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Dynamical nonlocality in quantum time via modular operators
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We formalize the concept of the modular energy operator within the Page and Wootters timeless framework.
As a result, this operator is elevated to the same status as the more studied modular operators of position
and momentum. In analogy with dynamical nonlocality in space associated with the modular momentum, we
introduce and analyze the nonlocality in time associated with the modular energy operator. Some applications of
our formalization are provided through illustrative examples.
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I. INTRODUCTION

Nonlocality is a remarkable concept that has been attract-
ing an ever-increasing interest from the community since
the early days of quantum theory [1,2] till now. Whether it
is through Bell’s nonlocality [3,4], quantum steering [5,6],
quantum entanglement in general [7], or, even more broadly,
quantum discord [8–11], the topic has been central in the
studies of quantum foundations, and with a good reason: since
multiple experiments verified the quantum violation of Bell’s
inequalities [12–19], it is believed that quantum mechanics is
fundamentally different from classical mechanics. These stud-
ies have led to theoretical and technological breakthroughs
[20–28]. Moreover, it is even possible to discuss entanglement
in time [29–33].

The above type of nonlocality is associated with the prepa-
ration (or preparation and measurement) of systems. It can
then be referred to as kinematic nonlocality. A different type
of nonlocality, which was introduced using the concept of
modular variables [34], is associated with the equations of
motion obeyed by quantum systems and, hence, called dynam-
ical nonlocality. Although very promising, as already shown
in first applications to quantum information with continuous
systems [35–38], these variables have not fully received the
corresponding attention from a significant part of the commu-
nity yet [39].

The most common types of modular variables considered
in the literature are the modular position and the modular
momentum [35–48]. In fact, letting � and p0 be parameters
with dimensions of length and momentum, respectively, the
modular operators

eiX p0/h̄ (1)

and

eiP�/h̄, (2)

associated with the modular position and momentum, are
studied in various scenarios, specially in interference effects.

However, other types of modular variables are also consid-
ered. In the next section, further background regarding these
operators is provided.

For this work, modular energy, which is related to dynam-
ical nonlocality in time, is of particular interest. Formally, it
does not have the same status as the other modular variables.
While, say, a modular position is “naturally” associated with
a modular momentum, modular energy does not find an as-
sociated modular time because time is a parameter, and not
an observable, in quantum mechanics. Still, it is known from
relativity theory that momentum and energy are parts of a
single property (the stress-energy tensor) of physical objects
in space-time. This line of reasoning then leads to the concept
of modular energy, given by

eiHSτ/h̄, (3)

where τ is a parameter with units of time and HS is the
Hamiltonian of the system of interest, was also introduced. It
is called a modular operator since the time parameter τ defines
different modular energies and is associated with the energy
mod 2π h̄/τ . Although the operator in Eq. (3) is familiar from
the study of quantum dynamics, as a modular variable, it is
assumed to be a property of the system, which makes it more
delicate conceptually compared to the modular variables of
position and momentum, for instance. This is the case, in part,
since time, the canonically conjugate variable of the Hamilto-
nian H , is not an observable in quantum mechanics, as already
mentioned. Nevertheless, the time evolution of the modular
momentum, which is displayed in Eq. (10) and involves a
dynamical notion of nonlocality in space, seems to suggest
the existence of nonlocality in time for the evolution of the
modular energy, i.e., the time derivative of the modular energy
might, in general, depend on temporally remote events. It is
this notion of temporal nonlocality that we wish to investigate
in the current work.

This is a subject that may play a relevant role in the
study of phenomena with some periodicity in time, like time
crystals [49–58] and many others, as is further discussed
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later in this work. Moreover, it may lead to new discoveries,
including novel insights into conservation laws in quantum
mechanics [59].

In our analysis, envisioning a better formalization of the
nonlocality in time, we employ a previously suggested frame-
work of timeless quantum mechanics. Particularly relevant
here is the approach introduced by Page and Wootters [60],
which has recently been subjected to much scrutiny [61–67].
According to this approach, a (quantum) clock system is used
as a reference for the evolution of the system of interest. To-
gether, the clock and the system of interest are often assumed
to be a closed system. It can be shown that the evolution
of the main system with respect to the time given by the
clock is typically unitary—even in a scenario with multiple
clocks [66].

Hereon we shall study the modular energy operator using
the framework of timeless quantum mechanics. First, in the
next section, we review some basic properties of modular vari-
ables. Then, in Sec. III, we introduce the Page and Wootters
timeless framework for quantum mechanics as well as our
formalization of modular energy within it. Following that, in
Sec. IV we discuss the operational meaning of the theoretical
objects introduced in our study. In Sec. V we present and
analyze two applications of it. Finally, in Sec. VI we present
our last remarks.

II. MODULAR VARIABLES AND SOME
OF THEIR PROPERTIES

As mentioned in the Introduction, two of the most common
modular variables considered in the literature are the modular
position and modular momentum, given, respectively, by

Xmod ≡ X mod 2π h̄I/p0 (4)

and

Pmod ≡ P mod 2π h̄I/�, (5)

where I is the identity operator, X and P are the usual position
and momentum operators, and � and p0 are parameters with
dimensions of length and momentum, respectively. The adjec-
tive modular in modular variables comes from the periodicity
inherent to them. As it will be better explained in this Intro-
duction, although the parameters � and p0 can be, in principle,
arbitrary, there is typically a natural choice for them.

These concepts were introduced as a tool in the study
of interference in the Heisenberg picture [41,42,47]. More
specifically, some of these variables consist of (nonlocal)
properties of a particle whose expectation values may be
functions of the relative phase between two coherent wave
packets—even while they are spatially separated. In partic-
ular, if a system is in the state

|ψ (t )〉 = 1√
2

[|ξ1(t )〉 + eiϕ |ξ2(t )〉], (6)

where ξ1 and ξ2 are two wave packets, it is possible to show
that the expectation value of any power of X and P or products
thereof [i.e., any polynomial operator of the form f (X, P) =∑

mn amnX mPn, where amn ∈ C for every m, n] does not de-
pend on ϕ if ξ1 and ξ2 are orthogonal to each other [41].
However, the modular operators in Eqs. (1) and (2), which are

FIG. 1. Representation of the modular and the usual phase
spaces. (a) Since modular position and modular momentum com-
mute, the system’s state can be represented by a single point in the
modular phase space. This seems to violate Heisenberg’s uncertainty
principle. (b) However, the two ideas can be reconciled by observing
that the usual phase space is divided into periodic cells. Although
the system must be represented by a single point on each cell, the
modular variables do not provide any information about the cell to
which the state of the system belongs.

equivalent to eiXmod p0/h̄ and eiPmod�/h̄, respectively, may include
ϕ in their expectation values. It should be noticed that, while
the operators defined in Eqs. (1) and (2) are non-Hermitian,
observables can be easily defined from them.

To illustrate that, let 〈x|ξ1〉 ≡ ξ (x) and 〈x|ξ2〉 ≡ ξ (x − �),
for some ξ (x) with small enough support around one of the
slits. Then, it can be verified by direct computation that

〈eiP�/h̄〉 = 1
2 eiϕ. (7)

This example can be understood, for instance, as the analysis
of the double-slit experiment, where � is the separation be-
tween the slits.

Like any property, modular variables are bound to a
conservation law [41]. However, differently from the stan-
dard position and momentum, it can be checked that, for
p0 = 2π h̄/�, the modular position and momentum defined
in Eqs. (4) and (5) commute with each other, a property
that was recently experimentally investigated [48]. While that
seems to violate the uncertainty principle, this is not the case.
The uncertainty principle is manifested in a different manner
[41]. Specifically, Pmod and Xmod divide the phase space into
periodic cells. Their commutation means that, for a given
state, a point can be assigned to each cell. However, P and
X remain unknown since their modular counterparts do not
provide information on which cell is associated with the state.
This characteristic is illustrated in Fig. 1. Also, it is possi-
ble to introduce a complete uncertainty relation for modular
variables [41,47], which states that, for any (dimensionless)
modular variable �mod ≡ � mod 2π I , the expected value
〈ein�〉 vanishes for every integer n if and only if the modular
variable �mod is completely uncertain. In fact, this follows
from the Fourier series expansion of the probability P�mod of
�mod assuming an arbitrary value ϕ ∈ [0, 2π ), i.e.,

P�mod (ϕ) =
∑
n∈Z

cneinϕ, (8)
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where

cn = 1

2π

∫ 2π

0
P�mod (ϕ)einϕdϕ = 1

2π
〈ein�〉. (9)

Then �mod is completely uncertain, i.e., P�mod (ϕ) is a uniform
distribution for every ϕ ∈ [0, 2π ) if and only if 〈ein�〉 vanishes
for every nonzero integer n.

Fundamentally, these variables evolve in a nonlocal man-
ner. To see that, let H = P2/2m + V (X ) be the Hamiltonian
of the system of interest, where m is the mass of the system
and V is the potential. Then, it follows from Heisenberg’s
equation of motion that

d

dt
eiP�/h̄ = − i

h̄
[eiP�/h̄, H]

= − i

h̄
[V (X + �I ) − V (X )]eiP�/h̄, (10)

which depends on spatial locations separated by a length �.
The fundamental observation is that information about the dis-
tance � is coded in the modular momentum via p0 = 2π h̄/�

for pmod = p mod p0. This is in contrast with the classical
equation of motion, which leads to

d

dt
e2π ip/p0 = {e2π ip/p0 , H}

= −i
2π

p0

dV

dx
e2π ip/p0 , (11)

i.e., the time evolution of the modular momentum depends on
a (local) derivative with respect to the spatial variable.

To give a concrete example, we can refer to the double-slit
experiment again. As discussed in Refs. [41,47], Eq. (10)
with � given by the distance between the slits allows an in-
terpretation where the particle goes through one slit but has
its modular momentum affected by a potential at both slits.
Moreover, if a measurement is performed at the slits in order
to determine the path taken by the particle, the information
about its modular momentum is destroyed in this picture. In
fact, for the choices of |ξ1〉 and |ξ2〉 in Eq. (6) that lead to
the expected value associated with |ψ〉 in Eq. (7), it can be
noted that, in spite of the latter equation, 〈eiP�/h̄〉 vanishes
for the states |ξ1〉 and |ξ2〉. Then, when their superposition
is destroyed by a measurement, the modular momentum of
the particle becomes completely uncertain. This, in turn, pre-
serves relativistic causality.

At this point, we are in a good position to justify the choice
of the parameter � as the distance between the slits, something
not explained in the literature prior to this work. If � is much
bigger than the separation between the slits, then 〈eiP�/h̄〉 also
vanishes for the state |ψ〉, i.e., this modular variable remains
uncertain throughout the experiment and, then, is not relevant
in the analysis of it. When � approaches the length of sepa-
ration of the slits, 〈eiP�/h̄〉 becomes nonzero. Although they
are, then, relevant, they do not provide as much information
as the choice of � coinciding with the separation between the
slits. This is the sense in which we said that there is typically
a natural choice for the parameters associated with a modular
variable.

III. NONLOCALITY IN TIME WITHIN
THE TIMELESS FRAMEWORK

The timeless framework [60] considers a clock system,
whose state is given by a vector in a Hilbert space HA, and
the system whose evolution is studied, represented by a state
in a Hilbert space HR, where R stands for the “rest.” The joint
system |	〉〉 ∈ HA ⊗ HR is assumed to be closed and, hence,
it is subject to the Wheeler-DeWitt equation,

HT |	〉〉 = 0, (12)

where HT is the total Hamiltonian acting on systems A and
R. The double ket notation is used to denote the full isolated
system.

Now, let TA be the time operator associated with clock
A and HA its free Hamiltonian, with [TA, HA] = ih̄, which
implies that HA = −ih̄∂/∂tA. Observe that TA and HA are the
analogous in HA to the usual X and P in standard quantum
mechanics. Also, let HR be the free Hamiltonian of the system
of interest, and let Hint(TA) represent the interaction between
A and R, which is analogous to the time-dependent terms
of the evolution of R in standard formulations of quantum
mechanics. Then,

HT = HA + HR + Hint(TA). (13)

Replacing it in Eq. (12) and applying a scalar product by an
eigenstate |tA〉 of TA on the left, i.e., |ψ (tA)〉 = 〈tA|	〉〉, which
results in a reduced state of R conditioned on the state |tA〉 of
the clock A, it holds that

ih̄
∂

∂tA
|ψ (tA)〉 = [HR + Hint(tA)]|ψ (tA)〉, (14)

which is the Schrödinger equation for the system R with time
measured by the external clock A. As a result, |	〉〉 can be
written as

|	〉〉 =
∫

dtA |tA〉 ⊗ |ψ (tA)〉, (15)

where |ψ (tA)〉 is the usual (normalized at each instant of time)
state vector considered in quantum mechanics. Because |	〉〉
contains information about |ψ (tA)〉 at every tA, it is referred to
as the history state.

Observe that, since the system composed of A and R is
assumed to be isolated, clock A mediates the interaction of any
other system in the universe with R, as already discussed in
Ref. [63]. In particular, any change in the energy distribution
of R generated by the Hamiltonian in Eq. (17) corresponds to
a change in the energy distribution of clock A.

Here we consider the case studied in Ref. [66], where
system R was assumed to be composed of the main system
of interest S and a clock B, i.e., an internal clock to R, as
represented in Fig. 2. We then write

HR = HB + HS + HBS (TB), (16)

where HBS (TB), assumed to be such that [HB, HBS (t )] = 0 for
a parameter t , generates the inner unitary transformation of
system S controlled by the time in clock B, i.e., changes on
system R when it is completely isolated. In this case, Eq. (13)
and, as a consequence, Eq. (14) hold.

For simplicity, the term HBS (TB) is assumed to be null
in this work. This implies that the effective Hamiltonian of
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FIG. 2. Scheme of the configuration considered in this work. An
external clock represents the interaction of the system of interest R
with its exterior. System R itself is composed of an internal clock B
and a main system S.

system R from the perspective of clock A is

HA
eff = HB + HS + Hint(tA). (17)

We also restrict to cases where [HB, Hint(TA)] = 0, i.e., Hint is
not a function of TB.

Our goal is to obtain the dynamics of the systems from the
perspective of clock B, although a similar conclusion can be
drawn based on an analysis from the perspective of clock A.
Then, writing 〈tB|	〉〉 = |ϕ(tB)〉 ∈ HA ⊗ HS , it holds that

ih̄
∂

∂tB
|ϕ(tB)〉 = [HA + HS + Hint(TA)]|ϕ(tB)〉, (18)

i.e., from B’s perspective, the effective Hamiltonian is

HB
eff = HA + HS + Hint(TA). (19)

From the Heisenberg equation of motion, we obtain the tB
evolution, i.e., the evolution from the perspective of the clock
B of the modular energy e−iHAτ/h̄ of clock A, where τ is a
parameter with units of time. Explicitly,

d

dtB
eiHAτ/h̄ = − i

h̄

[
eiHAτ/h̄, HB

eff

]

= − i

h̄
[eiHAτ/h̄Hint(TA) − Hint(TA)eiHAτ/h̄]

= − i

h̄
[Hint(TA + τ I ) − Hint(TA)]eiHAτ/h̄,

(20)

which is to be compared with Eq. (10). Observe that no
particular set of assumptions was made in this derivation. In
fact, the result follows from the fact that eiHAτ/h̄ generates
translations in the time variable of clock A and HB

eff is, in
general, a function of TA. Also, although Eq. (20) seems to al-
low backwards-in-time signaling, we recall that this is not the
case because of the already discussed complete uncertainty
principle. Moreover, in a study from the perspective of clock
A, the evolution of the modular energy of clock B would, in
general, depend on the effective Hamiltonian at two different
points in time. For that, one should take into consideration
HBS (TB), which is only assumed to vanish in this work for
simplicity.

The result of Eq. (20) becomes particularly interesting
when two other results are pointed out. The first is similar to
the classical evolution of the modular momentum represented
in Eq. (11). In fact, since ∂e2π iEA/E0/∂tA vanishes, the classical

dynamical equation for the modular energy leads to

d

dtB
e2π iEA/E0 = {

e2π iEA/E0 , HB
eff

}

= −∂e2π iEA/E0

∂EA

∂HB
eff

∂tA

= −i
2π

E0

dHint

dtA
e2π iEA/E0 ,

(21)

which, again, depends only on (local) derivatives.
The second result concerns the fact that Eq. (20), in prin-

ciple, contains two different notions of time, from clocks A
and B. This equation displays dynamical nonlocality in time
B in a similar manner that Eq. (10) displays dynamical non-
locality in X . However, this does not necessarily correspond
to the usual idea of dynamical nonlocality in time discussed
in the literature. To recover this, it suffices to show an
equivalence of the notion of time provided by clock A, as-
sociated with the nonlocality on the right-hand side of the
equation, and clock B, which provides the time used as refer-
ence for the analysis of the evolution. This is indeed the case,
as follows from the Heisenberg equation of motion

d

dtB
TA = − i

h̄

[
TA, HB

eff

] = I. (22)

This means that, in our model, the “flow of time,” when
described in terms of the rate of change of the mean value
shown by a clock, is the same in both clocks. Nevertheless, as
evidenced by Eq. (20), with respect to system R’s proper time,
the dynamics of the modular energy of the external system A
depends on a future instant of time.

Even if one introduces a different notion for the flow of
time that includes the variance of TA, our conclusion still
holds. To see that, it is enough to integrate Eq. (22), which
leads to TA(tB) = TA(t0

B ) + (tB − t0
B )I , where t0

B is some initial
instant in clock B. Then, because the variance of the identity
operator vanishes, we conclude that the variance of TA(tB)
equals the variance of TA(t0

B ) for every tB.
For another way to reach the same conclusion, define

�T 2
A ≡ T 2

A − 〈TA〉2I . Then, the Heisenberg equation implies
that

�T 2
A (tB) = �T 2

A

(
t0
B

) + 2
(
tB − t0

B

)[
TA

(
t0
B

) − 〈
TA

(
t0
B

)〉
I
]
. (23)

Again, this allows us to conclude that the variance 〈�T 2
A 〉

does not change in time since the above equation leads to
〈�T 2

A (tB)〉 = 〈�T 2
A (t0

B )〉. Even if we decide to consider the
operator �T 2

A instead of its expected value, we can choose
an initial state of clock A with no initial uncertainty, so that
we have TA(t0

B ) = 〈TA(t0
B )〉I . In this case, not only the variance

but also the operator �T 2
A does not change in tB.

Observe that, instead of studying the modular energy in
Eq. (3) that is typically discussed in the literature and refers
to a variable associated with system S, we consider the mod-
ular energy of clock A. As already said, this clock plays the
effective role of external systems interacting with R. Then, we
infer the nonlocality in time of the modular energy of R from
the nonlocality of the modular energy of A. More than that, we
infer the modular energy of S. In fact, since dHB

eff/dtB vanishes
with our assumption that HBS (TB) is null, we conclude that
eiHB

effτ/h̄ is conserved. Thus, a change in the modular energy
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of A implies a change in the modular energy of S. Because
of that, the parameter τ that appears in the definition of the
modular energy of A is taken with system S in mind. While
the parameter � in the modular momentum was chosen to
be the separation between the slits (the spatial periodicity) in
the analysis of the double-slit experiment discussed in Sec. II,
the parameter τ in the modular energy of clock A should be
associated with a time periodicity of system S. This last con-
clusion follows, again, from the complete uncertainty relation,
also discussed in that section.

Furthermore, the complete uncertainty relation also implies
that if the system is observed with a projective measurement,
its modular energy becomes completely uncertain. While in
the case of the double-slit experiment the analogous result
prevented information about a present potential to be acquired
faster than light, here it blocks access to information about a
future potential acting over the particle. Notably, both scenar-
ios may be linked via a Lorentz boost.

It should also be noted the modular energy of clock A
commutes with the modular time given by e2π iTA/τ , which is a
variable that evolves locally in time since

d

dtB
e2π iTA/τ = − i

h̄

[
e2π iTA/τ , HB

eff

] = 2π i

τ
e2π iTA/τ . (24)

This, however, does not imply a violation of the uncertainty
principle. A way to see that is by observing that the above
result is proportional to the commutator [e2π iTA/τ , HA] and,
moreover,

[eiHAτ/h̄, TA] = τeiHAτ/h̄. (25)

This means that, while the modular variables of time and
energy divides the time-energy phase space into disjoint cells
and it is possible to simultaneously know the state of the
system in each individual cell, the modular variables do not
provide information about in which cell the state of the
system is.

IV. OPERATIONAL MEANING OF THE MODULAR
ENERGY IN THE TIMELESS FRAMEWORK

To give an operational meaning to the modular energy, we
first obtain an analog of the expected value of the modular
position given by Eq. (7). For that we first observe that the
expected value of any observable O acting on S at a given
instant of time t in clock A can be computed in the timeless
framework as the expected value of |t〉〈t | ⊗ IB ⊗ O for the
state |	〉〉, i.e., 〈O〉t = 〈〈	|(|t〉〈t | ⊗ IB ⊗ O)|	〉〉. Observe
that we use the notation 〈O〉t instead of the standard 〈O〉 to
evidence its dependence on t . Although this dependence is
always present, it is not always acknowledged. This type of
reasoning, without the inclusion of clock B, is also behind a
recent definition of time of arrival [68]. Also, note that, in case
O is the modular momentum, Eq. (7) is recovered.

The above idea is valid even if O is also allowed to act in
the space of clock B. However, if we consider the general case
of O acting on an arbitrary subsystem, which includes clock
A, because of the possible lack of commutativity, there exist at
least three possibilities for the definition of the expected value
at a certain instant t in clock A. In fact, omitting the tensor
products and writing �t = |t〉〈t |, such a definition can be, for

instance, introduced with a symmetrization of the operators,
as in

〈O〉t
sym ≡ 1

2 〈〈	|{�t , O}|	〉〉, (26)

where {·, ·} is the anticommutator. Moreover, one could intro-
duce this definition without the symmetrization. In this case
we are left with either

〈O〉t
left ≡ 〈〈	|�t O|	〉〉 (27)

or

〈O〉t
right ≡ 〈〈	|O�t |	〉〉. (28)

Interestingly, there exists a discussion in the literature
about the multiplicity of possibilities to define two-time corre-
lators [61,69–71]. Even though we want to define the expected
value at a certain instant of time here, the lack of commutativ-
ity between �t and O implies that it will depend on the wave
function at least for two points in time—as given by clock A.
As a result, these problems may bear some relation with each
other.

The question we face here is, then, about how to choose
which of the three definitions is the appropriate one. In prin-
ciple, it seems that it is not possible to make such a choice.
However, let us consider a scenario such that the state ψ of
system R in Eq. (15) is such that |ψ (tA + τ )〉 = eiϕ |ψ (tA)〉
for a certain time parameter τ and every tA. Then, if we
compute the expected value of the modular energy of system
R, for which the three definitions are equivalent, we obtain
〈eiHRτ 〉t = 〈ψ (t + τ )|ψ (t )〉, i.e., it depends only on instants
t and t + τ . Hence, the same should be expected for the
modular energy of clock A if we want to maintain the notion
of conservation of this quantity. However, the definition in
Eq. (26) results in a dependence on t − τ , t , and t + τ , while
the definition in Eq. (28) depends on t − τ and t . As a result,
we are left with 〈eiHAτ 〉t ≡ 〈eiHAτ 〉t

left, which gives

〈eiHAτ/h̄〉t = 〈〈	|(|t〉〈t |eiHAτ/h̄)|	〉〉
= 〈〈	|(|t〉〈t + τ |)|	〉〉
= 〈ψ (t )|ψ (t + τ )〉
= eiϕ. (29)

This result is analogous to the one for the modular momentum
in Eq. (7). There, however, the expected value had a half-
factor multiplying the exponential. This is the case because the
expected value computed there is associated with the relative
phase between two halves of a (normalized) wave function at
a single instant of time, while the computation done here cap-
tures a global phase difference between two wave functions,
each at a different instant of time. Moreover, there exists a sign
difference between the phases in Eq. (29) and 〈eiHRτ 〉t = e−iϕ .
This is associated with the conservation of the total modular
energy—in the Page and Wootters framework, the expected
value for the energy (and the modular energy) of the entire
system is zero.

The above discussion provides an operational meaning to
the modular energy. Its expectation value can be obtained
by performing two tomographies of system S: One at t and
the other at t + τ . However, in some special cases, one may
optimize this process. For instance, omitting clock B’s system,
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FIG. 3. Nonlocal interaction between a particle (pink wave
packet) in a box (bigger gray area) and a ball (green circle) outside
of it. The box’s right-hand sidewall is a movable piston (blue region),
which has a second box with an open top and bottom (smaller gray
area) attached to it. The particle is in a periodic motion inside the
closed box. While it is as far left as possible from the piston, the ball
hits the open box twice, putting the piston in motion for a brief period
of time. Although the particle and the box never get near each other,
they exchange modular energy.

observe that for an eigenstate of energy |E〉, the expected
value 〈eiHSτ/h̄〉t is just the dynamical phase eiEnτ/h̄. Then, if
a system has a discrete energy spectrum and the state of S
is |ψ〉 = ∑

n cn|En〉, 〈eiHSτ/h̄〉t = ∑
n |cn|2eiEnτ/h̄. In this case,

the tomography of |ψ〉, together with its spectral analysis, suf-
fice for the measurement of eiHSτ/h̄. Also, in scenarios where
the system can be placed in an interferometer, one may use
a delay line in one arm, which results in a direct interference
between |ψ (t )〉 and |ψ (t + τ )〉.

Observe that the state of clock B was omitted in this dis-
cussion and |ψ〉 was taken to be the state of system S. This
can be done by assuming that clock B starts disentangled to
S. Then, the analog of Eq. (22) from the perspective of A,
i.e., dTB/tA = I , implies that the two systems remain disen-
tangled and, moreover, that the displacement of clock B’s state
remains unchanged throughout the dynamics.

In what follows, we use the proposed formulation in order
to analyze two scenarios where nonlocality in time seems to
play a role.

V. APPLICATIONS

A. Particle and the piston

Now we shall study a thought experiment previously sug-
gested in Ref. [41]. We start by introducing the standard
description of it. For that, consider a long rectangular box
with a movable piston on its right-hand side. Inside it, a
quantum particle well localized in a region much smaller than
the length � of the box is moving back-and-forth in periodic
motion with period τ and negligible spreading. Also, assume
a second box with two open sides is attached to the piston.
This scenario is represented in Fig. 3.

Then, suppose that the particle inside the closed box is
located at its left end, when at time τ1, an external ball hits the
box attached to the piston from its inside, putting the piston
in a motion to the left. Later on, at an instant τ2, the ball hits
the other inner side of the box, stopping the piston after it had
moved a distance δ�. It is assumed that τ2 − τ1 � τ in order
to assure that the particle will remain distant from the piston
during its translation.

Classically, it is expected that there will be no interaction
between the particle and the ball. In a quantum treatment,
however, it can be argued that there is an exchange (nonlocal

in time) [72] of modular energy between the two systems
[41], and the explanation for that is the fact that, if |ϕ(0)〉
is the initial state of the particle, in cycles where the pis-
ton does not move |ϕ(τ )〉 = eiα|ϕ(0)〉, where α ∈ [0, 2π )
and, hence, denoting the Hamiltonian of the particle by HS ,
〈ϕ(0)|eiHSτ |ϕ(0)〉 = 〈ϕ(τ )|ϕ(0)〉 = e−iα . However, if the ball
hits the piston, the final position of the particle of a period τ is
shifted by a distance 2δ� with respect to its initial position. As
a result, |ϕ(τ )〉 = ei(α+2Pδ�/h̄)|ϕ(0)〉 and 〈ϕ(0)|eiHSτ |ϕ(0)〉 ≈
e−i(α+2〈P〉δ�/h̄). Hereon we show how to analyze this example
within the timeless framework.

The time-independent Hamiltonian of the particle inside
the closed box, i.e., its Hamiltonian in case the external ball
does not interact with the piston can be written as

HS = 1

2m
P2 + Vl (X ) + Vr (X ), (30)

where Vl and Vr are the potentials associated, respectively with
the left and the right walls of the box. For simplicity, one could
take Vr (x) ≡ Vl (x − �).

Now, since instants τ1 and τ2 refer to events related to
external systems, we assume they are observed in clock A.
Then,

Hint(TA) = Vr[X + f (TA)] − Vr (X ), (31)

where

f (t ) = δ�
[ t − τ1

τ2 − τ1
�(t − τ1) + τ2 − t

τ2 − τ1
�(t − τ2)

]
(32)

and � is the Heaviside step function.
With that, the Hamiltonian HB

eff in Eq. (17) becomes

HB
eff = HA + 1

2m
P2 + Vl (X ) + Vr[X + f (TA)] (33)

and, hence, it follows from Eq. (20) that, over the cycle and,
in special, the first half of the cycle in which the piston had its
position changed,

d

dtB
eiHAτ/h̄ = − i

h̄
[Vr (X + δ�I ) − Vr (X )]eiHAτ/h̄. (34)

Observe that, in our treatment, instead of including the
dynamics of the external ball, its effect (i.e., the change in
position of the piston) was included as a time-dependent po-
tential. This is similar to other approaches usually considered
in the literature where external effects are represented by
potentials in the Hamiltonian. Then, Eq. (34) implies that,
even while the particle is as far away inside the box from the
piston as possible, there exists an exchange of modular energy
between the exterior (represented by clock A) and system R
that depends on the final position of the piston. However,
this exchange does not lead to superluminal communication
because, as the complete uncertainty relation implies, an ob-
servation of the particle or the ball would make their modular
energy completely uncertain.

B. Nonlocal interaction in time between magnetic
fields and a spin

The scenario that will be considered in this section was
the first example of a nonlocal exchange of modular energy
discussed in the literature. It was introduced in the seminal
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FIG. 4. Representation of a thought experiment with magnetic fields interacting nonlocally in time and affecting the dynamics of a spin,
initially prepared in the state |1〉. (a) The magnetic fields applied to the system are displayed as a function of time, as seen from an external
clock. (b) First, a constant magnetic field B0 is applied in the z direction, generating a rotation of the spin about its z axis with period τ .
(c) Then, periodic pulses of magnetic field Bx in the x direction with period τ ′ �= nτ , where n ∈ Z, are also applied upon the spin, generating
partial rotations around its x axis. Since τ ′ is not a multiple of τ , the spin does not flip. (d) However, the introduction of extra pulses of magnetic
field Bz in the z direction with period τ ′ can be designed in order to flip the spin, even if the pulses in the x and z directions never coincide in
time.

article [34] and later revisited in Ref. [41]. Our aim here is
to characterize the nonlocality in time associated with this
exchange in the timeless framework.

To start, consider a spin-1/2 particle with magnetic mo-
ment μ under the influence of a constant magnetic field B0 in
the z direction. Then, its Hamiltonian is

HS = h̄

2
μB0σz. (35)

In this case, the spin dynamics is simply given by a rotation
around the z axis with angular frequency ω = μB0. This sce-
nario is presented in Fig. 4(a).

Now, suppose that an additional magnetic field Bx(t ) con-
sisting of periodic pulses with period τ ′ is added to the
dynamics of the spin, as shown in Fig. 4(b). In this case, it
can be asked whether a spin that starts in an eigenstate of
σz direction flips or not. To answer this question, one needs
to observe that, under HS , the system completes each cycle
in a period τ = 2π/ω = 2π/μB0. Then, with the addition of
Bx(t ), if τ ′ is a multiple of that, i.e., τ ′ = nτ for a nonzero
integer n, the spin will eventually flip. Otherwise, the effect of
Bx(t ) vanishes on average and the spin remains unchanged.

Assume then that τ ′ �= nτ and apply an additional periodic
pulse of magnetic field in the z direction Bz(t ), also with a
period τ ′, as illustrated in Fig. 4(c). The pulses Bx(t ) and
Bz(t ) are such that their product is Bx(t )Bz(t ) = 0 for every
t , i.e., they are not applied at the same instant of time. Now,
it becomes possible to flip the spin again. In fact, Bz(t ) can be
conveniently chosen in such a way that the effective rotation
about the z axis caused by B0 and Bz(t ) has a period T such
that τ = mT for a nonzero integer m.

As can be understood from this description, and pointed
out in Ref. [41], the analysis of the precession of the spin has

a classical analog. However, the change of energy associated
with the flip of the spin seems to be puzzling from a classical
perspective. In fact, in Ref. [41], after careful consideration
of the problem, the authors concluded that, while making no
net contribution to the energy, the field Bz(t ) seems to modify
the way the particle and Bx(t ) exchange energy, allowing
exchanges that are not multiples of 2π h̄/τ ′. Because of that, it
is commonly claimed that the exchange of energy that causes
the flip of the spin is nonlocal in time.

Here the aim is to formalize this idea in the timeless frame-
work. To start, observe that the time-dependent part of the
evolution is described by the Hamiltonian

Hint(TA) = h̄

2
μ[Bx(TA)σx + Bz(TA)σz]. (36)

Then the effective Hamiltonian HB
eff is

HB
eff = HA + HS + Hint(TA)

= HA + h̄

2
μ{Bx(TA)σx + [B0 + Bz(TA)]σz} (37)

and
d

dtB
eiHAτ ′/h̄ = 0. (38)

However, τ ′ is a frequency associated with the external sys-
tem, and it is being assumed that there exists no integer n such
that τ ′ = nτ , i.e., τ ′ is not a multiple of the “natural” period τ

associated with the spin. Hence, the dynamics of the modular
energy of interest is

d

dtB
eiHAτ/h̄ = − iμ

2
[Bx(TA + τ )σx + Bz(TA + τ I )σz

− Bx(TA)σx − Bz(TA)σz]e
iHAτ/h̄. (39)
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Assuming that each pulse associated with Bx(t ) and Bz(t ) has
a sufficiently short duration, Eq. (39) leads to

d

dtB
eiHAT/h̄ = − iμ

2
[Bx(TA + τ I )σx − Bz(TA)σz]e

iHAτ/h̄ (40)

if Bx(TA) = 0, and

d

dtB
eiHAτ/h̄ = − iμ

2
[Bz(TA + τ I )σz − Bx(TA)σx]eiHAτ/h̄ (41)

if Bx(TA + τ I ) = 0.
Those equations show how the modular energy of the sys-

tem has its evolution affected simultaneously by the presence
of the fields Bz and Bx—even though they do not occur simul-
taneously in time. This nonlocal interaction in time between
the fields and the spin is what modifies how they exchange
energy.

VI. DISCUSSION

We have developed and applied a formalization of modular
energy within the timeless framework of quantum mechanics.
This puts modular energy and time on an equal footing with
the modular position and momentum. While our approach
helps us to clarify how dynamical nonlocality in time is
present in the study of modular energy, our results might be
just the starting point for a complete comprehension thereof.

For instance, like the modular position and momentum
divide the phase space into periodic cells, modular energy
and its associated modular time also divide the energy-time
phase space in this way. From the conceptual point of view,
the meaning of such a division may deserve further clarifica-
tion. This could have ramifications in other areas of quantum

mechanics, like time crystals, where the evaluation of the
modular energy corresponds to the Floquet quasienergy.

Moreover, if an ultimate Planck scale limit on time is
assumed, the framework developed here can be particularly
helpful since the modular energy promotes translations of
length τ in time. Therefore, with the appropriate parameter
τ , this modular variable and the ensuing nonlocality in time
could play a role in our understanding of space-time. More
precisely, modular energy as formalized here may be an im-
portant tool in understanding recent studies in the direction of
modular space-time [73,74].

Finally, quantum events with indefinite causal order have
been attracting some attention lately [75–80]. Although the
connections between these studies and the present work
still need to be examined, causal structures implicitly in-
volve both the concepts of kinematics and dynamics, possibly
even replacing them in future approaches to physics [81].
Nevertheless, meanwhile, it seems that modular energy, and
its nonlocality in time, may bring new insights into such
scenarios.
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