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Abstract

This paper is devoted to the theoretical study of the dynamic response of non-cylindrical curved
viscoelastic single-walled carbon nanotubes (SWCNTs). The curved nanotubes are largely used in
many engineering applications, but it is challenging in understanding mechanically the dynamic
response of these curved SWCNTSs when considering the influences of the material viscosity. The
viscoelastic damping effect on the dynamic response is considered here by using the Kelvin-Voigt
viscoelastic model. A modified shear deformation beam theory is here employed to formulate the
governing partial differential equations. When the SWCNTs are considered in a small scale model,
quantum impacts are important for a correct evaluation of the mechanical response of the
nanosystem. This is here investigated by embedding the well-known nonlocal strain gradient
approach into the governing equations. The extracted equations are solved by utilizing the Galerkin
analytical approach in which the governing partial differential equations are reduced to ordinary
differential equations and numerical findings are achieved for various boundary conditions. In order
to evaluate the efficiency of the proposed theory, the outcomes in terms of natural frequencies of the
vibrating nanotubes are verified with respect to the available literature. It follows a vast systematic
study, where several parameters are varied to investigate the influences of geometrical properties
involving different polygons of the SWCNT's on the dynamic response.

1. Introduction

Ifitis assumed that the methods of nanotechnology’s production have reached their golden age, then carbon
nanotubes (CNTSs) should be considered as golden kids of this era. Unique properties including mechanical,
electrical, chemical, and magnetic ones of these carbon nanomaterials have allowed the generation of many
functional applications in engineering. CNTs are typically referred to as single-walled and multi-walled carbon
nanotubes.

Single-walled carbon nanotubes (SWCNTs) are defined as one dimensional cylindrically shaped allotropes
of carbon that have a high surface area and aspect ratio (length-to-diameter ratio). They are made from one atom
thick carbon nanosheets that form a hollow cylindrical shape during the chemical vapour deposition synthesis,
as discussed by Iijima [1]. Its unique properties, including the high elasticity modulus and good tensile strength
together with the extraordinary properties of the carbon nature of the nanotubes (because carbon is a low-
weight material, very stable and simple to perform processes that are cheaper than metals to produce) have led to
ameaningful research on the performance of CNTs over the last decades. A lot of theoretical and practical works
have focused on the atomic and continuum structures of CNTs. Extensive efforts have also been made to test and
characterize the mechanical properties such as the Young’s modulus, the tensile strength and imperfect
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mechanism, and also the effects of nanotubes’ deformations on the electrical properties. This particular interest
in nanotubes can be attributed to their unique structure and features [2].

Nanotubes are assumed to be cylindrical structures and their carbon atoms have the ability to covalently
bond to other atoms or molecules creating a new molecule with customized properties. These nanostructures
are being well studied under static and dynamic forces by engineers and researchers around the world because of
the importance of identifying their mechanical properties and responses for the mechanical design of CNTs in
nanotechnology. In reality,a SWCNT is along and bent nanostructure and it does not have perfectly straight
shape. Although there have been many studies about mechanical and dynamic responses of straight nanotubes,
there have been very limited investigations about curved nanotubes. Mehdipour et al [3] studied a curved single-
walled carbon nanotube in a vibrational position and placed it on an elastic medium. They employed the Euler—
Bernoulli beam theory in conjunction with the Hamilton principle. The He’s energy balance method was
adopted to seek numerical results in which the amplitude frequency response of the curved SWCNTs embedded
in a Pasternak elastic foundation was obtained. Cigeroglu and Samandari [4] examined the nonlinear natural
frequencies of a curved double-walled carbon nanotube (DWCNT) system bridged on a polymer foundation on
the basis of the differential quadrature numerical technique in order to discretize the partial differential
equations of motion in a spatial domain, namely in a nonlinear set of algebraic equations of motion. They also
studied the nonlinear van der Waals forces between inner and outer tubes. A classical beam theory was
implemented in the energy formulation to derive the basic relations, whose results showed that it is possible to
detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-
phase vibration mode. For the first time, the chaotic behavior of a SWCNT with an initial curvature in shape
(waviness along its axis) exposed to harmonic excitation frequencies was investigated by Mayoof and Hawwa [5].
The equations were formulated according to the elastic continuum mechanics theory, while assuming an Euler—
Bernoulli displacement field. Soltani et al [6] discussed about the natural frequencies of a curved SWCNT
subjected to an electric field on the base of an analytical solution procedure. The Euler—Bernoulli elastic beam
approach was used to formulate the equilibrium equations on the nonlinear vibration. The beam also was
embedded in a Winkler matrix and, the gained relations were computed numerically using the Galerkin
approach. Arefi and Zenkour [7] evaluated the influence of an electromagnetic surround on the static bending of
alaminated curved nonlocal beam. A sinusoidal shear deformation beam theory was also used to the obtain
governing equations and nonlocal electro-magneto-elasticity relationships were employed to derive the
governing equations of bending based on the principle of virtual work. Mohamed et al [8] presented a
differential-integral quadrature numerical method to study free and forced vibrations of a local beam with initial
deflection bridged on a nonlinear polymer medium. They compared the outcomes of the proposed solution
method with the analytical results and for validation purposes, with a good agreement among them. Liu et al [9]
carried out the wave propagation analysis in a SWCNT taking into account viscoelastic effects according to the
nonlocal strain gradient theory combined with the Timoshenko beam approach. Tadi Beni et al[10] investigated
the wave propagation in a thin nano shell bridged on a viscoelastic foundation accounting for the internal
damping influence in the shell. The nano size effects were considered using the nonlocal strain gradient model.
Zhen and Zhou [11] studied the wave propagation in a SWCNT subjected to an axial magnetic field in a thermal
surround based on the nonlocal strain gradient theory. They also considered the internal damping and surface
effects to the wave analysis. Tadi Beni et al [12] analyzed the wave dispersion fora DWCNT conveying fluid
based on the nonlocal strain gradient model. They investigated the slip boundaries and examined the van der
Waals interaction between tubes embedded in a Winkler matrix. The first-order shear deformation shell theory
was employed to derive the governing equations for the wave dispersion. Ghadiri ef al [13] showed the small
scale effects fora SWCNT conveying viscous fluid under a critical flow velocity based on the cylindrical shell
model and the nonlocal strain gradient theory. The results were calculated using the differential quadrature
technique for different boundary conditions. Zeighampour and Tadi Beni [14] studied the natural frequencies of
a fluid conveying DWCNT based on a couple stress theory. The relationships were based on the Donnell’s shell
theory and solved by the differential quadrature method for simple and clamped boundary conditions in which
the nanotubes were lied in a visco-Pasternak surrounding. Mohammadi et al [ 15] developed the nonlocal strain
gradient shell model for mechanical vibrations of a SWCNT conveying viscous fluid. They performed some
molecular dynamics simulations to study the effects of the fluid flow on the vibrational behavior of the SWCNT.
Zhen [16] modeled a fluid-conveying SWCNT based on nonlocal and surface impacts in order to analyze the
wave propagation of nanotubes. The Kelvin-Voigt viscoelastic model was also used in the governing equations in
order to consider structural damping effects.

The molecular dynamics simulation method is well known to be an accurate but costly approach from a
computational standpoint. For this reason it has been scarcely used [15,17-20] to investigate CN'Ts under static
and dynamic vibration conditions. However, as far as the nonlocal theories are concerned for the analysis of
CNTs in several conditions, many research studies have been published in recent years [21-40] on the topic.
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Based on the above-mentioned review, several theories and techniques have been developed and applied for
studying the dynamic response of the nanotubes in various conditions. It is largely noticed that viscosity of
nanomaterials can affect their mechanical strength and electrical properties. For example, advantages in
mechanical strength, thermal and electrical conductivity make CNTs ideal for additives in polymer composites.
However, the dispersion of the nanoscale phase within the polymer matrix and the initiation of large changes in
viscosity can ultimately contribute to the formation of defects which do not facilitate the expected strengthening
in the mechanical or electrical properties which should be achieved [41].

Using current engineering processes, the curved nanotubes are widely made and synthesized. However, it is
challenging in understanding mechanically the dynamic characteristics and responses of CNTs in curved shapes.
Although the increased attention on curved nanotubes, there has not been any investigation on their dynamic
response considering the effect of the material viscosity. In addition, a complete knowledge about the
mechanical response of non-cylindrical nanotubes is still lacking. It is no doubt that understanding the
mechanical response of non-cylindrical CNTs can lead to some useful outcomes for the synthesize process, and
the development of new nanotubes in many engineering applications. Therefore, the study in this paper focuses
on the dynamic response of curved SWCNTSs considering the influence of viscoelastic properties. In particular, a
refined beam theory is employed to determine the governing equation of the problem. To take into account the
small scale influence of the nanostructure, a nonlocal strain gradient theory is embedded into the governing
equation. The developed theory considers both nonlocality and size-dependent properties. The Galerkin
approach is adopted in order to convert the partial differential equation into an ordinary one with a simple
process, while satisfying completely different boundary conditions. Hence, the results in various conditions are
got; the natural frequencies of a nanotube are compared with those obtained from some available references
from the literature and several parameters are examined to show the influence of viscoelasticity and geometrical
properties including various cross sections of the nanotube on the dynamic response.

2. Theoretical modelling

2.1. Energy formulation

The structure and shape of a SWCNT are shown in figure 1 along with the selected Cartesian coordinate. The
cylindrical and non-cylindrical shape of a cross section of the SWCNT is shown in figure 1(a) and the curved
form (curvature) of the nanotube is depicted in figure 1(b).

Itis already well known that a CNT is a rolled form of graphene sheets in which atoms of pure carbon are
arranged in a plan two-dimensional (2D) surface. Atoms are connected to the neighbors’ ones by covalent bonds
(figure 2) which are chemical connections. Assuming full cylindricality for a nanotube might not be completely
true and the nanotubes can be assumed as polygon beams. Thus, showing and analyzinga SWCNT in a polygon
shape is interestingly addressed in this study.

According to a one-variable refined beam theory (OVESDT), as presented in Ref. [27], the displacement field
is described as

__Owp(x, 1)
{ul(x, z, t)} _ uolx, 1) — 2 Ox (1
us(x, z, 1) ol 1) & Basz(x, 1)
Ox?

in which u;(x, z, t), us(x, z, t) represent the displacement components of points along the x and z-axis and
ug(x, £) and wy(x, ) are the corresponding components at the mid-surface of the undeformed SWCNT along x
and z-axis. Moreover, the z-coordinate denotes the thickness direction. Bis an additional coefficient defined by
5 L
AG

(@)

in which Gand E denote the shear and Young’s moduli, A is the cross section area of the nanotube, and I,
(IC = f zsz) stands for the moment of area of the cross section.
A

The curvature of the nanotube can be defined by the equation below [3]
px)=ce sin(l;) 3

where eis a constant related to the curvature and L refers to the length of the curved SWCNT (according to
figure 1).

Based on the Hamilton principle, the dynamic equilibrium of a domain can only be obtained by the
variational method and the equation below leads to the governing equations of the problem, as follows
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Figure 1. Cross section (a) and Curvature (b) of the nanotube (L displays the length, e shows values of the curvature, cis the length of
the covalent bonds, & represents the thickness and the internal and external diameters are exhibited by d; and d,, respectively for the
SWCNT).

Figure 2. Three-dimensional scheme of the curved SWCNT.

t
50 = fo (U + 6W — 6K)dt = 0 (4)

in which €2 refers to the nanotube’s total potential energy, K and W stand for the kinetic energy and the work
applied by exterior objects, U is symbolized for the strain energy of the system. Note that  means the variations
of the energies and time. In this study, the external forces applied on the nanotubes are not considered.

First of all, the strain energy in the variational form reads

oU = %ffvfaxxésxx + T 0V dV =0 (5)

where 0U is the virtual strain energy, o, Txz Exx and 7y, are the normal stress, shear stress, strains tensors at
each point of the domain V. The tensor of nonlinear strains are obtained based on equation (1) as
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dug 0wy O 9wy 1( Pwy  Owp )2

e A e S
{&cx} _Jox ‘ Ox? Ox Ox? 2\ ox? Ox
Vxz OPw,

Ox3

(6)
B

The Hookean elastic stress-strain relation is expressed as

{7} =5} @

where Cjy, is the stiffness matrix of the elasticity relation. Thereafter the strain energy of OVFSDT can be
written as

62 a(p 8 83 8 83W0 3Wo
=[S lxx( gzt + G bm+ (o + )20+ S

O3
+ Bsz $(5W0:|dv (8)

The kinetic energy is given as

k=2of [ ((3“1) (8”;3) JdAdx—O ©

and the variational form of the kinetic energy is expressed as

82110 83w0 ) 331/10 ( 82w0 )2 84W0 82w0 )
0K = Sug + — 22 — 22 _
of f l( o2 o) T Foxoer ~ “\oxor) T oo o
86W0 64W0

_ Bzax‘latz - ZBaxzatz)éwo]dAdx =0 (10)

in which p s the sectional density, (mo =p f dA) shows the volumetric mass densityand I,,, (I, = pl.)
A

is the mass moment of inertia.
By assigning 6€) = 0, the constitutive equation can be expressed as

. 8Nx . 821/{0

: =0 11
Ox o ot? (1)
0*M, 0°Q 0w, O*w ?wy  O%p 0*wy
Swo: — + B3 + N,| B? + 2B—2 + +—=|-I.
o Ox? ox? ( Ox° Ox* Ox? Ox? Ox*0t?
82W0 86W0 84W0 )
- + B2 2B——1=0 12
mo( 12 oxiorr | oxtor? (12)

N,, M, and Q, being the axial in-plane, moment and shear stress resultants, respectively.
Based on equation (7) the stress resultants are written as

Mx O0x2Z
Qb= f T bdA (13)
N, Aok

Therefore, equation (13) by means of equation (7) can be expanded as

e 82W0 3
~EOLSE
M
X 0? )
Qi =+ AG(”( o ) . (14)
Ny 5
Ouy  O0p 0wy 1 ( Owo awo)
EmA| 22  S28 %0 | ~[pZ M0 T
® [ Ox Ox Ox? 20 0x3 Ox

In the following section, in order to investigate the effect of axial in-plane forces for the curved beam, the
axial stress resultant in equation (14) leads to
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Oug ~ Op Pwy 1 ( Pwy | Ow,y )2
Ny =E®A| — + — + —|B + —1 | = G = Cte. 15
®) [ax Ox Ox? 20 ox3 Ox ! ¢ (15)

To determine the unknown quantity 1y and calculate the constant C; in the previous equation, equation (15)
can be integrated to have

Ll 8o d*wy  1(,0%°wy  Owg )2
= [|-&Z% _ {gTMo  TWoy gy 4
o j(; [ Ox Ox? 2( Ox3 Ox *

1
1
E(t)Ax + C2 ( 6)

where C, is an integration constant to be determined. By enforcing 1,(0) = u(L) = 0 on the equation (16),

we get
* (9()0 82W0 1 83W0 6W0 )2 C]
=0 = i — —|B + —| [dx + 0+ C
Holx=o j; [ Ox Ox? 20 ox3 Ox Y E(HA x 2

17)
x 8()0 82w0 1 ( 83w0 6W0 )2 C1
Uglx=r = - — —|B + — |dx + x L+ C
bt j(; l Ox Ox? 2\ ox? Ox E(HA 2
Upon mathematical rearrangement yields to
E(H)A Ll 9o 0wy 1( Pwy . Owp )2
G =" x 20 4 2B + 222 |dx
=47 L fo [8x ox* 2\ ox° Ox (18)
C,=0

2.2. Small scale effects

The small scale theories provide a constitutive framework on the continuum substance of nanomaterials and
represent a good connection between the classic mechanics and nanomechanics. As a physical interpretation of
Eringen’s hypothesis (stress nonlocality) [42], in a continuum model, this theory incorporates long range force
interactions between points of the domain. These interactions occur between charged atoms of a nanostructure.
On the other hand, in the Mindlin strain gradient theory [43], the strain energy and elastic strains depend on
their gradients. Therefore, in light of the gradients, this theory contains an additional coefficient with regard to
the dimension of alength. Both these physical phenomena (nonlocal and strain gradient ones) can be combined
to each other in a single theory called nonlocal strain gradient elasticity theory (NSGT) [44—53]. The NSGT
includes the Eringen’s nonlocal elasticity theory (Stress gradient) and the second gradient of strain of Mindlin
(Strain gradient) [54] and can also account for the softening (decreasing stress at increasing strain) and
hardening (increasing stress at decreasing strain) behavior of the material under deformation. Hence, the
softening behavior can be considered as a result of stress nonlocality whereas the hardening behavior can be the
result of a decreased size of the material. The small scale theories involving couple stress theories [55-59] or
nonlocal elasticity theory of Eringen [60—64] have been extensively used in the previous studies. However, the
efficiency and accuracy of the NSGT have been proved in comparison with the molecular mechanics [65, 66].
Therefore, the NSGT is adopted in this study via the following equation [67]

(1 — pVHo = Ciju(l — PVey (19)

in which s the nonlocality (11 = (ega)®); V2 = §?/0x%s and I represents a strain gradient length scale
coefficient in the NSGT. These parameters should assume positive values according to the molecular mechanics
and experimental works [68—72]. In this paper in order to have appropriate numerical outcomes, the amplitudes
are used for both parameters. However, the most effective way to determine and measure the aforementioned
intrinsic length scale parameters is the experimental testing or atomic modelling like molecular dynamics. It was
found that the nonlocal parameter is in the range of 0 < epa < 2 nm [68] and a dimensionless parameter which
should be a function of thickness of the structure, is used for the strain gradient length scale coefficient [71].
There have been other studies [69] where the value of the nonlocal parameter based on a molecular mechanics
method showed that there might not have a unique value for such an intrinsic small scale parameter as the value
is related to various conditions (e.g. the environmental influences, boundary conditions, atomic lattice and some
internal conditions such as the crack situation in a cracked material). Hence, by assigning a reasonable value, as
obtained from molecular mechanics for this nonlocal parameter, can be applicable for seeking numerical
outcomes.
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Figure 3. Schematic arrange of the Kelvin-Voigt model in a straight SWCNT.

Substituting equation (19) into equation (14), the small scale stress resultants read

(1 — pVHM, = —(1 — PVZ)(E(t)IC EZZ‘)) 20)
2 _ 272 P’wo
(1 = uV3)Qy = (1 — PVHAG(t) B% 21

2.3. Viscoelasticity behavior

The material response in this research work is not limited to the elastic behavior. Most materials around us can
undergo an internal damping when they are subjected to dynamic conditions. For a linear elastic material, the
relationship for stress and strain is linearly proportional by means of the elastic modulus of the material, without
considering the time variable. When we investigate the viscoelasticity, which is a time-dependent property for
materials, the fluidity of the material’s structures should be taken into account. For such materials the
relationship between stress and strain can be expressed in several empirical models such that the simplest and
non-trivial form can be the Kelvin-Voigt model [73]. This model is widely used in the theoretical research due to
its simplicity [9-11, 46, 49, 65, 66]. In a schematic diagram the Kelvin-Voigt viscoelastic coupling contains a
spring showing elastic property and dashpot displaying viscous property in a parallel series (figure 3). The
constant elastic moduli for the Kelvin-Voigt model are

EQ®) = E(l + g%)

(22)

0
G(t) = G|1 —
® ( +88t)

in which g depicts the viscosity coefficient.

2.4. Frequency equation

In this subsection, by combining equations (11)—(12), (18), (20)—(22), the governing equation is determined.
The resulting relation can be used to compute the natural frequencies of the non-cylindrical curved viscoelastic
SWCNT.
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- zzvz)[(1 + gaﬁ)(m 0wy AGBZa—M;O)] — (1 -1V
t

x4 Ox
x |1 +g%) X <% X j;L [g—f%z;o + %(Ba;?;o + %)z]dx
x 328;‘;0 + 2363220 + %2;0 + %D NENC A vo)l
<[] - v )=
3. Solving method

In this study, the Galerkin technique is applied to reduce the partial differential equation (PDE) to an ordinary
differential equation (ODE) as [6]

wo(x, 1) = y () A(D) (29

inwhich y (x) is the fundamental mode shape and A(¢) is a temporary function based on time. The mode
shapes according to different boundary conditions are shown below [6], namely
Clamped-Clamped (CC):

y(x) = cosh(3—7r£) — 0.9825 sinh(a—ﬂi) — cos(ﬁf) + 0.9825 sin(3—7r£) (25)
2 L 2 L 2 L 2 L
Simple-Simple (SS):
y(x) = sin (71'%) (26)

Upon substitution of equation (24) into equations (23), (23) reduces to an ODE after which for computing
each boundary condition equations (25)—(26) can be used. In order to extract natural frequencies, the following
analytical equation is employed

A(t) = exp (iwyt), i = 1 (27)

where w, corresponds to the natural frequencies of the nanotube.
Consequently, solving the equation below based on the w,, and after some manipulation and simplification,
the natural frequency of the SWCNT would be computed (dot (.) denotes derivatives).

fo "o + Ao + Ay (x)dx = 0 (28)

where the coefficients 1), (and A are detailed in appendix A.

4. Verifying the present model

Prior to computing the natural frequencies in different conditions, the accuracy of the presented theory has been
proved. Table 1 presents the results obtained by different well-known beam theories against the present theory.
As can be observed, the findings of the present study are in good agreement with those taken by the previous
studies [49, 74, 75]. In particular, an increased length-to-thickness ratio of the beam (which results in thinner
beams), makes the results closer for various shear deformation beam theories as illustrated in table 1. On the
other hand, for moderately thick and thick beams, shear deformations are more significant, therefore the results
based on an Euler—Bernoulli theory become different than those ones from other theories, see, for example the
resultsatepa = 0, L/h = 5. In particular, when L/h increases from 5 to 10 and 20, the natural frequencies taken
by the Euler—Bernoulli theory and OVFSDTS’ differ from the other ones of about 4%, 1.2% and 0.3%,
respectively.

In addition, table 2 shows the results from [19, 27] based on a nonlocal elasticity theory, strain gradient
theory and nonlocal strain gradient theory, compared with the results obtained from the present theory. In the
table, the CNT was modeled using the first-order shear deformation theory. The natural frequencies were
computed by using the Navier’s solution technique [ 19, 27] and molecular dynamics simulation (MD) [19] for
simply-supported boundary conditions. It can be clearly observed that the pure strain gradient theory (1o = 0,

I = 0) was unable to give accurate results, especially for small length ratios L/D. Moreover, the greater the length

8
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Table 1. A comparison for dimensionless natural frequencies of a nanobeam as provided by different theories.

M Malikan et al

Timoshenko
beam Sinusoidal beam
theory (TBT) theory (SBT)
OVESDT, Galerkin OVEFSDT, Euler—Bernoulli theory

L/ (ega)? [Present] Navier [49] (EBT) [75] [74] [75] [74] [75]
5 0 9.2808 9.2943 9.7112 9.2740 9.2740 9.2752 9.2752
1 8.8463 8.8587 9.2647 8.8477  8.8477  8.8488  8.8488
2 8.4696 8.4788 8.8747 8.4752 8.4752 8.4763 8.4763
3 8.1399 8.1495 8.5301 8.1461 8.1461 8.1472  8.1472
4 7.8629 7.8693 8.2228 7.8526  7.8526  7.8536  7.8536
10 0 9.7121 9.7209 9.8293 9.7075 9.7075 9.7077 9.7077
1 9.2580 9.2666 9.3774 9.2612  9.2612  9.2614  9.2614
2 8.8773 8.8857 8.9826 8.8713  8.8713  8.8715 8.8715
3 8.5401 8.5483 8.6338 8.5269  8.5269  8.5271  8.5271
4 8.2241 8.2320 8.3228 8.2196  8.2196  8.2198  8.2198
20 0 9.8300 9.8377 9.8595 9.8281  9.8281 9.8282  9.8282
1 9.3787 9.3840 9.4062 9.3763 9.3763 9.3764 9.3764
2 8.9866 8.9917 9.0102 8.9816 8.9816 8.9816 8.9816
3 8.6416 8.6456 8.6604 8.6328 8.6328 8.6329 8.6329
4 8.3309 8.3329 8.3483 8.3218  8.3218  8.3218  8.3218

Q, = wnL2\/%,E =1TPa,v = 03,h = 1 nm,m = 0.9to0 L.1.

of the nanotube, the closer the results of the nonlocal strain gradient case (19 = 0,1 = 0) in comparison with the

MD outcomes.

5. Numerical analysis of frequency

In this section, we investigate and evaluate the length scale and the nonlocal parameter effects on the
dimensionless natural frequency of the nanotube, while considering different cross sections, curvature
influences, internal viscosity, and boundary conditions. The mechanical properties of the problem are selected

in agreement with Refs. [17, 74-76].
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Table 2. Validation of natural frequencies (THz) for a nanotube obtained by different small scale theories.

Nonlocal strain gradient Nonlocal elasticity
theory Strain gradient theory theory
L/D [19] (MD) [19] Present, [27] [19] Present, [27] [19] Present, [27]
4.86 1.138 1.209 1.25535 12.42 12.35233 0.758 0.75967
8.47 0.466 0.448 0.43207 4.461 4.69543 0.333 0.35485
13.89 0.190 0.192 0.19004 1.957 1.98552 0.165 0.16355
17.47 0.122 0.126 0.12431 1.321 1.22947 0.121 0.12460

E = 1.06 TPa,v = 0.19,h = 0.34 nm, d = 0.68 nm, SS.
eoa = 3.3t03.5nm,/ = 0.1t00.4nm.

E=1TPa, v =03, h = 0.34nm, p = 2300 kgm~3,
d=1nm,n=d,/2,n=n—h,

Cylindrical type (CT), Non — cylindrical type (NCT),
8P (Octagonal NCT) — I, = 0.6381(r5 — ')

6P (Hexagonal NCT) — I. = 0.5409(r) — 1)

ﬂ

Non — dimensional natural frequency: Q, = w,L? i
c

In figure 4(a), the variation of the length scale parameter versus the size * for the SWCNT on the natural
frequencies was investigated. For this purpose, a simple-simple (SS) boundary condition was selected. As it can
be seen, increasing the amount of curvature of the nanotube increases its rigidity, and consequently increases the
amount of the non-dimensional natural frequencies. Interestingly, the increase in the natural frequency seems
to be very sharp. On the other hand, increasing values of the length scale parameter increase the material
stiffness. As a result, the natural frequency values become higher. Figure 4(b) also shows the variation of the
curvature of the nanotube for different values of the nonlocal parameter. It is interesting to note that, increasing
the nonlocal parameter, decreases the stiffness of the nanotube. From both figures it can be found that the
increase in curvature resulted in the increase in the distances of diagrams’ curves (results related tol = Oto I = h
and epa = 0to epa = 2 nm) leading the curvature to be important. Ultimately, for large quantities of eya, the
nonlocal parameter decreases the stiffness of the SWCNT even with the increase of e*.

Figure 5 examines the effect of the curvature on the natural frequencies for different boundary conditions. It
is clear that the use of a clamped-clamped (CC) boundary condition leads to higher natural frequency values
whereby a SS boundary condition leads to lower natural frequencies. It is also noted that the effect of the increase
in the curvature on the CC boundary condition was more pronounced with lower effects on the SS boundary
condition. Furthermore, an increasing length of the tube is more evident in clamped boundaries.

Figure 6 plots the effects of viscoelasticity on the curvature of the SWCNT. It can be seen that, by increasing
the interior viscosity of the nanotube, the amount of stiffness increases together with an increased natural
frequency. For increasing values of ", the effect of the curvature on the natural frequency was more pronounced
for larger values of viscosity (the distances between frequency results obtained from different values of gin the
region of lowest values of ¢* (~0.05) are much smaller than those in the region of the largest values of e* (~2)).
Hence, for larger values of e*, the variation of the non-dimensional natural frequency for different viscosities
becomes even more significant for increasing curvatures. This confirms the effects of the material viscosity on
the vibration response of the curved CNTs.

Figure 7(a) shows the effects of the non-cylindrical shape on the natural frequencies of CNTs. As can be seen,
the SWCNT is assumed to be in three shapes: cylindrical, hexagonal, and octagonal shapes. According to the
outcomes, the natural frequency values of a non-cylindrical nanotube is greater than those ones of a cylindrical
nanotube and the nanotube features the lowest natural frequency values. It is also interesting to note that, when
the curvature and bending of the nanotube become larger, the results of different sections differed from each
other, and it is proved that in nanotubes with a large initial curvature it is important to consider the actual cross
section of the nanotube.

Figure 7(b) illustrates the viscosity effect for the three shapes of the CNT mentioned above namely with
cylindrical, hexagonal, and octagonal shapes. As shown in the previous figures, the increase in internal viscosity
results in an increase in the natural frequency of the SWCNTs, which is reaffirmed in figure 7(b). On the other
hand, the importance of the above results is that the increase of the parameter g results in the parallel curves for

10
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Figure 4. (a) Effect of the curvature versus several length scale parameters on the natural frequencies of the SWCNTs (ega = 1 nm,
e =e/d g = IN.s/m, L = 5d, SS, CT).(b) Effect of the curvature versus several nonlocal parameters on the natural frequencies of the
SWCNTs (! =0.5h,¢" = e/d,g = IN.s/m, L = 54, SS, CT).
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Figure 5. Effect of the curvature versus different boundary conditions on the natural frequencies of the SWCNTSs (epa = 1 nm,
1 =05he" =edg=1Ns/mL =5dCT).
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Figure 6. Effect of the curvature versus viscosity on the natural frequencies of the SWCNTs (epa = 1 nm,! = 0.5 h,e" = e/d, L = 5d,
SS, CT).
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Figure 7. (a) Effect of the curvature versus several cross sections on the natural frequencies of the SWCNTs (epa = 1 nm,/ = 0.5 h,
g =1N.s/m,e" = e/d, L = 5d,SS). (b) Effect of the viscosity versus several cross sections on the natural frequencies of the SWCNTs
(epa = 1nm,l = 0.5h,e =0.5d, L = 5d, SS).

the three sections. In conclusion, the increase of the curvature leads to an increased importance of the selected

section of the nanotube.
Figures 8(a)—(c) demonstrate the nonlocal parameter effect for SS and CC boundary conditions, and the

effect of changing the length scale parameter values for the SS boundary condition on the results for each shape.
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Figure 8. (a) Effect of the nonlocal parameter versus several cross sections on the natural frequencies of the SWCNTs (I = 0.5 h,

g = IN.s/m,e = 0.5d, L = 5d, SS). (b) Effect of the nonlocal parameter versus several cross sections on the natural frequencies of the
SWCNTs (I =0.5h,g = IN.s/m,e = 0.5d, L = 5d, CC). (c) Effect of the length scale parameter versus several cross sections on the
natural frequencies of the SWCNTs (ega = 1 nm,I" = I/h,g = IN.s/m, e = 0.5d, L = 54, SS).

From these figures, it can be seen that increasing the nonlocal parameter values gets to closer results for the NCT
and CT cross sections. However, this result is more noticeable in the second figure and for CC boundary
conditions. For large values of the nonlocal parameter, especially if the number of sides is large, it does not make
much difference based on what the cross section of the nanotubes is. Indeed, the results of octagonal and
cylinder sections do not differ for larger values of the nonlocal parameter. It is also demonstrated in figure 8(c)
that the nanotube’s cross section does not affect the length scale parameter. One might conclude that the
nonlocal parameter has more geometric effects than the length scale parameter.
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Figure 9. Effect of the number of the cross sections versus different boundary conditions on the natural frequencies of the SWCNTs
(epa = 1nm,] =0.5h,g = IN.s/m,e = 0.5d, L = 5d).

Finally, figure 9 describes the boundary conditions for various cross section shapes. It is worth mentioning
that from the hexagonal to the cylindrical (infinite number of sides) shapes, the results of the CC boundary
condition lead to a more pronounced increase in the CC boundary condition than the SS one. Also, the
difference between results according to different boundary conditions decreases by increasing the number of
polygons.

6. Conclusions

Curved CNTs were studied with cylindrical and non-cylindrical cross section shapes, taking into

account the influences of the material viscosity on the natural frequencies of the nanotube. The nonlocal
strain gradient governing equation was obtained based on a modified beam approach. The finalized
partial differential equation was converted into an ordinary differential equation using the Galerkin
method in which some approximate mode shapes were obtained, satisfying various boundary conditions.
Then, the numerical outcomes were gained and some important research points can be highlighted as
follows:

+ Increasing the curvature of the SWCNTs significantly increased the influence of material viscosity on the
vibration response of SWCNTs.

+ The curvature of the nanotube deemed to make the nanotubes stiffer, leading to higher natural frequencies in
vibration.

* Byincreasing the curvature of the SWCNT, the natural frequencies for both the nonlocal and length scale
parameter values became far from each other, leading to the significant influences of curvature of the CNTs in
the small scale model.

+ Whilst clamped-clamped boundary condition was taken into consideration, by increasing the nonlocal
parameter, the natural frequency values of various cross section’s shapes tended to be closer to each other.
This confirmed that the nonlocality had further impacts in the cases of more rigid boundary conditions.

+ The curvature of the nanotube affects the natural frequency for different cross sections.
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Appendix A
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