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Abstract
This paper is devoted to the theoretical study of the dynamic response of non-cylindrical curved
viscoelastic single-walled carbon nanotubes (SWCNTs). The curved nanotubes are largely used in
many engineering applications, but it is challenging in understandingmechanically the dynamic
response of these curved SWCNTswhen considering the influences of thematerial viscosity. The
viscoelastic damping effect on the dynamic response is considered here by using theKelvin-Voigt
viscoelasticmodel. Amodified shear deformation beam theory is here employed to formulate the
governing partial differential equations.When the SWCNTs are considered in a small scalemodel,
quantum impacts are important for a correct evaluation of themechanical response of the
nanosystem. This is here investigated by embedding thewell-knownnonlocal strain gradient
approach into the governing equations. The extracted equations are solved by utilizing theGalerkin
analytical approach inwhich the governing partial differential equations are reduced to ordinary
differential equations and numerical findings are achieved for various boundary conditions. In order
to evaluate the efficiency of the proposed theory, the outcomes in terms of natural frequencies of the
vibrating nanotubes are verifiedwith respect to the available literature. It follows a vast systematic
study, where several parameters are varied to investigate the influences of geometrical properties
involving different polygons of the SWCNTs on the dynamic response.

1. Introduction

If it is assumed that themethods of nanotechnology’s production have reached their golden age, then carbon
nanotubes (CNTs) should be considered as golden kids of this era. Unique properties includingmechanical,
electrical, chemical, andmagnetic ones of these carbon nanomaterials have allowed the generation ofmany
functional applications in engineering. CNTs are typically referred to as single-walled andmulti-walled carbon
nanotubes.

Single-walled carbon nanotubes (SWCNTs) are defined as one dimensional cylindrically shaped allotropes
of carbon that have a high surface area and aspect ratio (length-to-diameter ratio). They aremade fromone atom
thick carbon nanosheets that form a hollow cylindrical shape during the chemical vapour deposition synthesis,
as discussed by Iijima [1]. Its unique properties, including the high elasticitymodulus and good tensile strength
togetherwith the extraordinary properties of the carbon nature of the nanotubes (because carbon is a low-
weightmaterial, very stable and simple to performprocesses that are cheaper thanmetals to produce) have led to
ameaningful research on the performance of CNTs over the last decades. A lot of theoretical and practical works
have focused on the atomic and continuum structures of CNTs. Extensive efforts have also beenmade to test and
characterize themechanical properties such as the Young’smodulus, the tensile strength and imperfect
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mechanism, and also the effects of nanotubes’ deformations on the electrical properties. This particular interest
in nanotubes can be attributed to their unique structure and features [2].

Nanotubes are assumed to be cylindrical structures and their carbon atoms have the ability to covalently
bond to other atoms ormolecules creating a newmolecule with customized properties. These nanostructures
are beingwell studied under static and dynamic forces by engineers and researchers around theworld because of
the importance of identifying theirmechanical properties and responses for themechanical design of CNTs in
nanotechnology. In reality, a SWCNT is a long and bent nanostructure and it does not have perfectly straight
shape. Although there have beenmany studies aboutmechanical and dynamic responses of straight nanotubes,
there have been very limited investigations about curved nanotubes.Mehdipour et al [3] studied a curved single-
walled carbon nanotube in a vibrational position and placed it on an elasticmedium. They employed the Euler–
Bernoulli beam theory in conjunctionwith theHamilton principle. TheHe’s energy balancemethodwas
adopted to seek numerical results inwhich the amplitude frequency response of the curved SWCNTs embedded
in a Pasternak elastic foundationwas obtained. Cigeroglu and Samandari [4] examined the nonlinear natural
frequencies of a curved double-walled carbon nanotube (DWCNT) systembridged on a polymer foundation on
the basis of the differential quadrature numerical technique in order to discretize the partial differential
equations ofmotion in a spatial domain, namely in a nonlinear set of algebraic equations ofmotion. They also
studied the nonlinear van derWaals forces between inner and outer tubes. A classical beam theorywas
implemented in the energy formulation to derive the basic relations, whose results showed that it is possible to
detect different vibrationmodes occurring at a single vibration frequencywhenCNTs vibrate in the out-of-
phase vibrationmode. For the first time, the chaotic behavior of a SWCNTwith an initial curvature in shape
(waviness along its axis) exposed to harmonic excitation frequencies was investigated byMayoof andHawwa [5].
The equationswere formulated according to the elastic continuummechanics theory, while assuming an Euler–
Bernoulli displacementfield. Soltani et al [6] discussed about the natural frequencies of a curved SWCNT
subjected to an electricfield on the base of an analytical solution procedure. The Euler–Bernoulli elastic beam
approachwas used to formulate the equilibrium equations on the nonlinear vibration. The beam alsowas
embedded in aWinklermatrix and, the gained relationswere computed numerically using theGalerkin
approach. Arefi andZenkour [7] evaluated the influence of an electromagnetic surround on the static bending of
a laminated curved nonlocal beam.A sinusoidal shear deformation beam theorywas also used to the obtain
governing equations and nonlocal electro-magneto-elasticity relationships were employed to derive the
governing equations of bending based on the principle of virtual work.Mohamed et al [8] presented a
differential-integral quadrature numericalmethod to study free and forced vibrations of a local beamwith initial
deflection bridged on a nonlinear polymermedium. They compared the outcomes of the proposed solution
methodwith the analytical results and for validation purposes, with a good agreement among them. Liu et al [9]
carried out thewave propagation analysis in a SWCNT taking into account viscoelastic effects according to the
nonlocal strain gradient theory combinedwith the Timoshenko beamapproach. Tadi Beni et al [10] investigated
thewave propagation in a thin nano shell bridged on a viscoelastic foundation accounting for the internal
damping influence in the shell. The nano size effects were considered using the nonlocal strain gradientmodel.
Zhen andZhou [11] studied thewave propagation in a SWCNT subjected to an axialmagnetic field in a thermal
surround based on the nonlocal strain gradient theory. They also considered the internal damping and surface
effects to thewave analysis. Tadi Beni et al [12] analyzed thewave dispersion for aDWCNTconveying fluid
based on the nonlocal strain gradientmodel. They investigated the slip boundaries and examined the van der
Waals interaction between tubes embedded in aWinklermatrix. Thefirst-order shear deformation shell theory
was employed to derive the governing equations for thewave dispersion. Ghadiri et al [13] showed the small
scale effects for a SWCNT conveying viscousfluid under a criticalflow velocity based on the cylindrical shell
model and the nonlocal strain gradient theory. The results were calculated using the differential quadrature
technique for different boundary conditions. Zeighampour andTadi Beni [14] studied the natural frequencies of
afluid conveyingDWCNTbased on a couple stress theory. The relationships were based on theDonnell’s shell
theory and solved by the differential quadraturemethod for simple and clamped boundary conditions inwhich
the nanotubeswere lied in a visco-Pasternak surrounding.Mohammadi et al [15] developed the nonlocal strain
gradient shellmodel formechanical vibrations of a SWCNT conveying viscous fluid. They performed some
molecular dynamics simulations to study the effects of the fluid flowon the vibrational behavior of the SWCNT.
Zhen [16]modeled afluid-conveying SWCNTbased on nonlocal and surface impacts in order to analyze the
wave propagation of nanotubes. TheKelvin-Voigt viscoelasticmodel was also used in the governing equations in
order to consider structural damping effects.

Themolecular dynamics simulationmethod is well known to be an accurate but costly approach froma
computational standpoint. For this reason it has been scarcely used [15,17–20] to investigate CNTs under static
and dynamic vibration conditions. However, as far as the nonlocal theories are concerned for the analysis of
CNTs in several conditions,many research studies have been published in recent years [21–40] on the topic.
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Based on the above-mentioned review, several theories and techniques have been developed and applied for
studying the dynamic response of the nanotubes in various conditions. It is largely noticed that viscosity of
nanomaterials can affect theirmechanical strength and electrical properties. For example, advantages in
mechanical strength, thermal and electrical conductivitymakeCNTs ideal for additives in polymer composites.
However, the dispersion of the nanoscale phase within the polymermatrix and the initiation of large changes in
viscosity can ultimately contribute to the formation of defects which do not facilitate the expected strengthening
in themechanical or electrical properties which should be achieved [41].

Using current engineering processes, the curved nanotubes arewidelymade and synthesized. However, it is
challenging in understandingmechanically the dynamic characteristics and responses of CNTs in curved shapes.
Although the increased attention on curved nanotubes, there has not been any investigation on their dynamic
response considering the effect of thematerial viscosity. In addition, a complete knowledge about the
mechanical response of non-cylindrical nanotubes is still lacking. It is no doubt that understanding the
mechanical response of non-cylindrical CNTs can lead to some useful outcomes for the synthesize process, and
the development of newnanotubes inmany engineering applications. Therefore, the study in this paper focuses
on the dynamic response of curved SWCNTs considering the influence of viscoelastic properties. In particular, a
refined beam theory is employed to determine the governing equation of the problem. To take into account the
small scale influence of the nanostructure, a nonlocal strain gradient theory is embedded into the governing
equation. The developed theory considers both nonlocality and size-dependent properties. TheGalerkin
approach is adopted in order to convert the partial differential equation into an ordinary onewith a simple
process, while satisfying completely different boundary conditions.Hence, the results in various conditions are
got; the natural frequencies of a nanotube are comparedwith those obtained from some available references
from the literature and several parameters are examined to show the influence of viscoelasticity and geometrical
properties including various cross sections of the nanotube on the dynamic response.

2. Theoreticalmodelling

2.1. Energy formulation
The structure and shape of a SWCNT are shown infigure 1 alongwith the selectedCartesian coordinate. The
cylindrical and non-cylindrical shape of a cross section of the SWCNT is shown infigure 1(a) and the curved
form (curvature) of the nanotube is depicted infigure 1(b).

It is alreadywell known that a CNT is a rolled formof graphene sheets inwhich atoms of pure carbon are
arranged in a plan two-dimensional (2D) surface. Atoms are connected to the neighbors’ ones by covalent bonds
(figure 2)which are chemical connections. Assuming full cylindricality for a nanotubemight not be completely
true and the nanotubes can be assumed as polygon beams. Thus, showing and analyzing a SWCNT in a polygon
shape is interestingly addressed in this study.

According to a one-variable refined beam theory (OVFSDT), as presented in Ref. [27], the displacementfield
is described as
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inwhich u1(x, z, t), u3(x, z, t) represent the displacement components of points along the x and z-axis and
u0(x, t) andw0(x, t) are the corresponding components at themid-surface of the undeformed SWCNT along x
and z-axis.Moreover, the z-coordinate denotes the thickness direction.B is an additional coefficient defined by
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inwhichG andE denote the shear andYoung’smoduli,A is the cross section area of the nanotube, and Ic
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2 stands for themoment of area of the cross section.

The curvature of the nanotube can be defined by the equation below [3]

j
p
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⎝

⎞
⎠( ) ( )x e

x

L
sin 3

where e is a constant related to the curvature and L refers to the length of the curved SWCNT (according to
figure 1).

Based on theHamilton principle, the dynamic equilibriumof a domain can only be obtained by the
variationalmethod and the equation below leads to the governing equations of the problem, as follows
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òd d d dW = + - =( ) ( )U W K dt 0 4
t

0

inwhichΩ refers to the nanotube’s total potential energy,K andW stand for the kinetic energy and thework
applied by exterior objects,U is symbolized for the strain energy of the system.Note that δmeans the variations
of the energies and time. In this study, the external forces applied on the nanotubes are not considered.

First of all, the strain energy in the variational form reads

ò ò òd s de t dg= + = ( )U dV
1

2
0 5

v
xx xx xz xz

where δU is the virtual strain energy,σxx, τxz, εxx and γxz are the normal stress, shear stress, strains tensors at
each point of the domainV. The tensor of nonlinear strains are obtained based on equation (1) as

Figure 1.Cross section (a) andCurvature (b) of the nanotube (L displays the length, e shows values of the curvature, c is the length of
the covalent bonds, h represents the thickness and the internal and external diameters are exhibited by d1 and d2, respectively for the
SWCNT).

Figure 2.Three-dimensional scheme of the curved SWCNT.
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TheHookean elastic stress-strain relation is expressed as

s
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where Cijkl is the stiffnessmatrix of the elasticity relation. Thereafter the strain energy ofOVFSDT can be
written as
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The kinetic energy is given as
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and the variational formof the kinetic energy is expressed as
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inwhich ρ is the sectional density,m0 òr=⎜ ⎟
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0 shows the volumetricmass density and Im r=( )I Im c

is themassmoment of inertia.
By assigning δΩ=0, the constitutive equation can be expressed as
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Nx,Mx andQx being the axial in-plane,moment and shear stress resultants, respectively.
Based on equation (7) the stress resultants arewritten as

ò
s
t
s

=
⎪

⎪

⎪

⎪

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧
⎨
⎩

⎫
⎬
⎭

( )
M

Q
N

z
dA 13

x

x

x
A

x

xz

x

Therefore, equation (13) bymeans of equation (7) can be expanded as

j

=

-
¶
¶
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

+
¶
¶

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎧

⎨

⎪⎪⎪⎪

⎩

⎪⎪⎪⎪

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎫

⎬

⎪⎪⎪⎪

⎭

⎪⎪⎪⎪

( )

( )

( )

( )
N

E t I
w

x

AG t B
w

x

E t A
u

x x

w

x
B

w

x

w

x

M

Q

1

2

14

c

x

x

x

2
0

2

3
0

3

0
2

0
2

3
0

3
0

2

In the following section, in order to investigate the effect of axial in-plane forces for the curved beam, the
axial stress resultant in equation (14) leads to
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Todetermine the unknown quantity u0 and calculate the constantC1 in the previous equation, equation (15)
can be integrated to have
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whereC2 is an integration constant to be determined. By enforcing = =( ) ( )u u L0 00 0 on the equation (16),
we get
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2.2. Small scale effects
The small scale theories provide a constitutive framework on the continuum substance of nanomaterials and
represent a good connection between the classicmechanics and nanomechanics. As a physical interpretation of
Eringen’s hypothesis (stress nonlocality) [42], in a continuummodel, this theory incorporates long range force
interactions between points of the domain. These interactions occur between charged atoms of a nanostructure.
On the other hand, in theMindlin strain gradient theory [43], the strain energy and elastic strains depend on
their gradients. Therefore, in light of the gradients, this theory contains an additional coefficient with regard to
the dimension of a length. Both these physical phenomena (nonlocal and strain gradient ones) can be combined
to each other in a single theory called nonlocal strain gradient elasticity theory (NSGT) [44–53]. TheNSGT
includes the Eringen’s nonlocal elasticity theory (Stress gradient) and the second gradient of strain ofMindlin
(Strain gradient) [54] and can also account for the softening (decreasing stress at increasing strain) and
hardening (increasing stress at decreasing strain) behavior of thematerial under deformation.Hence, the
softening behavior can be considered as a result of stress nonlocality whereas the hardening behavior can be the
result of a decreased size of thematerial. The small scale theories involving couple stress theories [55–59] or
nonlocal elasticity theory of Eringen [60–64] have been extensively used in the previous studies. However, the
efficiency and accuracy of theNSGThave been proved in comparisonwith themolecularmechanics [65, 66].
Therefore, theNSGT is adopted in this study via the following equation [67]

m s e-  = - ( ) ( ) ( )C l1 1 19ij ijkl kl
2 2 2

inwhichμ is the nonlocality (μ=(e0a)
2) ;  = ¶ ¶/ x s2 2 2 and l represents a strain gradient length scale

coefficient in theNSGT. These parameters should assume positive values according to themolecularmechanics
and experimental works [68–72]. In this paper in order to have appropriate numerical outcomes, the amplitudes
are used for both parameters. However, themost effective way to determine andmeasure the aforementioned
intrinsic length scale parameters is the experimental testing or atomicmodelling likemolecular dynamics. It was
found that the nonlocal parameter is in the range of 0<e0a�2 nm [68] and a dimensionless parameter which
should be a function of thickness of the structure, is used for the strain gradient length scale coefficient [71].
There have been other studies [69]where the value of the nonlocal parameter based on amolecularmechanics
method showed that theremight not have a unique value for such an intrinsic small scale parameter as the value
is related to various conditions (e.g. the environmental influences, boundary conditions, atomic lattice and some
internal conditions such as the crack situation in a crackedmaterial). Hence, by assigning a reasonable value, as
obtained frommolecularmechanics for this nonlocal parameter, can be applicable for seeking numerical
outcomes.
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Substituting equation (19) into equation (14), the small scale stress resultants read

m-  = - - 
¶
¶

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )M l E t I

w

x
1 1 20x c

2 2 2
2

0
2

m-  = - 
¶
¶

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ) ( )Q l AG t B

w

x
1 1 21x

2 2 2
3

0
3

2.3. Viscoelasticity behavior
Thematerial response in this researchwork is not limited to the elastic behavior.Mostmaterials around us can
undergo an internal dampingwhen they are subjected to dynamic conditions. For a linear elasticmaterial, the
relationship for stress and strain is linearly proportional bymeans of the elasticmodulus of thematerial, without
considering the time variable.Whenwe investigate the viscoelasticity, which is a time-dependent property for
materials, the fluidity of thematerial’s structures should be taken into account. For suchmaterials the
relationship between stress and strain can be expressed in several empiricalmodels such that the simplest and
non-trivial form can be theKelvin-Voigtmodel [73]. Thismodel is widely used in the theoretical research due to
its simplicity [9–11, 46, 49, 65, 66]. In a schematic diagram theKelvin-Voigt viscoelastic coupling contains a
spring showing elastic property and dashpot displaying viscous property in a parallel series (figure 3). The
constant elasticmoduli for theKelvin-Voigtmodel are
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inwhich g depicts the viscosity coefficient.

2.4. Frequency equation
In this subsection, by combining equations (11)–(12), (18), (20)–(22), the governing equation is determined.
The resulting relation can be used to compute the natural frequencies of the non-cylindrical curved viscoelastic
SWCNT.

Figure 3. Schematic arrange of theKelvin-Voigtmodel in a straight SWCNT.
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3. Solvingmethod

In this study, theGalerkin technique is applied to reduce the partial differential equation (PDE) to an ordinary
differential equation (ODE) as [6]

l=( ) ( ) ( ) ( )w x t y x t, 240

inwhich ( )y x is the fundamentalmode shape and l ( )t is a temporary function based on time. Themode
shapes according to different boundary conditions are shown below [6], namely

Clamped-Clamped (CC):

p p p p
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Simple-Simple (SS):

p= ⎜ ⎟⎛
⎝

⎞
⎠( ) ( )y x

x

L
sin 26

Upon substitution of equation (24) into equations (23), (23) reduces to anODE after which for computing
each boundary condition equations (25)–(26) can be used. In order to extract natural frequencies, the following
analytical equation is employed

l w= = -( ) ( ) ( )t i t iexp , 1 27n

whereωncorresponds to the natural frequencies of the nanotube.
Consequently, solving the equation below based on theωn and after somemanipulation and simplification,

the natural frequency of the SWCNTwould be computed (dot (.) denotes derivatives).

ò hl zl l+ + =[ ̈ ( ) ( ) ] ( ) ( )t t y x dx 0 28
L

0

x

where the coefficients η, ζ andλ are detailed in appendix A.

4. Verifying the presentmodel

Prior to computing the natural frequencies in different conditions, the accuracy of the presented theory has been
proved. Table 1 presents the results obtained by different well-known beam theories against the present theory.
As can be observed, thefindings of the present study are in good agreementwith those taken by the previous
studies [49, 74, 75]. In particular, an increased length-to-thickness ratio of the beam (which results in thinner
beams), makes the results closer for various shear deformation beam theories as illustrated in table 1. On the
other hand, formoderately thick and thick beams, shear deformations aremore significant, therefore the results
based on an Euler–Bernoulli theory become different than those ones fromother theories, see, for example the
results at e0a=0, L/h=5. In particular, when L/h increases from5 to 10 and 20, the natural frequencies taken
by the Euler–Bernoulli theory andOVFSDTs’ differ from the other ones of about 4%, 1.2% and 0.3%,
respectively.

In addition, table 2 shows the results from [19, 27] based on a nonlocal elasticity theory, strain gradient
theory and nonlocal strain gradient theory, comparedwith the results obtained from the present theory. In the
table, the CNTwasmodeled using the first-order shear deformation theory. The natural frequencies were
computed by using theNavier’s solution technique [19, 27] andmolecular dynamics simulation (MD) [19] for
simply-supported boundary conditions. It can be clearly observed that the pure strain gradient theory (μ0=0,
l≠0)was unable to give accurate results, especially for small length ratios L/D.Moreover, the greater the length
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of the nanotube, the closer the results of the nonlocal strain gradient case (μ0≠0, l≠0) in comparisonwith the
MDoutcomes.

5.Numerical analysis of frequency

In this section, we investigate and evaluate the length scale and the nonlocal parameter effects on the
dimensionless natural frequency of the nanotube, while considering different cross sections, curvature
influences, internal viscosity, and boundary conditions. Themechanical properties of the problem are selected
in agreementwith Refs. [17, 74–76].

Table 1.A comparison for dimensionless natural frequencies of a nanobeam as provided by different theories.

Timoshenko

beam

theory (TBT)
Sinusoidal beam

theory (SBT)

L/h (e0a)
2

OVFSDT,Galerkin

[Present]
OVFSDT,

Navier [49]
Euler–Bernoulli theory

(EBT) [75] [74] [75] [74] [75]

5 0 9.2808 9.2943 9.7112 9.2740 9.2740 9.2752 9.2752

1 8.8463 8.8587 9.2647 8.8477 8.8477 8.8488 8.8488

2 8.4696 8.4788 8.8747 8.4752 8.4752 8.4763 8.4763

3 8.1399 8.1495 8.5301 8.1461 8.1461 8.1472 8.1472

4 7.8629 7.8693 8.2228 7.8526 7.8526 7.8536 7.8536

10 0 9.7121 9.7209 9.8293 9.7075 9.7075 9.7077 9.7077

1 9.2580 9.2666 9.3774 9.2612 9.2612 9.2614 9.2614

2 8.8773 8.8857 8.9826 8.8713 8.8713 8.8715 8.8715

3 8.5401 8.5483 8.6338 8.5269 8.5269 8.5271 8.5271

4 8.2241 8.2320 8.3228 8.2196 8.2196 8.2198 8.2198

20 0 9.8300 9.8377 9.8595 9.8281 9.8281 9.8282 9.8282

1 9.3787 9.3840 9.4062 9.3763 9.3763 9.3764 9.3764

2 8.9866 8.9917 9.0102 8.9816 8.9816 8.9816 8.9816

3 8.6416 8.6456 8.6604 8.6328 8.6328 8.6329 8.6329

4 8.3309 8.3329 8.3483 8.3218 8.3218 8.3218 8.3218

wW = rL ,n n
A

EI
2 E=1 TPa, υ=0.3, h=1 nm,m=0.9 to 1.1.
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Infigure 4(a), the variation of the length scale parameter versus the size e* for the SWCNTon the natural
frequencies was investigated. For this purpose, a simple-simple (SS) boundary conditionwas selected. As it can
be seen, increasing the amount of curvature of the nanotube increases its rigidity, and consequently increases the
amount of the non-dimensional natural frequencies. Interestingly, the increase in the natural frequency seems
to be very sharp.On the other hand, increasing values of the length scale parameter increase thematerial
stiffness. As a result, the natural frequency values become higher. Figure 4(b) also shows the variation of the
curvature of the nanotube for different values of the nonlocal parameter. It is interesting to note that, increasing
the nonlocal parameter, decreases the stiffness of the nanotube. Frombothfigures it can be found that the
increase in curvature resulted in the increase in the distances of diagrams’ curves (results related to l=0 to l=h
and e0a=0 to e0a=2 nm) leading the curvature to be important. Ultimately, for large quantities of e0a, the
nonlocal parameter decreases the stiffness of the SWCNT evenwith the increase of e*.

Figure 5 examines the effect of the curvature on the natural frequencies for different boundary conditions. It
is clear that the use of a clamped-clamped (CC) boundary condition leads to higher natural frequency values
whereby a SS boundary condition leads to lower natural frequencies. It is also noted that the effect of the increase
in the curvature on theCCboundary conditionwasmore pronouncedwith lower effects on the SS boundary
condition. Furthermore, an increasing length of the tube ismore evident in clamped boundaries.

Figure 6 plots the effects of viscoelasticity on the curvature of the SWCNT. It can be seen that, by increasing
the interior viscosity of the nanotube, the amount of stiffness increases togetherwith an increased natural
frequency. For increasing values of e*, the effect of the curvature on the natural frequencywasmore pronounced
for larger values of viscosity (the distances between frequency results obtained fromdifferent values of g in the
region of lowest values of e* (∼0.05) aremuch smaller than those in the region of the largest values of e* (∼2)).
Hence, for larger values of e*, the variation of the non-dimensional natural frequency for different viscosities
becomes evenmore significant for increasing curvatures. This confirms the effects of thematerial viscosity on
the vibration response of the curvedCNTs.

Figure 7(a) shows the effects of the non-cylindrical shape on the natural frequencies of CNTs. As can be seen,
the SWCNT is assumed to be in three shapes: cylindrical, hexagonal, and octagonal shapes. According to the
outcomes, the natural frequency values of a non-cylindrical nanotube is greater than those ones of a cylindrical
nanotube and the nanotube features the lowest natural frequency values. It is also interesting to note that, when
the curvature and bending of the nanotube become larger, the results of different sections differed from each
other, and it is proved that in nanotubes with a large initial curvature it is important to consider the actual cross
section of the nanotube.

Figure 7(b) illustrates the viscosity effect for the three shapes of the CNTmentioned above namelywith
cylindrical, hexagonal, and octagonal shapes. As shown in the previous figures, the increase in internal viscosity
results in an increase in the natural frequency of the SWCNTs, which is reaffirmed infigure 7(b). On the other
hand, the importance of the above results is that the increase of the parameter g results in the parallel curves for

Table 2.Validation of natural frequencies (THz) for a nanotube obtained by different small scale theories.

Nonlocal strain gradient

theory Strain gradient theory

Nonlocal elasticity

theory

L/D [19] (MD) [19] Present, [27] [19] Present, [27] [19] Present, [27]

4.86 1.138 1.209 1.25535 12.42 12.35233 0.758 0.75967

8.47 0.466 0.448 0.43207 4.461 4.69543 0.333 0.35485

13.89 0.190 0.192 0.19004 1.957 1.98552 0.165 0.16355

17.47 0.122 0.126 0.12431 1.321 1.22947 0.121 0.12460

E=1.06 TPa,υ=0.19, h=0.34 nm, d=0.68 nm, SS.

e0a=3.3 to 3.5 nm, l=0.1 to 0.4 nm.
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Figure 4. (a)Effect of the curvature versus several length scale parameters on the natural frequencies of the SWCNTs (e0a=1 nm,
e*=e/d, g=1N.s/m, L=5d, SS, CT).(b)Effect of the curvature versus several nonlocal parameters on the natural frequencies of the
SWCNTs (l=0.5 h, e*=e/d, g=1N.s/m, L=5d, SS, CT).

Figure 5.Effect of the curvature versus different boundary conditions on the natural frequencies of the SWCNTs (e0a=1 nm,
l=0.5 h, e*=e/d, g=1 N.s/m, L=5d, CT).
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the three sections. In conclusion, the increase of the curvature leads to an increased importance of the selected
section of the nanotube.

Figures 8(a)–(c) demonstrate the nonlocal parameter effect for SS andCCboundary conditions, and the
effect of changing the length scale parameter values for the SS boundary condition on the results for each shape.

Figure 6.Effect of the curvature versus viscosity on the natural frequencies of the SWCNTs (e0a=1 nm, l=0.5 h, e*=e/d, L=5d,
SS, CT).

Figure 7. (a)Effect of the curvature versus several cross sections on the natural frequencies of the SWCNTs (e0a=1 nm, l=0.5 h,
g=1 N.s/m, e*=e/d, L=5d, SS). (b)Effect of the viscosity versus several cross sections on the natural frequencies of the SWCNTs
(e0a=1 nm, l=0.5 h, e=0.5d, L=5d, SS).
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From thesefigures, it can be seen that increasing the nonlocal parameter values gets to closer results for theNCT
andCT cross sections. However, this result ismore noticeable in the second figure and for CCboundary
conditions. For large values of the nonlocal parameter, especially if the number of sides is large, it does notmake
much difference based onwhat the cross section of the nanotubes is. Indeed, the results of octagonal and
cylinder sections do not differ for larger values of the nonlocal parameter. It is also demonstrated in figure 8(c)
that the nanotube’s cross section does not affect the length scale parameter. Onemight conclude that the
nonlocal parameter hasmore geometric effects than the length scale parameter.

Figure 8. (a)Effect of the nonlocal parameter versus several cross sections on the natural frequencies of the SWCNTs (l=0.5 h,
g=1N.s/m, e=0.5d, L=5d, SS). (b)Effect of the nonlocal parameter versus several cross sections on the natural frequencies of the
SWCNTs (l=0.5 h, g=1N.s/m, e=0.5d, L=5d, CC). (c)Effect of the length scale parameter versus several cross sections on the
natural frequencies of the SWCNTs (e0a=1 nm, l*=l/h, g=1N.s/m, e=0.5d, L=5d, SS).
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Finally, figure 9 describes the boundary conditions for various cross section shapes. It is worthmentioning
that from the hexagonal to the cylindrical (infinite number of sides) shapes, the results of the CCboundary
condition lead to amore pronounced increase in theCCboundary condition than the SS one. Also, the
difference between results according to different boundary conditions decreases by increasing the number of
polygons.

6. Conclusions

Curved CNTs were studied with cylindrical and non-cylindrical cross section shapes, taking into
account the influences of thematerial viscosity on the natural frequencies of the nanotube. The nonlocal
strain gradient governing equation was obtained based on amodified beam approach. The finalized
partial differential equation was converted into an ordinary differential equation using the Galerkin
method in which some approximatemode shapes were obtained, satisfying various boundary conditions.
Then, the numerical outcomes were gained and some important research points can be highlighted as
follows:

• Increasing the curvature of the SWCNTs significantly increased the influence ofmaterial viscosity on the
vibration response of SWCNTs.

• Thecurvatureof thenanotubedeemed tomake thenanotubes stiffer, leading tohighernatural frequencies in
vibration.

• By increasing the curvature of the SWCNT, the natural frequencies for both the nonlocal and length scale
parameter values became far from each other, leading to the significant influences of curvature of theCNTs in
the small scalemodel.

• Whilst clamped-clamped boundary conditionwas taken into consideration, by increasing the nonlocal
parameter, the natural frequency values of various cross section’s shapes tended to be closer to each other.
This confirmed that the nonlocality had further impacts in the cases ofmore rigid boundary conditions.

• The curvature of the nanotube affects the natural frequency for different cross sections.
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Figure 9.Effect of the number of the cross sections versus different boundary conditions on the natural frequencies of the SWCNTs
(e0a=1 nm, l=0.5 h, g=1N.s/m, e=0.5d, L=5d).
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