 initiative in a safe and secure manner [32].
The framework follows the principles of SOA, enabling the
collaboration of newly built as well as legacy systems, hence
complex and dynamically changing Cyber-Physical System of
Systems (CPSoS) can be created.

The Arrowhead Framework provides several mandatory and
supporting core systems for CPSoS developers and integrators,
whereas all other modules are called Application Systems in
the Arrowhead nomenclature. These systems provide and/or
consume the various application services – as the SOA
principles suggest: in a discoverable, late-bound, loosely
coupled way. Altogether, these SoS are uniquely defined as
Local Clouds, among which secure Inter-Cloud information
exchange is also supported [1]. The mandatory core systems
are the Orchestration System (mainly service discovery and
late binding), Service Registry (so services providers can
announce their active services), and Authorisation System
(to provide authorization and authentication). The supporting
core systems are summarized well in [33] and documented
in detail in their Eclipse-approved open source GitHub
repository [34].

The most important supporting core system for the current
work is the Workflow Choreographer [35], which executes the
production recipe by triggering the next step in the process
execution. Each of these steps can lead to a separate service
Orchestration, so the consumer and provider systems that
realize the service could be dynamically connected (loosely
coupled, late bound) [36]. This paper proposes that the idea
of this SOA-based Workflow Choreography for production
floor process execution for Cyber-Physical Systems (CPS)
should be mapped for the Engineering Process execution for
toolchains.

B. The Arrowhead Engineering Process

Complex SoS engineering needs a standard environment
on top of which industrial processes are founded. Such an
environment is defined as an engineering process model,
which has been proposed lately in [9], [10] and to which we
will refer to as Arrowhead Engineering Process (Arrowhead-
EP). The current version of the Arrowhead-EP features
concepts that are in line with earlier similar models,
to retain backward compatibility, as well as combining the
flexibility and adaptivity that is necessary to meet current
industrial requirements. Arrowhead-EP is inspired by ISO/IEC
81346 standard [2], on top of which features that are proper of
SOA allow for a more automated, flexible, and yet decoupled

flow of information that interconnects the Engineering Process
Phases (EPPs) which no longer need a fixed order if the use
case demands so. The eight EPPs are depicted in Figure 2;
they are ordered and connected via interfaces, more in detail,
each EPP has an incoming (EP-I) and an outgoing (EP-O)
interface. The term engineering process unit (EPU) can mean
any of the three concepts.

C. Arrowhead Tools and Toolchains

Within the scope of the Arrowhead Tools project, one goal
is to explicitly address the capabilities of tools in Industry 4.0,
as SoS automation scenarios demand more and more of the
involvement of supportive toolchains that can work without
human intervention. What has also been underlined within
such a heterogeneous environment, is that the concept of
“tool” is not always clear. Within the scope of the Arrowhead
Tools project, we can state that a tool is or has a piece
of software and it is specifically supporting an engineering
process that leads to the realization of artifacts. It is important
to stress that henceforth we will use the word “tool” to
identify “Arrowhead Tools” just as they are defined below,
not by its English dictionary definition, even though this
definition can be extended to any engineering tool. In short,
a tool is a software or a hardware (with adequate software
on board) entity/artifact that replaces manual labor throughout
the Arrowhead-EP of some artifact, either in its design time
or run time, that improves an already established industrial
baseline by satisfying non-functional requirements. Tools,
in our context, are also Arrowhead systems, either service
providers or consumers. The definition is intentionally loose,
in order to be a reference to heterogeneous use cases –
e.g. pure software-driven, manufacturing, constructions, etc. –
however, it draws some fixed lines over key points that separate
conceptually a tool from non-tools in the loop. For a better
understanding of these concepts, the definition accepted within
the project and examples of tools and non-tools can be found
in [8].

Arrowhead tools, as detailed in the previous section, feature
properties (such as atomicity and interoperability) that open
up their suitability for compositional architectures. Following
this line, here we introduce the concept of toolchains, which
well merges tools and engineering processes. Just as we
did for tools, let us first report the official definition of an
Arrowhead toolchain [8]: A toolchain is a collection of tools
and of definitions of the corresponding interfaces potentially
organized in chain-based or parallel structures. Tools in
a toolchain can be substituted/replaced with other tools
with the same input/output interfaces. Hence, the toolchain
definition above naturally integrates with the Arrowhead-EP
as it follows the same loose coupling principle. Moreover,
we stress the importance of making this integration explicit
through an Engineering Process Mapping (EPM) that brings
to the surface a new requirement to satisfy: whenever two
EPPs are connected in a use-case specific Arrowhead-EP,
then the corresponding toolchain shall establish an automated
(when possible) data exchange between tools that address such
phases.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


MONTORI et al.: DYNAMIC EXECUTION OF ENGINEERING PROCESSES IN CPSOS TOOLCHAINS 5

Fig. 2. A graphical overview of the Arrowhead tools engineering process.

IV. SUPERVISING THE PROCESS

The automated execution of toolchains can be approached
in different ways, depending on what functionalities are
supported by the tools. On the other hand, every toolchain
execution can be described by a sequential list of tools, starting
from the first one to be executed, and ending with the last one.
Such an approach, however, can be attributed to linear (i.e.,
tools are connected one-to-one and sequentially) toolchains
only, which might limit its applicability. Nevertheless, this case
is the easiest one to analyze, and the potential approaches
to tools execution automation will be discussed assuming
the linearity of the toolchain. The following approaches to
toolchain execution automation, detailed below, are identified:

1) Hard-coded sequence
2) Individually orchestrated sequential execution
3) Supervised execution
This list is not intended to be exhaustive, rather it provides

the reader with a brief overview of the approaches to toolchain
automation in SOA.

The first approach is the simplest automated execution,
where each tool has the information about the next tool to be
executed and, once it finished the processing, triggers the next
in line. Such an approach requires high effort to be put into
the design time to arrange the connections between subsequent
tools in a pre-programmed manner. Moreover, when one of
the tools is no longer available, the execution of the toolchain
usually stops at this particular point, and modifications to the
pipeline require modifying the involved tools.

In our case, points 2) and 3) correspond, respectively,
to an Arrowhead-orchestrated scenario and an Arrowhead-
choreographed scenario. Orchestration of services is seen here
to instruct each service consumer which is the information
provider that it is committed to query and where to find
it. Conversely, choreography instructs service consumers on
when and how to query those services, making the role of
these two policies orthogonal. In fact, we consider Arrowhead
choreography to always imply an underlying Arrowhead
orchestration to be implemented. More in detail, the second
method, where each tool is orchestrated statically, relies on
a predefined set of rules that tell which tools should be
connected to each other (in a consumer/producer relationship).
This approach does not have any dynamical description of
the aforementioned relations, and the subsequent tools are
manually executed as soon as the input data is available. This
makes the synchronization of different data sources difficult
or even impossible. The last method elevates the toolchain
automated execution to a higher level of abstraction, where
there is a dedicated system – a choreographer – responsible
for the execution of subsequent steps in a given toolchain
recipe [35]. Although the implementation of such a system

might appear simple, it should be taken into account that
the introduction of a choreographer in SOA should ideally
not require any changes in the existing services, but in the
systems (adding a new service). Hence, all of the services
are orchestrated to the choreographer, i.e., all providers in the
toolchain are consumed by it, and it serves as a provider for
all consumers regarding control-flow operations.

Various SOA-based workflow management and choreogra-
phy approaches are compared in [37], concluding that the
Arrowhead choreography solution – that we propose to adopt
for toolchaining – shows superiority above others in workflow
lifecycle stage support, asynchronous service request handling,
and parallel execution capabilities. These are key features for
the proposed supervised toolchain execution (point 3 in the
above list).

The choreographed approach can be built to execute not
only linear toolchains, but also to make branched execution,
loops, or even reusing the recipes to assemble Toolchains-
of-Toolchains (ToT). Another advantage is the ability to
synchronize multiple data providers for a common consumer,
which enables not only multi-stakeholder operation but also
multi-stakeholder cooperation. Finally, toolchains involving
design-time tools, which often require actions to be taken by
humans that can last for days, can be integrated into such a
pipeline as well. The above-mentioned advantages would not
be possible with statically defined orchestration rules – more
complex logic and supervision are required along with control
over the correctness of the execution of subsequent tools.

The main benefit of the proposed approach is that it
allows dynamic tool assignments based on the relevant
tool’s servicing capability and availability, as it works in all
Service Oriented Architectures. Eventually, this can lead to
an automatic build-up of toolchains covering the engineering
lifecycle first partially, then fully. Unlike any other methods
or approaches, our proposal covers the first two challenges
described in the introduction. The third challenge is related to
the adoption for legacy systems – which is discussed in the
next chapter.

V. MAPPING THE TOOLCHAIN MODEL TO THE
ECLIPSE ARROWHEAD FRAMEWORK

With respect to the definitions of tools and toolchains
given in Section III, we observe that Eclipse Arrowhead
finds its natural application in supporting automation between
tools as they take part in a toolchain. In fact, tools as we
know them are – a particular instance of – systems, and
toolchains can compose a significant set of SoS. The key
observation is that automation is enabled by an automatic
information flow between tools, especially when those are
decoupled and communication between tools is not hardwired.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

The latter concept is required in compliance with novel IIoT
guidelines and, in our case, with the Arrowhead-EP presented
in Section III-B. In this section, we aim to give a consistent
hierarchical framework to describe rigorously the extent to
which an industrial toolchain is integrated with the Eclipse
Arrowhead and the expected implications. This is done by
taking into account mostly a selected subset of the Arrowhead
Core Services described in the previous Section, in particular
those that have a significant repercussion on an engineering
process. More in detail, we define a series of Adoption Levels
that characterize the level of integration of a toolchain by
isolating the functionalities that each core service brings in.
The reason why this framework is presented in a hierarchical
way (i.e. by using the connotation “levels”) is that a target
adoption level requires most likely the implementation of all
the other underlying ones. Note that this does not promote in
any way that a higher adoption level means a better or more
efficient SoS, as, in fact, a certain adoption level that suits
best a definite use case might be overkill for others. Rather,
it aims to provide a survey that guides the practitioner in
getting familiar with the features of the Eclipse Arrowhead
towards Industry 4.0 engineering toolchains and building a
solid environment progressively as per the requirement of the
target SoS. For the sake of compactness, let us abbreviate the
term Adoption Level with AL. A more technical display of
the Arrowhead functionalities illustrated in this section can
be found in the official documentation [34], alongside with
the code of the platform, examples, and application skeletons.
Information models of the framework have also been largely
investigated in literature, an example is [38], which proposes
SysMLv2 for capturing its structural aspect, and describes a
real use case in a Norwegian chemical factory.

A. Adoption Level 0 (AL0): Legacy Infrastructure

In this case, no interaction between engineering tools
is supported by Eclipse Arrowhead. This includes legacy
toolchains that either make use of manual interaction or pass
information via a different automation facility. In any of such
cases, engineering tools cannot take an active part in processes
managed within an Arrowhead Local Cloud.

B. Adoption Level 1 (AL1): Basic SOA

A simple, yet efficient way of adding SOA capabilities
to an SoS by setting up a local cloud is to leverage the
Service Registry core service. The Service Registry provides
discovery and loose coupling to a local cloud of systems:
service providers register their service record to the Service
Registry by specifying their endpoint and a set of metadata,
while service consumers query the Service Registry to obtain
the endpoint of services that fit their specification. The official
implementation of the Core Service can be found in the
Arrowhead Tools repository [34], and its deployment requires
a relational database and a number of HTTP endpoints that
host its services. A custom implementation is also possible
by following the guidelines in the documentation. This simple
architecture poses a broker between providers and consumers
and only adds a step in the service discovery phase while

eliminating all at once the need for hardwires between systems
and services. In the same way, tools in a toolchain are here
considered loosely coupled Arrowhead systems. However,
by introducing only the Service Registry, an SoS unavoidably
faces a set of drawbacks, for instance, the amount of logic
that each system must implement, which gives little to no
management capability to the administrator(s) of the toolchain.
In the AL1 block of Figure 3 we notice how a consumer
system needs to explicitly know which service it is looking
for on the Service Registry.

C. Adoption Level 2 (AL2): Mandatory Core Services

Even though a simple SOA can be set up through the use
of the Service Registry, by means of the Authorisation and
the Orchestration we achieve what has been defined as the
mandatory level of integration of a local cloud in the industrial
scenario. More in detail, these two core services shift the level
of control for authorization and management to the framework
level. This means that authentication and authorization do not
need to be managed in a customized way by each couple of
interacting systems, instead access control is checked within
the authorization layer, which is also committed to releasing
usage tokens based on certificates. In particular, access rules
stored in the Authorisation system describe the access policies
between a consumer and a provider system. This core system is
also responsible for providing the session control functionality,
achieved through a token generation system. On the other
hand, the Orchestration system is responsible for coupling
consumers to their specific provider through rules, so the local
cloud Manager (an entity that supervises and manages all the
interactions in the local cloud) can coordinate the interaction
without the need for the single systems to implement the
discovery by themselves. This means that consumers only
have to put a query to the Orchestration instead of searching
their provider in the Service Registry, as the provider is
already assigned through an Orchestration rule. In particular,
the Orchestration service returns the information (address,
port, context path, tokens) that the requesting application needs
in order to consume the specified service. The Orchestration
system can be also used as a dynamic search engine,
in fact the requesting application system can also be asked
to find one or more accessible providers that meet certain
requirements or metadata, in absence of an orchestration rule.
A complete set of information about the Authorisation and the
Orchestration systems can be found in the official Arrowhead
Tools documentation [34].

D. Adoption Level 3 (AL3): Design Time Planning

A local cloud using the mandatory core services, in some
cases, lacks the support for an organization at design time:
orchestration rules are often pushed by a human or dedicated
software and, when the SoS to be managed is large, this
typically becomes impractical. A key observation here is
that a large SoS with many atomic services, in industrial
scenarios, often has a limited number of configurations
that are implemented. For such reason, for efficient design-
time planning, the Plant Description System is a powerful

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


MONTORI et al.: DYNAMIC EXECUTION OF ENGINEERING PROCESSES IN CPSOS TOOLCHAINS 7

Fig. 3. Sequence diagram models for all Arrowhead adoption levels, in which one provider and one consumer are exemplified.

aid. It allows to specify a whole configuration (i.e. a set
of orchestration rules) beforehand by using a description
language and to push such rules in bulk onto the Orchestration.
Furthermore, it provides the administrator with the feature of
saving different configurations and loading them as needed at
runtime.

E. Adoption Level 4 (AL4): Runtime Supervision

Some of the industrial toolchains may need a monitoring
facility, especially when tools are organized in a pipeline.
The Workflow Choreographer introduces the capability of
supervising the whole runtime process by calling services
explicitly when they are needed while keeping track of
the whole workflow. More in detail, the workflow logic is
specified through a definition language and allows for calling
services, waiting for services to respond, executing conditional
branches, passing the output of a tool in input to another
tool, etc. In order to do so, the Choreographer instantiates
a set of Workflow Executors (WE), which are separate
processes, each of them interacting with a different tool. In this
case, the local cloud Manager first registers a new “recipe”
to the Choreographer – i.e., a pipeline of service calls and
constraints written in a dedicated language (Arrowhead uses
JSON syntax [35]). The recipe specifies a number of service
interactions in the local cloud that need to be triggered by
the Choreographer itself. With respect to Figure 3, when the
pipeline starts, the Choreographer calls directly the service
consumer to perform one computation step and return the
result. Such a computation step may require querying a service
provider, which is orchestrated to the consumer as in AL2.

When the consumer is done with the step, it notifies back to
the Choreographer. This practice unavoidably requires some
changes in the design of tools, as they need to implement either
a listening interface for WEs or to be implemented as callable
executables. The latter is more suitable for atomic, short tool
processes (e.g. a robotic arm performing a single operation),
more similar to microservices. In other words, getting to AL4
brings undeniable monitoring advantages, however, in some
cases, the outcome may not be worth the effort.

VI. THE ARROWHEAD REFERENCE DEMONSTRATOR

Within the scope of the Arrowhead Adoption Levels
introduced earlier, we present in this section a demonstrator,
implemented by the authors, that acts as a set of implemen-
tation guidelines for developers. The demo has the role of a
training and education tool, which is kept intentionally simple,
rather than a complex scenario. The simplified version of the
demo that was used as a skeleton for the presented application
is open source and the code is publicly available.4 The
demonstrator was embedded in a real-world application: the
milk collection and delivery process, operated by DAC.digital
as a part of the MuuMap platform. An onboard computer
installed in a milk hauler collects data on the amount of
milk collected, as well as the temperature of the transported
milk. The temperature sensor, which is wirelessly connected
to the gateway, is battery-powered. A sensor reconfiguration
is made to save battery life on the basis of current and
previous measurements. It can be simplified to a rule-based
procedure, which reduces the sampling time in cases where the

4https://github.com/stradivarius/wp4_toolchain_demo

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

temperature is constant, and increases if it changes. In order to
show the violation of the threshold, the data are stored through
the persister tool.

The persister tool (physically executed on a gateway) offers
persistence capabilities to the scenario: it periodically queries
the temperature sensor, which replies with a data chunk
containing the last temperature values and saves the data
obtained onto a database. The Persister then exposes a service
that allows a consumer to get access to the data stored in the
database, as well as to obtain a configuration calculated by the
Persister itself. Such a configuration is an optimal estimate of
k, which the Persister periodically calculates, on top of the
last w temperature values. In detail, the new configuration
k ′ is calculated as follows: k ′

= max(| kw
2 |, 1), which is a

discretization of common approaches of duty cycle updates
based on data change frequency, such as in [39]. The idea
is that the sampling interval tends to be shortened as the
number of equal values w is large (because it means that
the temperature value changes more slowly than the sampling
frequency) and the opposite as w tends to zero. k ′ is then
the new suggested configuration, however, it is not applied
directly to the temperature sensor. The Gateway Controller in
fact, is in charge of consuming the service: it obtains the data
points from the Persister, displays them, and ultimately sends
a configuration (i.e. the value of k ′) to the temperature sensor,
which, in turn, changes the sampling frequency accordingly.
The Gateway Controller can choose to use the suggested k ′,
or set a completely arbitrary one, as per the user’s choice. The
architecture of the system is presented in Figure 4.

A. Elevating Adoption Levels

With AL1, we notice how the sole deployment of the
Service Registry is sufficient to guarantee a SOA-mediated
interaction. The three systems – the monitoring dashboard has
been omitted as it is hardwired and its role can be taken up
by the Gateway Controller – have been registered into the
Service Registry and, upon consuming a service, they request
for the exact service endpoint to the Service Registry. This
implies, however, that the service name or some metadata is
known to each of the systems, leaving them with a certain
degree of autonomy. With AL2 such autonomy is limited
because the service interactions are handled by orchestration
rules, i.e. systems cannot directly obtain information from
the Service Registry, instead they query the Orchestration
system for the services that they have to consume, according
to orchestration rules set by a local cloud manager. Note that
the setup of orchestration and authorization rules by the local
cloud manager at design time can be taken up by additional
design tools. Examples can be the Magic Draw Tool [16]
and the AHT Management Tool.5 The first one allows one
to design the local cloud interactions via a SysML diagram
and export it in a format that is readable by the Management
Tool. The latter then registers the services into the Service
Registry, the authorization rules into the Authorisation,
and the orchestration rules into the Orchestration. The
output of the Magic Draw Tool can be alternatively fed

5https://github.com/arrowhead-f/mgmt-tool-js

to the Plant Description System, which eventually registers
the orchestration rules as a single configuration, as it
happens in AL3.

B. Choreography of the Toolchain

Finally, AL4 involves the Choreographer as the main active
element in the Local Cloud, to comply with the concepts
outlined in Section IV. This is the only AL that requires a
change in the implementation of the application systems and
tools, as they all need to host an endpoint that is reachable
by the WEs associated with the Choreographer, as presented
in Figure 4. So far, the Choreographer has been shown to
work with application systems designed to perform predefined
tasks in a programmed sequence, without involving any data
processing, yet requiring to notify the Choreographer that
the step has been completed. Even though this has been
implemented here, the demo is a proof of concept that would
not necessarily benefit from AL4, as some of the tools and
systems are not conceptually passive and consumers need
to additionally indicate when they have finished processing
the data. However, if we imagine this demo to scale up,
involving a number of different data sources, each one with
its own time-driven constraint, then correctly choreographing
such interactions becomes crucial.

Our proposal of process supervision through the Arrowhead
Choreographer is novel from two main points of view. First
of all, this is the only process supervision that spans the
whole EP, while other efforts in the literature focus on its
design-time parts [23], [24], thus not entirely addressing the
problem space – i.e., the run-time part of the EP. This makes
it difficult to estimate how such supervision may take place
in Arrowhead-free scenarios, due to the lack of terms of
comparison. Secondly, to our knowledge, this is the only
process supervision applied to SOA (differently from [23],
[24]), which necessarily requires every service to be compliant.
For this reason, we currently do not foresee an easy way
of integrating services without changing them. We consider
this an important challenge and an interesting future direction
of research. On the other hand, though, we note that such a
change is only necessary once at design time, yet it enables
the setup of different pipelines without any run-time change
to services.

C. Passage to Industrial Use Cases

The demonstrator described in this section serves as a
easily comprehensible showcase of how one could benefit from
implementing the subsequent adoption levels and Arrowhead
Choreographer and their technical implications. However,
in order to couple the presented ideas and methodology with
industrial use cases, a link between the presented demonstrator
and practical implementations is shown in a few examples. The
first two examples show the utilization of runtime supervision
(AL4) with the Choreographer, while the latter two will be
used to show how the proposed methodology can be used in
these cases in order to increase the automation level.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


MONTORI et al.: DYNAMIC EXECUTION OF ENGINEERING PROCESSES IN CPSOS TOOLCHAINS 9

Fig. 4. Architecture of the demonstrator system with the workflow choreographer at the adoption level 4. EPPX describes the number of engineering phase
to which the tool or interaction is attributed (see Figure 2). It is assumed that all tools are orchestrable and choreographable.

Fig. 5. Sequence diagram for choreographer-based supervision with Workflow Executors (WE), applicable for the robotic and automotive use cases.

D. Robotic Operation Supervision

In [40] a robotic operation is used as a showcase of how
the Choreographer can be utilized to perform supervised
robotic operations for flexible manufacturing systems. The
Choreographer receives production orders from the Enterprise
Resource Planning system, resulting in a set of recipes for
WEs, where for each recipe a new independent WE is spawned
to supervise the robotic operation. This use-case utilizes the
Choreographer for the run-time production operation at CPS
level in the same way as we suggest for the tools in the
toolchain. Figure 5 demonstrates the sequence diagram for the
robotic operation supervision.

Note that in this industry-driven scenario, the operational
supervision of the Choreographer and the separation of the
Arrowhead service provider workstation and the WEs are
emphasized. Hence, while the services from AL2 (Manager)
and AL3 (Plant Description) are not explicitly separated from

the Choreographer system, they are implemented. In this
scenario, the Choreographer-based supervision manages the
interactions in the local cloud and pushes orchestration rules
to the Orchestrator in bulk based on a design-time-prepared
description of SoS.

The proposed approach aligns with the robotic supervision
use case. Choreographer is again employed to oversee the
supervised process through WE. Each requested operation
recipe prompts the creation of a new WE to control the
process. Similar to the reference demonstrator, the spawned
WE receives feedback from another system on the successful
execution of the requested operation, subsequently notifying
the choreographer. Depending on the external system, new
operations may be requested and the choreographer will
be responsible for creating a new dedicated WE. Although
both use cases are applied in different domains, the applied
supervision methodology can be enclosed in the same
framework involving the choreographer.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 6. Multi-level choreography – automotive use case. The data processing toolchain runs simultaneously with the enterprise level-triggered Production
level choreography. NOTE that the internal message flow figures simply illustrate that there are both sequential and parallel flows being executed at different
levels.

E. Automotive Assembly Plant

An Arrowhead-managed assembly shop is introduced
in [36], showcasing a part of a manufacturing plant that
assembles vehicles. The Choreographer is used to supervise
the ordered execution of particular assembly blueprints,
where each possible operation is defined as a recipe related
to a workflow and managed by the WE invoked by the
Choreographer. The WE assures that each step of a workflow
is executed in an ordered manner, while the Choreographer
delegates the adequate WEs, requests services from the
Orchestration, assures proper configuration/reconfiguration of
services, and analyzes the results from WEs. The operational
sequence described in Figure 5 applies here as well. In this
demonstrator use case, a multi-level workflow is executed,
where the workstation recipes refer to, e.g., tank installation
or seat installation processes.

Note that there are many other workflows defined for the
automotive assembly plant, which in our demonstrator on
adoption levels can be defined as, for instance, data processing

workflow including MLOps [41] or different provisioning
system injection flows. The integration of the production level
workflow into the multi-level workflow (with Choreography as
in Figure 5) is shown by Figure 6, including a simultaneous
data processing Toolchain Choreography for the Arrowhead
Tools Engineering Process (Figure 2) that happens at the
data processing level (with the AL4 sequence of Figure 3.
On the production level there are separated Choreography
instances (per recipe) controlling the workflow as described
in [36], whereas in the data processing tool level there
is a separated Choreographer instance responsible for the
Engineering Process Toolchain choreography.

F. Onboarding Toolchain

In [10] the onboarding toolchain was described as one
of the use cases where Eclipse Arrowhead was used as
the interoperability enabler. The toolchain was developed
at DAC.digital6 in order to simplify and automate the

6https://dac.digital

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


MONTORI et al.: DYNAMIC EXECUTION OF ENGINEERING PROCESSES IN CPSOS TOOLCHAINS 11

Fig. 7. Sequence diagram for onboarding toolchain.

onboarding process of new IoT devices to existing local
clouds and was eventually applied to logistics use cases where
package delivery was constantly monitored from pick-up to
delivery stages by providing Inertial Measurement Unit (IMU)
measurements and temperature readings of the transported
goods (e.g., medicines). The toolchain was implemented up
to AL2, where all core services were utilized, and additional
scripts were developed to ensure run-time orchestration of new
devices. Still, one of the most problematic issues was handling
devices that are appearing in and disappearing from the range
of the local cloud, so that they are properly orchestrated
and served. AL3 and AL4 could be used here to handle
that, where Plant Description would have a predefined set
of orchestration rules for a specific type of device, while the
Choreographer could be used to invoke the device registration
workflow, and then supervise the data provisioning part of
the use case. In addition, the off-boarding procedure could be
handled gracefully for further reuse of the same device. The
sequence diagram of this use case is presented in Figure 7.

G. Edge-to-Cloud Integration for Production Monitoring

The authors of [42] propose to use Eclipse Arrowhead
in order to build a hierarchical structure from local
clouds in order to implement production/assembly monitoring
application. The idea is to have services that could
be flexibly delegated from the edge level to the cloud
computing environment through both intra- and inter-cloud
communication. The data is collected and visualized in a local
cloud close to the workstation, while data processing happens
on the cloud. Again, this use case reached AL2. The vision
of implementing AL3 and AL4 appears to be clear as the
authors provide the flow between different services in various
scenarios as directed acyclic graph. First of all, the Plant
Description can be used here to design interactions between
particular services on different levels (edge and cloud). The

Choreographer can be utilized for the supervised execution of
various workflows related to desired processing functionalities,
for the edge, for the cloud, and for interconnected workflows.
In that way, manual reconfiguration and supervision would be
automated.

VII. CONCLUSION

In this paper, the issue of automated execution and synchro-
nization of engineering tools within toolchains is addressed.
In particular, related work and standards are introduced as a
baseline for this paper, on the basis of which basic definitions
are formulated. Different approaches to toolchain automation
are described and discussed, and choreography is proposed
as the main enabler for complex toolchain automation and
supervision. The toolchain model is then mapped to fit in the
Eclipse Arrowhead framework, which is used as the ecosystem
with the services needed to ensure the appropriate level of
interoperability within the toolchain. The use of mandatory and
supporting core services of Eclipse Arrowhead is organized in
Adoption Levels (AL), introduced and defined in this paper.
For each of the Adoption Level the sequence diagrams are
provided. The final results are demonstrated as an actual
implemented use-case, where the toolchain is presented at each
of the proposed AL, and the Choreographer is used up to
AL4 to automate the execution of the considered toolchain,
validating the proposed methodology.

REFERENCES

[1] J. Delsing et al., 3 The Arrowhead Framework Architecture: Arrowhead
Framework. CRC Press, Feb. 2017, pp. 43–88.

[2] Industrial Systems, Installations and Equipment and Industrial
Products—Structuring Principles and Reference Designations—Part 1:
Basic Rules, Standard IEC 81346-1:2022, International Electrotechnical
Commission, 2022.

[3] P. Varga et al., “Making system of systems interoperable—The core
components of the arrowhead framework,” J. Netw. Comput. Appl.,
vol. 81, pp. 85–95, Mar. 2017.

[4] C. Paniagua, J. Eliasson, and J. Delsing, “Interoperability mismatch
challenges in heterogeneous SOA-based systems,” in Proc. IEEE Int.
Conf. Ind. Technol. (ICIT), 2019, pp. 788–793.

[5] C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46–52, Oct. 2003.

[6] T. Burns, J. Cosgrove, and F. Doyle, “A review of interoper-
ability standards for industry 4.0,” Proc. Manufacturing, vol. 38,
pp. 646–653, 2019.

[7] D. Gürdür, F. Asplund, and J. El-Khoury, “Measuring tool chain
interoperability in cyber-physical systems,” in Proc. 11th Syst. Syst. Eng.
Conf. (SoSE), 2016, pp. 1–4.

[8] G. Kulcsár, M. S. Tatara, and F. Montori, “Toolchain modeling:
Comprehensive engineering plans for industry 4.0,” in Proc. IECON
46th Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 4541–4546.

[9] G. Urgese, P. Azzoni, J. van Deventer, J. Delsing, A. Macii, and E. Macii,
“A SOA-based engineering process model for the life cycle management
of system-of-systems in industry 4.0,” Appl. Sci., vol. 12, no. 15, p. 7730,
Aug. 2022.

[10] G. Kulcsár et al., “Modeling an industrial revolution: How to manage
large-scale, complex IoT ecosystems?” in Proc. IFIP/IEEE Int. Symp.
Integr. Netw. Manage. (IM), May 2021, pp. 896–901.

[11] L. Prades, F. Romero, A. Estruch, A. García-Dominguez, and J.
Serrano, “Defining a methodology to design and implement business
process models in BPMN according to the standard ANSI/ISA-95 in a
manufacturing enterprise,” Proc. Eng., vol. 63, pp. 115–122, 2013.

[12] W. Ochoa, F. Larrinaga, and A. Pérez, “Context-aware workflow
management for smart manufacturing: A literature review of semantic
web-based approaches,” Future Gener. Comput. Syst., vol. 145,
pp. 38–55, Aug. 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


12 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

[13] J. Ma, G. Wang, J. Lu, H. Vangheluwe, D. Kiritsis, and Y. Yan,
“Systematic literature review of MBSE tool-chains,” Appl. Sci., vol. 12,
no. 7, p. 3431, Mar. 2022.

[14] P. Varga et al., “Converging telco-grade solutions 5G and beyond to
support production in industry 4.0,” Appl. Sci., vol. 12, no. 15, p. 7600,
Jul. 2022.

[15] W. Chang, S. Zhao, R. Wei, A. Wellings, and A. Burns, “From Java to
real-time Java: A model-driven methodology with automated toolchain,”
in Proc. 20th ACM SIGPLAN/SIGBED Int. Conf. Lang., Compil., Tools
Embedded Syst., Jun. 2019, pp. 123–134.

[16] G. Kulcsár et al., “From models to management and back: Towards a
system-of-systems engineering toolchain,” in Proc. NOMS IEEE/IFIP
Netw. Operations Manage. Symp., Apr. 2020, pp. 1–6.

[17] L. E. Lwakatare et al., “DevOps in practice: A multiple case study of
five companies,” Inf. Softw. Technol., vol. 114, pp. 217–230, Oct. 2019.

[18] T. Maikantis, T. Chaikalis, A. Ampatzoglou, and A. Chatzigeorgiou,
“SmartCLIDE: Shortening the toolchain of SOA-based cloud software
development by automating service creation, composition, testing, and
deployment,” in Proc. 25th Pan-Hellenic Conf. Informat., Nov. 2021,
pp. 306–311.

[19] C. Hegedus, P. Varga, and A. Frankó, “A DevOps approach for
cyber-physical system-of-systems engineering through arrowhead,” in
Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May 2021,
pp. 902–907.

[20] Representation of Process Control Engineering—Requests in P&I
Diagrams and Data Exchange Between P&ID Tools and PCE-
CAE Tools, Standard IEC 62424:2016, International Electrotechnical
Commission, p. 2016.

[21] Industrial Automation Systems and Integration—Integration of Life-cycle
Data for Process Plants Including Oil and Gas Production Facilities,
Standard ISO 15926:2004, ISO Central Secretary, 2004.

[22] OPC Unified Architecture—Part 1: Overview and Concepts, Standard
IEC 62541:2020, OPC Foundation, 2020.

[23] E. Stav, S. Walderhaug, M. Mikalsen, S. Hanke, and I. Benc,
“Development and evaluation of SOA-based AAL services in real-life
environments: A case study and lessons learned,” Int. J. Med. Informat.,
vol. 82, no. 11, pp. e269–e293, Nov. 2013.

[24] J. Lu, D. Chen, J. Wang, and M. Torngren, “Towards a service-oriented
framework for MBSE tool-chain development,” in Proc. 13th Annu.
Conf. Syst. Syst. Eng. (SoSE), 2018, pp. 568–575.

[25] Y. Guo, J. Wei, G. Chen, and S. She, “A unified model-based systems
engineering framework supporting system design platform based on data
exchange mechanisms,” in Knowledge and Systems Sciences, J. Chen,
T. Hashimoto, X. Tang, and J. Wu, Eds. Singapore: Springer Nature,
1007.

[26] C. Neureiter and C. Binder, “A domain-specific, model based systems
engineering approach for cyber-physical systems,” Systems, vol. 10,
no. 2, p. 42, Mar. 2022.

[27] S. Mantravadi and C. Möller, “An overview of next-generation
manufacturing execution systems: How important is MES for industry
4.0?” Proc. Manuf., vol. 30, pp. 588–595, 2019.

[28] E. Negri, S. Berardi, L. Fumagalli, and M. Macchi, “MES-integrated
digital twin frameworks,” J. Manuf. Syst., vol. 56, pp. 58–71, Jul. 2020.

[29] J. Wan et al., “Reconfigurable smart factory for drug packing in
healthcare industry 4.0,” IEEE Trans. Ind. Informat., vol. 15, no. 1,
pp. 507–516, Jan. 2019.

[30] Y. Wang et al., “MPCSM: Microservice placement for edge-cloud
collaborative smart manufacturing,” IEEE Trans. Ind. Informat., vol. 17,
no. 9, pp. 5898–5908, Sep. 2021.

[31] G. Schneider, P. Patolla, M. Fehr, D. Reichelt, F. Zoghlami, and
J. Delsing, “Micro service based sensor integration efficiency and
feasibility in the semiconductor industry,” Infocommunications J.,
vol. 14, no. 3, pp. 79–85, 2022.

[32] S. Maksuti, M. Zsilak, M. Tauber, and J. Delsing, “Security and
autonomic management in system of systems,” Infocommunications J.,
vol. 13, no. 3, pp. 66–75, 2021.

[33] D. Kozma, P. Varga, and G. Soós, “Supporting digital production,
product lifecycle and supply chain management in industry 4.0 by the
arrowhead framework—A survey,” in Proc. IEEE 17th Int. Conf. Ind.
Informat. (INDIN), vol. 1, Jul. 2019, pp. 126–131.

[34] The Arrowhead Consortia. Eclipse Arrowhead Developer Resources.
Accessed: Jan. 20, 2024. [Online]. Available: https://projects.
eclipse.org/projects/iot.arrowhead/developer

[35] P. Varga, D. Kozma, and C. Hegedús, “Data-driven workflow execution
in service oriented IoT architectures,” in Proc. IEEE 23rd Int. Conf.
Emerg. Technol. Factory Autom. (ETFA), vol. 1, Sep. 2018, pp. 203–210.

[36] D. Kozma, P. Varga, and F. Larrinaga, “Dynamic multilevel workflow
management concept for industrial IoT systems,” IEEE Trans. Autom.
Sci. Eng., vol. 18, no. 3, pp. 1354–1366, Jul. 2021.

[37] J. G. Represa et al., “Investigation of microservice-based workflow
management solutions for industrial automation,” Appl. Sci., vol. 13,
no. 3, p. 1835, Jan. 2023.

[38] J. Delsing, G. Kulcsár, and Ø. Haugen, “SysML modeling of
service-oriented system-of-systems,” Innov. Syst. Softw. Eng., pp. 1–17,
May 2022.

[39] F. Wang, S. Wu, K. Wang, and X. Hu, “Energy-efficient clustering using
correlation and random update based on data change rate for wireless
sensor networks,” IEEE Sensors J., vol. 16, no. 13, pp. 5471–5480,
Jul. 2016.

[40] D. Kozma, P. Varga, and K. Szabó, “Achieving flexible digital production
with the arrowhead workflow choreographer,” in Proc. IECON 46th
Annu. Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 4503–4510.

[41] C. Hegedus and P. Varga, “Tailoring MLOps techniques for industry
5.0 needs,” in Proc. IFIP/IEEE Int. Conf. Netw. Service Manage.
(CNSM), 2023, pp. 1–7.

[42] D. Hästbacka et al., “Dynamic edge and cloud service integration
for industrial IoT and production monitoring applications of industrial
cyber-physical systems,” IEEE Trans. Ind. Informat., vol. 18, no. 1,
pp. 498–508, Jan. 2022.

Federico Montori (Member, IEEE) received the
B.S. and M.S. degrees (summa cum laude) in
computer science and the Ph.D. degree in computer
science and engineering from the University of
Bologna, Italy, in 2012, 2015, and 2019, respec-
tively. He was a Visiting Researcher with the
Swinburne University of Technology, Australia,
Luleå Tekniska Universitet, Sweden, and Technische
Universität Ilmenau, Germany. He is currently a
Senior Assistant Professor with the University of
Bologna. He has participated in several EU projects

and he was the WP Leader for the H2020 Project Arrowhead Tools. His
primary research interests include mobile crowdsensing (MCS), pervasive and
mobile computing, the IoT automation, and data analysis for the IoT scenarios.

Marek S. Tatara (Member, IEEE) was born in
Olsztyn, Poland, in 1991. He received the M.Sc.
degree and the Ph.D. degree in the field of automatic
control, electronics and electrical engineering from
the Gdańsk University of Technology, in 2019.
He is currently an Assistant Professor with the
Gdańsk University of Technology and the Chief
Scientific Officer with DAC.digital. His research
interests include the mathematical modeling of
physical processes, diagnostics, signal processing
applied to industrial processes, and evolutionary

music composition. He is a member of Polish Society for Measurement,
Automatic Control and Robotics, and the Vice-Chair of the Technical
Committee TC 7.5. Intelligent Autonomous Vehicles on Social Media of
International Federation of Automatic Control.

Pál Varga (Senior Member, IEEE) is currently the
Head of the Department of Telecommunications
and Media Informatics, Budapest University of
Technology and Economics. His main research
interests include communication systems, cyber-
physical systems, the Industrial Internet of Things,
network traffic analysis, end-to-end QoS, and SLA
issues—for which he is keen to apply hardware
acceleration and artificial intelligence, and machine
learning techniques. He is active both in the IEEE
ComSoc and IEEE IES Communities. He has been a

TPC and an OC member in many IEEE conferences, and he was the General
Co-Chair of IEEE NOMS 2020 and 2022 editions. He is an editorial board
member in many journals, an Associate Editor of IEEE TRANSACTIONS
ON NETWORK AND SERVICE MANAGEMENT, and the Editor-in-Chief of the
Infocommunications Journal.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl

