
Discrete Applied Mathematics 156 (2008) 2493–2500

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Edge ranking and searching in partial orders
Dariusz Dereniowski
Department of Algorithms and System Modeling, Gdańsk University of Technology, Poland

a r t i c l e i n f o

Article history:
Received 19 September 2006
Received in revised form 31 July 2007
Accepted 6 March 2008
Available online 25 April 2008

Keywords:
Dag
Edge ranking
Graph searching
Poset
Spanning tree

a b s t r a c t

We consider a problem of searching an element in a partially ordered set (poset). The
goal is to find a search strategy which minimizes the number of comparisons. Ben-Asher,
Farchi and Newman considered a special case where the partial order has the maximum
element and the Hasse diagram is a tree (tree-like posets) and they gave an O(n4 log3 n)-
time algorithm for finding an optimal search strategy for such a partial order. We show
that this problem is equivalent to finding edge ranking of a simple tree corresponding to
the Hasse diagram,which implies the existence of a linear-time algorithm for this problem.

Then we study a more general problem, namely searching in any partial order with
maximumelement.We prove that such a generalization is hard, andwe give anO(log n

log(log n))-
approximate polynomial-time algorithm for this problem.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Assume that a partially ordered set (poset) (S,≤R) is given, and let t be an element that we want to find. We can select
an element x ∈ S and ask a question of the form “t≤R x”. If the answer is “yes” then we continue our search in the set
{a ∈ S : a≤R x} and if the answer is “no” then we have to search in the complimentary part. The goal is to find, for a given
poset, a search strategy which asks in the worst case as few questions as possible. This problem has several applications [1]:
software testing (finding the bug in a program), finding corrupted nodes in a tree-like data (like file systems or databases),
or information retrieval. Another motivation is that this problem is a generalization of the binary search in linearly ordered
sets. A related searching model has been considered in [9].

A special case of the above problemwas considered in [1], where the authors assumed that theHasse diagramof the poset
is a rooted tree (tree-like poset). There exists an algorithm of running time O(n4 log3 n), where n is the number of elements
in the tree-like poset, which finds an optimal search strategy [1]. Authors in [10] gave an exponential-time algorithm for
finding search strategies in general posets, and they minimized the average cost of the search. In this paper we assume that
a partial order with maximum element is given (the Hasse diagram does not have to be a tree). We prove that finding an
optimal search strategy for such aposet is hard andwegive a polynomial-time approximation algorithmwith sublogarithmic
approximation ratio.

The edge ranking problem has the following formulation. Given a simple graph G, a function c: E(G) → {1, . . . , k} is an
edge k-ranking of G if each path connecting two edges x, y satisfying c(x) = c(y) contains an edge z such that c(z) > c(x). The
smallest number k such that there exists an edge k-ranking is called the edge ranking number of G and is denoted by χ′

r(G).
The numbers 1, . . . , k are called colors: the edge ranking problem is a modification of the classical graph coloring problem
(in particular if the edges x and y share a common vertex then c(x) 6= c(y) and this property will be used several times in this
paper). An edge ranking of G is optimal if it uses χ′

r(G) colors, i.e. χ′

r(G) = k. In the edge ranking problem the goal is to find an
optimal edge ranking for a given graph G. The edge ranking problem is hard in general [7], and in the case of multitrees [3].
On the other hand there exists a linear-time algorithm for finding an optimal edge ranking of a simple tree [8]. We describe

E-mail address: deren@eti.pg.gda.pl.

0166-218X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2008.03.007

http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
mailto:deren@eti.pg.gda.pl
http://dx.doi.org/10.1016/j.dam.2008.03.007

2494 D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500

a connection between the problem of searching for an element in posets and the edge ranking problem. This connection
allows us to derive, using several facts concerning edge rankings, the results for the searching problem defined above. This
connection in particular implies the existence of a linear-time algorithm for finding optimal search strategy for a tree-like
poset, which improves the result given in [1]. The edge ranking problem has applications in the parallel assembly ofmodular
products from their components [3,4] or in the parallel database query processing [2,11].

The paper is organized as follows. Section 2 gives a formal definition of the search problem in partially ordered sets.
We also give necessary graph theoretic terminology. In Section 3 we define the problem MERB, where the goal is to find
for a directed acyclic graph D with one target its spanning tree with one target (called branching), such that the edge
ranking number of the underlying simple tree is as small as possible. We show that this problem is equivalent to finding an
optimal search strategy in a poset with maximum element. In Section 4 we show that both problems are hard even in some
restricted cases. Section 5 gives an approximate algorithm for finding branchings of low degree, and in Section 6 we give an
approximate algorithm for finding search strategies.

2. Preliminaries

A directed path is a graph Pn such that

Pn = ({v1, . . . , vn}, {(v1, v2), (v2, v3), . . . , (vn−1, vn)}).

Let D = (V(D), E(D)) be a directed graph. We say that D′ is a subgraph of D, D′
⊆ D, if V(D′) ⊆ V(D) and E(D′) ⊆ E(D). Given a

set S ⊆ V(D), the subgraph induced by S is defined as D[S] = (S, {(u, v) ∈ E(D) : u, v ∈ S}). A digraph D is acyclic if it does not
contain as a subgraph a directed path Pn such that v1 = vn. A vertex v ∈ V(D) is reachable from a vertex u ∈ V(D) if there is
a directed path from u to v in D. Define Dv = D[{u ∈ V(D) : v is reachable from u}]. For a set of vertices (respectively edges) S
of D we define D − S = D[V(D) \ S] (D − S = (V(D), E(D) \ S), respectively).

For a vertex v ∈ V(D) let

N+

D (v) = {u ∈ V(D) : (u, v) ∈ E(D)},

N−

D (v) = {u ∈ V(D) : (v, u) ∈ E(D)}

and ND(v) = N+

D (v) ∪ N−

D (v). The outdegree, indegree and degree of v are defined as

deg−

D (v) = |N−

D (v)|, deg+

D (v) = |N+

D (v)|, degD(v) = |ND(v)|,

respectively. We say that arc (u, v) is outgoing from u and incoming to v. The indegree and degree of D are defined as
∆+(D) = max{deg+

D (v) : v ∈ V(D)} and ∆(D) = max{degD(v) : v ∈ V(D)}, respectively. We say that a vertex v of a directed
graph D is a target if deg−

D (v) = 0. In this paper we only consider directed acyclic graphs (dags) with one target.
Given a digraph D, we define a simple graph

G(D) = (V(D), {{u, v} : (u, v) ∈ E(D) or (v, u) ∈ E(D)}).

For a simple graph G and v ∈ V(G)we analogously defineNG(v) = {u ∈ V(G) : {u, v} ∈ E(G)}, the degree of v, degG(v) = |NG(v)|,
and the degree of G, ∆(G) = max{degG(v) : v ∈ V(G)}. A simple graph H is a subgraph of G, H ⊆ G, if V(H) ⊆ V(G) and
E(H) ⊆ E(G). A simple graph G is connected if there exists a path between each pair of vertices, i.e. for each u, v ∈ V(G) there
exists a sequence of vertices v0 = u, v1, . . . , vj = v such that {vi, vi+1} ∈ E(G) for i = 0, . . . , j − 1. A directed graph D is
connected if G(D) is connected. Observe that a directed acyclic (dag) graph with one target is connected.

Instead of considering a poset (S,≤R), we consider its representation, namely a dag D such that V(D) = S and there is an
arc (u, v) in E(D) if and only if u≤R v and there is an edge connecting u and v in the corresponding Hasse diagram. This, in
particular, implies that D is a dag with one target r. Now we define the search problem in terms of a directed graph. Let t be
a vertex of D that we want to find. If |V(D)| = 1 then a search strategy A(D, t) outputs the only element t ∈ V(D). If |V(D)| > 1
then A(D, t) = (v, A(Dv, t), A(D − V(Dv), t)), where v ∈ V(D) \ {r} is an element which is being compared to the desired
element t. The second element in the triplet is a search strategy executed in the case of an “yes” answer (i.e. t ∈ V(Dv), or
equivalently t≤R v), and the last element in the triplet is a search strategy used if the answer is “no” (i.e. t 6∈ V(Dv)). The cost
w(A, t) of finding an element t is the number of questions asked (the number of comparisons made) during the search of t
by A. Then, the cost of A is

w(A) = max
t∈V(D)

w(A, t).

Finally, for a given D we define

w(D) = min
A∈AD

w(A),

where AD is the set of all search strategies for the dag D. In this paper we consider the graph searching problem where the
goal is to find, for a given dag D, an optimal (i.e. of cost w(D)) search strategy. The following equation follows directly from
the definition

w(D) = 1 + min
v∈V(D)

max{w(Dv),w(D − Dv)}. (1)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500 2495

3. Connection between searching in posets and the graph ranking problem

Let a dag D with one target r be given. A spanning tree of D is any connected subgraph T such that V(T) = V(D),
|E(T)| = |V(T)| − 1. A branching of D is a spanning tree T, which has one target. Note that in that case the target in T must be
the vertex r. Let us introduce the Minimum Edge Ranking Branching (MERB) problem, where the goal is to find, for a given
dag D, a branching T such that χ′

r(G(T)) is minimum, i.e. χ′

r(G(T)) ≤ χ′

r(G(T ′)) for each branching T ′ of D. The symbol T∗ will
be used to denote an optimal solution to this problem. Given an edge ranking c of a simple graph G, a color i is visible for an
edge e ∈ E(G) (a vertex v ∈ V(G)) in c if there exists a path connecting e (resp. v) to an edge e′, c(e′) = i, and all edges of this
path have colors smaller than i. Note that if G is connected then the color χ′

r(G) appears exactly once in c. Other simple facts
concerning edge rankings are: χ′

r(H) ≤ χ′

r(G), where H ⊆ G, and χ′

r(G) ≥ ∆(G).
The next two lemmas state the correspondence between the MERB problem and the graph searching problem.

Lemma 1. We have χ′

r(G(T∗)) ≤ w(D).

Proof. Let A be an optimal search strategy forD.We use an induction on the number of vertices ofD to find a branching T such
that χ′

r(G(T)) ≤ w(A). If |V(D)| = 1 then χ′

r(G(D)) = 0 = w(A). Assume that the hypothesis is true for each dag on at most n
vertices and letD be a dagwith n+1 vertices. Let t ∈ V(D). By the definitionwe have A(D, t) = (v, A(Dv, t), A(D−V(Dv), t)), for
some v ∈ V(D). Observe that Dv and D − V(Dv) are dags with targets v and r, respectively. Thus, by the induction hypothesis,
we have that there exist branchings T1 and T2 of Dv and D − V(Dv), respectively, such that

χ′

r(G(T1)) ≤ w(A(Dv, t)), (2)

χ′

r(G(T2)) ≤ w(A(D − V(Dv), t)). (3)

We define an edge ranking c for G(T) in such a way that c|V(G(Ti)) = ci, i = 1, 2 where ci is an optimal edge ranking of G(Ti),
i = 1, 2. Finally, the edge {v, u}, where (v, u) ∈ E(T), gets the unique color max{χ′

r(G(Ti)) : i = 1, 2} + 1 under c. Note that
T1 ∪ T2 = T − {{u, v}}. So, c is a proper edge ranking of G(T) and by (1)–(3) it uses at most w(A) colors. �

Observe that the vertex u in the proof of Lemma 1 can be chosen arbitrary, i.e. the only restriction is that u ∈ N−(v). Note
that D has been defined in such a way that it does not contain any transitive arcs and the above fact implies that it has a
desired branching.

Lemma 2. We have χ′

r(G(T∗)) ≥ w(D).

Proof. Let c be an edge k-ranking of G(T∗). We recursively create a search strategy A and we prove by induction on the
number of vertices of a branching that w(A) ≤ k. The edge {u, v} ∈ E(G(T∗)) colored with k by c is unique. Assume w.l.o.g.
that (v, u) ∈ E(T∗). Since T∗ is a branching, if we remove the edge {u, v} from G(T∗) then we obtain two branchings T∗

v and
T∗

−V(T∗

v). Observe that max{χ′

r(G(T∗

v)),χ
′

r(G(T∗
−V(T∗

v)))} = k−1. By the induction hypothesis we have that k−1 ≥ w(Dv)
and k − 1 ≥ w(D − V(Dv)), which completes the proof. �

We have proved the following.

Corollary 1. For a given dag D with one target we have w(D) = χ′

r(G(T∗)). �

Corollary 2. If D is a tree with one target then w(D) = χ′

r(G(D)). �

Theorem 1 ([8]). There exists a linear-time algorithm for finding an optimal edge ranking of a given tree. �

Corollary 3. There exists a linear-time algorithm for finding optimal search strategy in a tree-like poset.

Proof. Let T be the directed tree corresponding to the Hasse diagram of the tree-like poset. We use the algorithm given
in [8] to find an optimal edge ranking c of G(T). Let {u, v} be an edge of G(T) and let T ′ be the connected component of
G(T) − {e ∈ E(G(T)) : c(e) > c({u, v})} containing {u, v}. In order to compute the corresponding search strategy efficiently
we compute for the edge {u, v} of G(T) pointers to the edges having the biggest labels in the connected components of
G(T ′) − {{u, v}}. Let P({u, v}) denote their set. Observe that there are at most two such pointers. Moreover, given P({u, v}) for
each {u, v} ∈ E(T), the proof of Lemma 2 gives a linear-time recursive algorithm.

The algorithm given in [8] computes for each vertex v of a rooted tree G(T) the set S(v) of colors visible for v and assigned
to the edges of G(Tv). For each v 6= r define S′(v) = {i ∈ S(v) : i < c({u, v})}, where u is the father of v in G(T). Moreover
let S′(r) = S(r). Observe that

∑
v∈V(T) |S′(v)| = O(|E(T)|) = O(|V(D)|), because for each edge e its color belongs to exactly

one set S′(v). We add to P the elements as follows. For each v ∈ V(T) and each pair of integers i, j ∈ S′(v) such that i < j,
i + 1, . . . , j − 1 6∈ S′(v) add to P(e2) the edge e1, where e1, e2 ∈ E(Tv), c(e1) = i, c(e2) = j and the paths connecting e1, e2 to v
contain only colors smaller than i and j, respectively. Furthermore if v 6= r then for i = max(S′(v)) add the edge e ∈ E(G(Tv))
colored with i (and connected to v by a path with all colors smaller than i) to P({u, v}). �

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2496 D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500

Fig. 1. (a) graph G(Hi) and its optimal edge ranking; (b) graph Hi+1 .

4. The MERB problem is hard

Let us recall the Minimum Set Cover (MSC) problem. Given a collection C = {S1, . . . , Sl} of subsets of S = {a1, . . . , an},
and an integer k, does there exist C ′

⊆ C such that |C ′
| ≤ k and C ′ covers S, i.e. for each a ∈ S there exists S′

∈ C ′ such that
a ∈ S′?

We will reduce the above NP-complete problem [5] to the decision version of the MERB problem: given a dag D (with
one target), and an integer k′, does it exist a branching T of D such that χ′

r(G(T)) ≤ k′?
Now let us assume that an instance of the MSC problem is given. We have to create an appropriate digraph D and define

an integer k′. First we define a digraph Hi, i ≥ 1 as follows
V(Hi) = {r} ∪ {w1, . . . ,wi} ∪ {us

j : j = 1, . . . , i, s = 1, . . . , j},
E(Hi) = {(wj, r) : j = 1, . . . , i} ∪ {(us

j ,wj) : j = 1, . . . , i, s = 1, . . . , j}.
Fig. 1(a) depicts the graph G(Hi) and its optimal edge ranking (we will prove the optimality in Lemma 3) while Fig. 1(b)
shows the recursive construction of the graphs Hi, i > 1.

Lemma 3. We have χ′

r(G(Hi)) = i+ 1, i ≥ 1. If c is an optimal edge ranking of G(Hi) then the colors {2, . . . , i+ 1} are visible for
r.

Proof. We prove by induction on i ∈ N. The lemma clearly holds for i = 1. Consider the subgraph Hi and the edge ranking
c of G(Hi) and assume that the claim holds for Hi−1. We have that degG(Hi)

(wi) = i + 1. Since the edges adjacent to the same
vertex should have pairwise different colors we obtain that χ′

r(G(Hi)) ≥ i + 1. Fig. 1(a) depicts an edge (i + 1)-ranking of
G(Hi) which gives that χ′

r(G(Hi)) = i + 1. Since degG(Hi)
(wi−1) = i, the biggest color i ≤ p ≤ i + 1 assigned to an edge e

adjacent to wi−1 is visible for r. The colors c({r,wi}), . . . , i + 1 and adjacent to wi are visible for r. Assume for a contradiction
that c({r,wi}) < i+ 1. Clearly, c({r,wi}) 6= p, because e and {r,wi} are adjacent or connected with a path containing the edge
{r,wi−1}, where by assumption c({r,wi−1}) < p. So, c({r,wi}) < p. Note that e and each of the edges {wi, u

j
i}, j ∈ {1, . . . , i},

are connected by a path with edges having colors smaller than p. So, no edge {wi, u
j
i} for j = 1, . . . , i gets the color p – a

contradiction with the fact that c is an edge (i + 1)-ranking. By the induction hypothesis, χ′

r(G(Hi−1)) = i and the set of
colors visible for r in c|E(G(Hi−1)) is {2, . . . , i}. Let c({r,wi}) = i+ 1 and {c({wi, u

j
i}) : j = 1, . . . , i} = {1, . . . , i}, which completes

the proof. �

In order to distinguish the vertices of different subgraphs Hi we will write in the following r(Hi),wj(Hi), us
j (Hi) instead

of r, uj,ws
j , j = 1, . . . , i, s = 1, . . . , j. Let us define N = max{n, l}. The target in a dag D′ is denoted by r. Let N+

D′(r) =

{v1, . . . , v2N+2} ⊆ V(D′). Since r is the target it holds N−

D′(r) = ∅. Nowwe create D′

vi
for each i = 1, . . . , 2N + 2. If i = 1, 2 then

D′

vi
= ({vi},∅). For i = 3, . . . ,N + 1 we have D′

vi
= Hi−2. For i = N + 2, . . . , 2N + 1 we define the subgraph D′

vi
as follows

D′

vi
= ({vi,w

1
i , . . . ,w

i−1
i }, {(wj

i, vi) : j = 1, . . . , i − 1}).

If i = 2N + 2 then
V(D′

vi
) = {vi} ∪ {w1

i , . . . ,w
i−k−1
i } ∪ {u1i , . . . , u

i−2
i },

E(D′

vi
) = {(wj

i, vi) : j = 1, . . . , i − k − 1} ∪ {(uj
i,w

i−k−1
i) : j = 1, . . . , i − 2}.

Fig. 2 depicts the corresponding simple graph G(D′), and its optimal edge ranking (the optimality follows from the fact
that ∆(G(D′)) = 2N + 2).

In our reduction there are vertices corresponding to the elements of the set S denoted by v[a1], . . . , v[an]. Similarly, for
each Si ∈ C we introduce a vertex v[Si], i = 1, . . . , l. Now we define the digraph D corresponding to the instance of the MSC
problem:

V(D) = V(D′) ∪ {v[S1], . . . , v[Sl]} ∪ {v[a1], . . . , v[an]},

E(D) = E(D′) ∪ {(v[Si], vi+1) : i = 1, . . . , l} ∪ {(v[Si], v2N+2) : i = 1, . . . , l} ∪ {(v[aj], v[Si]) : aj ∈ Si, Si ∈ C}.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500 2497

Fig. 2. The simple graph G(D′) and its edge (2N + 2)-ranking.

Fig. 3. An example of a complete digraph D.

Finally let k′
= 2N + 2.

Let us first create an example of a complete dag D. Assume that the following instance of the MSC problem is given:

S = {a1, a2, a3, a4},

S1 = {a1, a2}, S2 = {a2, a3, a4}, S3 = {a2}, S4 = {a2, a3}.

Let k = 2. In this case N = 4. The corresponding digraph D is given in Fig. 3, where for simplicity the dag D does not contain
subgraphs H1,H2,H3.

From the definition of D it follows that if T is any branching of D then

E(D′) ⊆ E(T). (4)

Lemma 4. Let T be a branching of D. We have that χ′

r(G(T)) ≤ 2N + 2 if and only if for each i = 1, . . . , 2N + 2 it holds
χ′

r(G(Tvi)) ≤ i − 1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2498 D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500

Proof. (⇐) Each edge {r, vi} ∈ E(G(T)) can be labeled with color i, which together with an optimal edge ranking of G(Tvi),
i = 1, . . . , 2N + 2, gives an edge (2N + 2)-ranking of G(T).

(⇒) Let c be an edge (2N + 2)-ranking of G(T). Note that each color appears exactly once for the edges incident to r,
because degG(T)(r) = 2N+2 and the colors for these edges have to be pairwise different. Moreover, for e ∈ E(G(Tvi)) satisfying
c(e) = max(c(E(G(Tvi)))), i ∈ {2, . . . , 2N + 2} we have c(e) < c({r, vi}), because otherwise the colors of {r, vi}, e are visible
from r and thus forbidden for all edges {r, vj}, j = 1, . . . , 2N + 2, j 6= i, which implies that c uses at least 2N + 3 colors which
by assumption is not possible. Furthermore, for i ≥ 3 we have that χ′

r(G(Tvi)) ≥ ∆(G(Tvi)) = i − 1. So, the edge ranking c
restricted to the edges incident to r is c({r, vi}) = i for i = 3, . . . , 2N + 2. Note that the edges {r, v1}, {r, v2} must be labeled
with 1 and 2. Since E(Tv1) = ∅ we may w.l.o.g. assume that c({r, v1}) = 1 and c({r, v2}) = 2. �

Lemma 5. If C ′ is a solution to the MSC problem then there exists a branching T of D such that χ′

r(G(T)) ≤ k′
= 2N + 2.

Proof. By Eq. (4) we only have to define the arcs of T outgoing from v[Si], i = 1, . . . , l, and v[ai], i = 1, . . . , n. Let
(v[Si], v2N+2) ∈ E(T) if Si ∈ C ′ and (v[Si], vi+1) ∈ E(T) if Si 6∈ C ′. Since C ′ covers S, for each ai ∈ S there exists Sj ∈ C ′,
such that ai ∈ Sj. So, let (v[ai], v[Sj]) ∈ E(T). Clearly, T is a branching of D and by Lemma 4 we only have to prove that
χ′

r(G(Tvi)) ≤ i − 1 for each i = 1, . . . , 2N + 2. We have E(Tv1) = ∅ and E(Tv2) ⊆ {(v[S1], v2)}. If i ∈ {3, . . . ,N + 1} then
E(Tvi)\ E(Hi) ⊆ {(v[Si−1], vi)} and by Lemma 3 color 1 is available for the edge {v[Si−1], vi} ∈ E(G(T)). If i ∈ {N+2, . . . , 2N+1}

then the claim clearly holds, because |E(Tvi)| = i − 1. Finally, let i = 2N + 2. Label the edges corresponding to the arcs
incoming to w2N−k+1

2N+2 with 1, . . . , 2N. Let {v2N+2,w
2N−k+1
2N+2 } be labeled with 2N + 1. The edges corresponding to the remaining

arcs of D′ incoming to v2N+2 get colors 1, . . . , 2N − k. Thus, there are k remaining colors, namely 2N − k + 1, . . . , 2N, which
can be assigned to the edges {v2N+2, v[Sj]}, where Sj ∈ C ′. Since 2N−k+1 > N, the edges corresponding to the arcs incoming
to v[Sj] can get colors 1, . . . , deg+

T (v[Sj]) for each Sj such that (v[Sj], v2N+2) ∈ E(T).

Now let us assume that a solution to theMERB problem is given, i.e. T is a branching ofD, such thatχ′

r(G(T)) ≤ k′
= 2N+2.

By Lemma 4 we have that

χ′

r(G(Tvi)) ≤ i − 1, i = 1, . . . , 2N + 2. (5)

This, and Lemma 3 imply that

(v[Si], vi+1) ∈ E(T) ⇒ deg+

T (v[Si]) = 0, (6)

where i ∈ {1, . . . , l}. This means that if (v[ai], v[Sj]) ∈ E(T) then (v[Sj], v2N+2) ∈ E(T). So, we define

Si ∈ C ′ iff (v[Si], v2N+2) ∈ E(T), i ∈ {1, . . . , l}.

By (6) we have that C ′ covers S. If |{(v[Si], v2N+2) : Si ∈ C ′
}| = k′′ > k then by the definition of D we have that

deg+

T (v2N+2) = 2N + 1 − k + k′′ > 2N + 1

which implies that χ′

r(G(Tv2N+2)) ≥ ∆(G(Tv2N+2)) > 2N+1 — a contradiction with Lemma 4.We have obtained the following.

Lemma 6. If there exists a branching T of D, such that χ′

r(G(T)) ≤ 2N + 2 then there exists a solution to the MSC problem. �

Theorem 2. TheMERB ranking problem is NP-hard for dags Dwith one target r, such that each directed path is of length atmost 3.

Proof. The problem is clearly in NP and the number of vertices of D is at most (2N + 2)3, where N = max{n, l}. It is easy to
see that the length of each directed path in D is at most 3. Lemmas 5 and 6 complete the proof. �

Corollary 1 and Theorem 2 give the following.

Theorem 3. The problem of searching in a poset with maximum element is NP-hard, even if the height of the Hasse diagram is at
most 3. �

5. Minimum degree branchings of D

Let a dag D with one target be given. For brevity denote n = |V(D)|. By T̃∗ denote a minimum degree branching of D.
Let ∆̃∗

= ∆(̃T∗). We are interested in finding branchings T of low degree, because we will derive in the following an upper
bound for the edge ranking number of G(T) as a function of ∆(T). An approximate algorithm DMDST for this problem has
been described in [6]. This algorithm takes any directed graph D as an input, but the running time is not polynomial in the
size of D. Since in our case D is acyclic and has one target, wewill be able to improve the running time. The outline of DMDST
(as it has been described in [6]) is as follows. Initially we have any branching T of D. For each arc (v, u) ∈ E(T) such that
deg+

T (u) > ∆+(T) − dlog1+ε ne run a procedure Improvement (D, T, (v, u)), where ε > 0 is any constant. If the branching
T changed during the execution of the procedure then Improvement returns true. Otherwise the return value is false. The
algorithm repeats the above step until the procedure Improvement returns false for each arc for which it is called.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500 2499

Let p(n) and I denote the running time of Improvement and the number of improvement steps, respectively. The running
time of the DMDST algorithm is O(p(n) · I).

The key part of this algorithm is the procedure Improvement(D, T, (v, u)) which can be described as follows: if there exists
an arc (v, x) ∈ E(D) such that deg+

T (x) < deg+

T (u)−1 then remove (v, u) from T, add (v, x) to T and return true (such a vertex
v is called an active vertex); if no such arc (v, x) exists then return false. We have the following lemma.

Lemma 7. The running time of Improvement is O(∆(G(D))).

Proof. Wemay assume that for each vertex z ∈ V(D) the value of deg+

T (z) is given. So, the algorithm consists of a loop over
the elements x ∈ N−

D (v) and for each such element we check the appropriate condition in constant time. We will describe
in the proof of Lemma 8 a data structure for storing the sets N−

D (v), v ∈ V(D), but these details are not important here. We
remove (v, u) from T and add (v, x) to T in O(deg+

T (x) + deg+

T (u)) = O(∆(G(D))) time, assuming that neighborhood list is the
data structure for T. In addition we increment deg+

T (x) and decrement deg+

T (u). �

Now we will bound the number of improvement steps. Define a function fT: V(T) → N in such a way that fT(v) =

(deg+

T (v))2 and for a branching T define F(T) =
∑

v∈V(T) fT(v). Assume that T and T ′ are trees before and after the improvement
step, respectively. We have

F(T) − F(T ′) = fT(u) + fT(x) − fT′(u) − fT′(x) (7)

= (deg+

T (x) + a)2 + (deg+

T (x))2 − (deg+

T (x) + a − 1)2 − (deg+

T (x) + 1)2 (8)
= 2a − 2,

The equality (7) follows from the fact that only the degrees of u and x differ in T and T ′, and (8) has been obtained by
substituting deg+

T (u) = deg+

T (x) + a and using the fact that deg+

T′(x) = deg+

T (x) + 1. By the choice of u and x we have that
a ≥ 2. So, after each improvement step the value of F decreases at least by 2. Initially,

F(T) =
∑

v∈V(T)

(deg+

T (v))2 ≤

 ∑
v∈V(T)

deg+

T (v)

2

= O(n2).

Thus, the number of improvement steps is bounded by O(n2).

Lemma 8. The running time of the minimum degree spanning tree algorithm for a dag D with one target is O(∆(D)n2).

Proof. Assume that for each vertex v ∈ V(D) the set N−

D (v) is stored in such a way that a list lv(i), i ∈ {1, . . . , n− 1}, contains
all the vertices u ∈ N−

D (v) with deg+

T (u) = i. The algorithm uses a set Ai of all active vertices at the beginning of the ith
improvement step. Observe that in this way we can find an active vertex in constant time. Since the running time of the
procedure Improvement is O(∆(D)) and there are O(n2) calls of this procedure, it is sufficient to show that given Ai−1 we
can compute Ai and correct the lists ly(i) for each y ∈ V(D) in O(∆(D)) time when an arc (v, u) has been removed from E(T)
and (v, x) has been added to E(T). Let y ∈ V(D). In the following deg+

T (z), z ∈ V(D), refers to the indegree of z after the ith
improvement step. If y ∈ N+

D (x) then wemove the vertex x from ly(deg+

T (x)−1) to ly(deg+

T (x)). If y ∈ N+

D (u) then the vertex u
should be moved from ly(deg+

T (u) + 1) to ly(deg+

T (u)). There are O(∆(D)) vertices y considered above and each modification
of ly can be done in Θ(1) time. Observe that if ly(i), ly(j) 6= ∅ and ly(i′) = ∅ for each i′ < i, ly(j′) = ∅ for each j′ > j then y is
active if and only if j − i > 1. This means that we can check in constant time if a vertex in N+

D (x) ∪ N+

D (u) should belong to
Ai. If y 6∈ N+

D (x) ∪ N+

D (u) then the values of deg+

T for the vertices in N−

D (y) do not change after the improvement step, which
implies that y ∈ Ai if and only if y ∈ Ai−1. �

Theorem 4 ([6]). If T is a branching computed by the minimum degree spanning tree algorithm then

∆(G(T)) ≤ (1 + ε)∆̃∗
+ dlog1+ε ne

for any ε > 0. �

In the following we will use the above result with ε = 1, i.e. ∆(G(T)) = O(∆̃∗
+ log n).

6. An approximate algorithm for finding search strategy

Assume that a dag with one target D is given. Recall that we used the symbols T∗ and T̃∗ to denote a minimum edge
ranking branching and a minimum degree branching of D, respectively. Define ∆∗

= ∆(T∗). Let A∗ be an optimal search
strategy for D. By Corollary 1 we have that w(D) = w(A∗) = χ′

r(G(T∗)).
Wehave already described an algorithm for finding lowdegree branchings ofD. Now let us give an approximate algorithm

for finding a search strategy for D.

Step 1. Use the algorithm DMDST (described in Section 5) to find a branching T of D;
Step 2. Find an optimal edge ranking c of G(T);

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

2500 D. Dereniowski / Discrete Applied Mathematics 156 (2008) 2493–2500

Step 3. Use c to create a search strategy A for D;

Observe that a search strategy A can be created in the way described in the proof of Lemma 2. This, in particular, means
that w(A) = χ′

r(G(T)). For brevity we write in the following ∆ instead of ∆(G(T)).
We will use the following upper bound for the edge ranking number of a tree.

Lemma 9 ([2]). For each branching T with n > 2 vertices we have χ′

r(G(T)) ≤ ∆ log∆ n. �

We have χ′

r(G(T)) ≥ ∆. Since the edge e with the biggest color in each edge ranking of G(T) is unique and G(T) − {e} has
exactly two connected components we can prove (using a simple induction on the number of vertices of the tree G(T)) that
χ′

r(G(T)) ≥ log2 n. So,

χ′

r(G(T)) ≥
1
2
(∆ + log2 n). (9)

Clearly, ∆̃∗
≤ ∆∗. We have

w(A)

w(A∗)
=

χ′

r(G(T))

χ′
r(G(T∗))

≤ 2
∆ log∆ n

∆∗ + log2 n
(10)

= O

(
(∆̃∗

+ log2 n) log∆̃∗+log2 n n

∆∗ + log2 n

)
(11)

= O

(
(∆∗

+ log2 n) log∆∗+log2 n n

∆∗ + log2 n

)
(12)

= O
(log n

log(∆∗ + log n)

)
= O

(log n

log(log n)

)
.

The inequality (10) follows from (9) applied to T∗ and Lemma 9 applied to T. Theorem 4 implies (11) while the equality (12)
follows from ∆̃∗

≤ ∆∗. In order to obtain (11) and (12) we have also used the formula a loga x ≥ b logb x for a ≥ b ≥ 1, x ≥ 1.
The most time consuming step of the above algorithm is Step 1. So, the above analysis and Lemma 8 give the following.

Theorem 5. There exists an O(log n/ log(log n))-approximate algorithm for finding search strategy in a poset with maximum
element. The running time of the algorithm is O(∆(D)n2). �

7. Conclusions

The algorithm for finding search strategy given in this paper computes a low degree branching of a dag D and then an
optimal edge ranking of the corresponding simple tree. The edge ranking gives a search strategy. While the second step can
be solved optimally, we use an approximate algorithm for the first step. However, from the analysis of the algorithm we
can conclude that a better algorithm for finding minimum degree branching does not allow us to improve in general the
final approximation ratio, i.e. the ratio would be asymptotically identical if we could efficiently compute a minimum degree
branching in the cases when ∆̃∗

= Ω(log n). An interesting problem is to derive an algorithm with a better approximation
ratio for the searching problem.

References

[1] Y. Ben-Asher, E. Farchi, I. Newman, Optimal search in trees, SIAM J. Comput. 28 (1999) 2090–2102.
[2] D. Dereniowski, M. Kubale, Efficient parallel query processing by graph ranking, Fundam. Inform. 69 (2006) 273–285.
[3] D. Dereniowski, Edge ranking of weighted trees, Discrete Appl. Math. 154 (2006) 1198–1209.
[4] A.V. Iyer, H.D. Ratliff, G. Vijayan, Parallel assembly of modular products — an analysis, Tech. Report 88-06, Georgia Institute of Technology, 1988.
[5] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thathcher (Eds.), Complexity of Computer Computations, Plenum Press,

New York, 1972, pp. 85–103.
[6] P.N. Klein, R. Krishnan, B. Raghavachari, R. Ravi, Approximation algorithms for finding low-degree subgraphs, Networks 44 (2004) 203–215.
[7] T.W. Lam, F.L. Yue, Edge ranking of graphs is hard, Discrete Appl. Math. 85 (1998) 71–86.
[8] T.W. Lam, F.L. Yue, Optimal edge ranking of trees in linear time, in: Proc. of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998, pp.

436–445.
[9] N. Linial, M. Saks, Searching ordered structures, J. Algorithms 6 (1985) 86–103.

[10] M.J. Lipman, J. Abrahams, Minimum average cost testing for partially ordered components, IEEE Trans. Inform. Theory 41 (1995) 287–291.
[11] K. Makino, Y. Uno, T. Ibaraki, On minimum edge ranking spanning trees, J. Algorithms 38 (2001) 411–437.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Edge ranking and searching in partial orders
	Introduction
	Preliminaries
	Connection between searching in posets and the graph ranking problem
	The MERB problem is hard
	Minimum degree branchings of D
	An approximate algorithm for finding search strategy
	Conclusions
	References

