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Abstract 

Our analysis incorporates the geometrically nonlinear bending of the Euler-Bernoulli 

ferromagnetic nanobeam accounting for a size-dependent model through assuming surface 

effects. In the framework of the flexomagnetic phenomenon, the large deflections are 

investigated referring to von-Kármán nonlinearity. Employing the nonlocal effects of stress 

coupled to the gradient of strain generates a scale-dependent Hookean stress-strain scheme 

related to the small scale. Taking into account the supports of the nanobeam in two cases, 
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that is, totally fixed and hinged, the deformations are predicted. A constant static lateral load 

is postulated uniformly along the length of the beam, which forces the deformation. As the 

analysis is based on the one-dimensional media, the electrodes are embedded so that they 

give off a transverse magnetic field creating a longitudinal force. The newly developed 

mathematical model is computed by means of the differential quadrature method together 

with the Newton-Raphson technique. The computational section discusses and reveals the 

numerical results in detail for the characteristics and parameters involved in the design of 

beam-like magnetic nanosensors. As shown later, the conducted research presents that there 

is a strong linkage between the surface effect and the flexomagneticity behavior of the bulk. 

Keywords: Flexomagnetic; Euler-Bernoulli beam; Surface effects; Nonlinear bending; Nonlocal 

strain gradient theory; Differential quadrature method 

List of symbols 

 xx    Stress component 

 xx    Strain component 

11C                   Elasticity modulus 

       Poisson's ratio 

m      Mode number 

z                 Thickness coordinate 

zI               Area moment of inertia 

L                Length of the beam 

                Magnetic potential 

b      Width of the beam 

h               Thickness of the beam 

u               Axial displacement of the mid-plane 

w               Transverse displacement of the mid-plane 

31q    Component of the third-order piezomagnetic tensor 

31g     Component of the sixth-order gradient elasticity 

tensor 

31f    Component of fourth-order flexomagnetic tensor 

33a   Component of the second-order magnetic 

permeability tensor 
MagN   In-plane axial magnetic force 

A                Area of cross-section of the beam 

1    Introduction 

Flexomagnetic coupling is between magnetic polarization and strain gradient or reversely, 
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elastic strain and magnetic field gradient. The perception of the flexomagnetic effect dates 

back to not-so-distant years, which can be a pervasive influence for all structures including 

symmetrical and nonsymmetrical crystals. However, studies of flexomagneticity in solids are 

rare in bulk samples due to the small amount of this effect. With the development of nanoscale 

technology, interest in flexomagnetic has renewed; because the large strain gradient is often 

manifested at the nanoscale, which leads to a strong flexomagnetic effect. One of the attractive 

applications of piezomagnetic is the extraction of energy from the mechanical vibrations of 

the environment in order to power micro-and nanodevices. However, piezomagnetic is limited 

to specific materials and is strongly influenced by temperature, which does not exist in 

flexomagnetic. This feature can be considered as a higher-order effect than piezomagneticity. 

The gradient size effect shows that the importance of the flexomagnetic effect in micro-and 

nanosystems is comparable to piezomagnetic and even beyond. In addition, flexomagnetic, 

unlike piezomagnetic, is found in any material with any symmetry. This means that compared 

to piezomagneticity, which is inefficient and invalid in materials with central symmetry, the 

effects of flexomagnetic are present in all biological materials and systems. These features 

have led to a growing interest and research in flexomagnetic in the last decade. As expected, 

in the future the effect of piezomagnetic on nanomotors and nano memory has important 

applications, the flexomagnetic effect may also play such an important role in the construction 

of these devices [1-9]. 

As a brief physical explanation of this effect, it can be mentioned that by bending a 

crystal, the atomic layers are stretched inside it, and it is clear that the outermost layer will 

have the most tension. A magnetic field can be created into the crystal due to the movement 

of ions as a result of tension differences between the different layers. In other words, bending 

some materials creates a magnetic field, which is called flexomagnetism.  
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The effect of flexomagnetic in nanoscale should be considered and evaluated in light 

of several reasons, including [1-9]: a- Flexomagneticity is a pervasive property of any 

structural symmetry compared to piezomagnetic, and therefore expands the choice of 

materials that can be used for sensors and electro-magneto-mechanical actuators. b- Reduced 

dimensions lead to a larger strain gradient, meaning that the strain difference at smaller 

distances results in the larger strain gradient. The small scale is introduced in nanotechnology 

and therefore leads to an increase in the effect of flexomagnetism, which at the nanoscale can 

compete with piezomagnetism. c- A number of experiments have reported strong 

flexomagnetic coupling constants that are several times higher than theoretical estimates. 

Utterly different properties can be revealed for body surfaces from those dedicated to 

the interior [10] on account of unalike environmental conditions. At very small sizes, the 

importance of surface property can be pivotally considerable owing to the high surface-to-

volume ratio. In spite of the significance of surface effects at the mesoscale, it can be 

responsible as a size-dependent property. Gurtin and Murdoch [11, 12] posed a mathematical 

schema in terms of a continuum elasticity framework involving effects of the surface, where 

the surface was assumed as a virtual layer with zero thickness concerning a mathematical 

layer, in which the membrane has dissimilar material features and characteristics and 

underlying the layer as an entirely bonding with the bulk. 

By an exact look at the literature, the extensity can be found in studies of surface effects 

phenomena with electro-magneto-elastic coupling [13-18]. However, the study of the 

flexomagnetic effect does exist in none of them, and the need to examine it is quite obvious 

which merits an investigation between surface effect and flexomagneticity. Furthermore, 

mathematical studies on the impact of flexomagneticity on micro/nanostructures have been 

extended slowly hitherto [19-26]. Despite the attention to this issue in recent years, 
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flexomagnetism has still many questions, ambiguities, and unresolved issues. According to 

the literature, it was found and confirmed that the surface effects can strongly and directly 

affect the electro-magneto-elastic coupling in an electro-elastic nanomaterial. For this reason, 

we were persuaded to theoretically consider the surface effect on the flexomagneticity as a 

higher-order coupling effect in ferrite nanostructures. In this research, while re-introducing 

the flexomagnetic effect and the relations governing its static bending, theoretical discussions 

on the subject are presented considering the effect of the surface layer. Specifically, a 

theoretical explanation of the effect of the surface layer on the flexomagnetic effect is given 

and the reason for its importance in nanoscale systems is stated. Noted that the effects of 

surface residual stress are eliminated in this paper and the surface energy alone has been 

investigated. After explaining the physical model of the theory, the governing relations are 

solved using the numerical method of differential quadrature and specifically the Newton-

Raphson method. Finally, the potential effects of the surface layer on the flexomagnetic effect 

are represented. 

2    Mathematical Model 

Regarding Fig. 1, the magnetic nanomaterial specimen in the form of a rectangular nanobeam 

with initial length L and height/thickness h is schematically discussed in an orthogonal 

coordinate system. The left-most end of the beam is postulated as the location of the 

rectangular coordinate system. Two flexible electrodes are covered and attached to the top 

and bottom transversal surfaces of the beam, which are connected to an ampere meter. These 

electrodes produce a lateral magnetic field.  
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Fig. 1. A square magnetic material specimen connected to a magnetic system 

The engineer's beam theory (Euler–Bernoulli beam) will here describe how the beam 

nodes move after deformations and displacements [23-26] 

   
 

1 ,
dw x

x z u x z
x

u
d

                                                                                                            (1) 

   3 ,u x z w x                                                                                                                          (2) 

Basic constitutive equations of the present problem were also argued in the literature as [23-

26], 

0xxdN

dx
                                                                                                                                   (3) 

2 2 2
0

2 2 2
0xx xxz

xx

d M d T d w
N

dx dx dx
                                                                                                       (4) 

The nonlocal strain gradient size-dependent model [27-36] has advantages in contrast 

to Eringen's nonlocal elasticity theory [37-40] and coupled stress/strain gradient approaches 

[41-47] which contain one length scale factor only. Thus, the nonlinear nonlocal strain gradient 

static elasticity bending model of flexoferroic beam-like magnetic nanomaterial involving 

flexomagnetic effect is made available by use of [48] 
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Along with the longitudinal direction, the surface effect is important. This issue can be 

mathematically modeled by the following one-dimensional relation [49], 

11 11 S S SC                                                                                                                                 (7) 

in which 11

SC  denotes the surface elasticity modulus which the value may be found either based 

on experiments or atomic simulations [50, 51]. Noted that, in this paper, the upper index S 

introduces constants relate to the surface layer. 

The effective axial and flexural rigidities showed by Eq. (7) can be calculated as [52-

56], 
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3 2 3
* *
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 
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 

S
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bh bh h
C I C C                                                                                                  (8) 

Moreover, the effective magnetic properties can be written as follows, 

*

11 11 11  Sf f f                                                                                                                                (9) 

*

31 31 31  Sq q q                                                                                                                                (10) 

*

33 33 33  Sa a a                                                                                                                                 (11) 

Accounts for the surface effect, the governing differential equations which define the 

large deflections of the magnetic beam-like nanomaterial can be conducted as, 
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3   Solution of equations 

Let us apply an accurate and convenient numerical solution method, namely the differential 

quadrature method (DQM), to transfer the nonlinear differential equations displayed by Eqs. 

(12, 13) into algebraic ones to advance the solution [57-66]. In comparison with other 

numerical techniques employed to solve complicated differential equations, such as finite 

difference, finite element, and dynamic relaxation, the differential quadrature technique 

provides low computational cost and simple procedure. 

For a one-dimensional problem, the first-order derivative of variables is carried out as 

   
1

,   =1,2,...,



N

x

i ik k

k

du
x a U x i N

dx
                                                                                                (14a) 

   
1

,   =1,2,...,



N

x

i ik k

k

dw
x a W x i N

dx
                                                                                                (14b) 

where the number of grid points along the axial direction is depicted by N. Moreover, 
xa  is 

expressed as follows, 

 

   

1,

   for  

,   , =1,2,...,
 

 


 

ix

ij

i j j

N
x x

ii ij

j i

R x
a i j

x x R x

a a i j N

                                                                                                  (15) 

in which  

   
1, 

 
N

i i j

j i

R x x x                                                                                                                (16) 

In addition, higher-order derivatives can be written as 

 

       
1


n N

n

i ik kn
k

d u
x C U x

dx
                                                                                                                  (17a) 
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 

       
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dx
                                                                                                                  (17b) 

where 
 n

C  shows a weighting equation which can be defined as follows, 

 1
 xC a                                                                                                                                        (18) 
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                                                                                                  (19) 

Another issue that needs to be mentioned is how to mesh the beam. Different methods 

have been proposed for distributing nodes in the mesh network. The simplest type of meshing 

is the uniform distribution of nodes on the surface of the beam with equal distances. This type 

of meshing, although simple, is often less accurate. A high efficient mesh point can be obtained 

by embedding Chebyshev– Gauss–Lobatto relation as, 

1
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2 1
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i

L i
x i N

N
                                                                                             (20) 

In fact, this type of meshing leads to more stability of the equations and the speed of 

convergence of the results. 

Implementation of the DQM presents Eqs. (12, 13) in the following scheme, 
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                                                                                                                                               (22) 

To complete the formulation, Eqs. (21, 22) are merged with the boundary conditions. 

These end conditions are exerted as follows, 

Clamped (C): 0,  0   :  0,xU W M x L     
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Simply-supported (S): 0   :  0,   xU W M x L  

Then, by inserting the introduced end conditions in Eqs. (21, 22), nonlinear algebraic 

matrix equations can be obtained. 

The accuracy and convergence rate of the Newton-Raphson (NR) technique is quite 

high, leading to performing it on the current problem [67, 68]. In this approach, there should 

be primary guesses ( 0X ) whose amounts directly regulate the convergence rate. The first loop 

can be written as 

X X J A  11 0                                                                                                                            (23) 

in which A exhibits a N×1 matrix, J shows Jacobian that is a matrix of N×N. 

 ,     , ,...,i

j

e
J i j i j N

x


 


1                                                                                                                                  (24) 

   ,     ,...,iA i e X i N 01 1                                                                                                                                (25) 

where e is dedicated for the nonlinear equilibrium equations. In a point of fact, Eq. (23) should 

be in an iterative form as 

n nX X J A

   11                                                                                                                            (26) 

in which the iteration number n determines the convergence speed. The desired accuracy can 

be obtained based on a few iterations. As a consequence, Eq. (26) results in values of 

displacements along the x and z axes in which the deflections are related to the transverse axis. 

4    Solution method validation 

The method used to solve the nonlinear equations should be checked prior to the parametric 

study in order to assess its efficiency. Based on Tables 1 and 2, some results are tabulated 

which are reported from a finite element commercial software (FECS) and present study for 
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linear and nonlinear deflections of an isotropic local beam alongside simple and clamped 

supports. It is borne to keep it in mind that the convergence rate of the present solution method 

is N=9. To achieve large deflections, the chosen load is much bigger than that of the first 

comparison. The validation criterion is the length-to-thickness ratio, which is selected in a 

range from a thick beam up to a thin one. 

The observation of these two tabulated examples says that in the case of large 

deflections the agreement is further passable particularly in terms of thinner beams. Of course, 

it should be logical as the present work used thin beam theory without involving shear 

deformations and, on the other side, FECS has the advantage of using shear deformations. More 

importantly, FECS considers large displacements in three axes, but the present formulation 

examines nonlinearity in the transverse axis respecting the von-Kármán theorem. Furthermore, 

the present mathematical model is based on the one-dimensional analysis; however, FECS is 

regarding three-dimensional problems. Regardless of these, FECS's outcomes vary due to lots 

of options in the solution, such as type of element, number of elements, and size. Consequently, 

a full matching among the results is not reasonable and the difference percentages (

% 100
FECS DQM

Diff
DQM


  ) can be desirable. However, to give some information 

regarding FECS used here, it can be said that a high-quality standard Tetrahedral element with 

an average element size of 0.226h was practiced. 

Table 1. Providing small deflections for a square macro beam (E=210GPa, h=10mm, p=100N/m, CC). 

L/h 

Linear deflections (mm) 

FECS 
Present 

(DQM) 
Diff% 

5 0.000272 0.000198 37.37% 

10 0.001648 0.001585 3.97% 
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15 0.005243 0.005348 1.96% 

20 0.012173 0.012680 3.99% 

25 0.023553 0.024765 4.89% 

30 0.040499 0.042790 5.35% 

35 0.064131 0.067956 5.62% 

40 0.095561 0.101440 5.79% 

45 0.135907 0.144432 5.90% 

50 0.186285 0.198126 5.97% 

 

Table 2. Providing large deflections for a square macro beam (E=210GPa, h=10mm, p=0.5kN/m, CC). 

L/h 

Nonlinear deflections (mm) 

FECS 
Present 

(DQM) 
Diff% 

5 0.001362 0.000990 37.57% 

10 0.008242 0.007924 4.01% 

15 0.026218 0.026744 1.96% 

20 0.060869 0.063371 3.94% 

25 0.117767 0.123616 4.73% 

30 0.202465 0.212890 4.89% 

35 0.320469 0.335536 4.49% 

40 0.477106 0.493667 3.35% 

45 0.677421 0.685871 1.23% 

50 0.925881 0.906756 2.10% 

In order to more prove the validity of the present nonlinear NR algorithm, a nonlinear 

force-displacement diagram in comparison with FECS is provided in what follows. It is 

observed that our model which is based on the classical beam theory excluding shear 

deformations can be used while deflections are less than equal to 20 percent of thickness. More 

than this value of deflection, a shear deformation model is so vital to be used. 
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Fig. 2. Force-displacement diagram for the present model in comparison with FECS (L/h=10, 

h=1mm, CC) 

5    Practical examples 

The most fundamental concept in terms of nanoscale problems consists of establishing 

nanosize effects by formulating between continuum mechanics and nonlocal and also strain 

gradient approaches proposed theoretically. The concept of nonlocality expands and indicates 

interaction between atoms based on Eringen's postulations. It is discussed that stress at a 

point/atom under consideration relates not only to strain at that point but all atoms’ strains in 

that media. This is mathematically meaningful by the Laplace operator which computes an 

average of a quantity in a planar domain. In addition to this, one can measure the large strain 

gradient of atoms by the use of well-known strain gradient elasticity models given by literature. 

These properties arrive from the bulk of a nanostructure. Another effective factor implies a 

nanostructure can behave differently against a macroscale and that this operator can be the 

effects of the exterior surface. Of course, surface effects happen on a macroscale though, this 

is eminent and more explicit on a small scale because of the large ratio of surface to volume. 
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As a matter of fact, [10-12] showed that the surface of materials reacts differently from bulk.  

The focus of this section is to surface effects on the flexomagnetic behavior of the cobalt 

iron oxide as a ferromagnetic material with the structural properties assigned in Table 3 [69-

72] and three categories, that is, a piezo-flexomagnetic (PFM) actuator, piezomagnetic (PM) 

and an ordinary nanobeam (NB). 

Table 3. Employed structural properties 

Bulk (CoFe2O4) Surface layer 

C11=286GPa 

f31=10-9 N/A 

q31=580.3 N/A.m 

a33=1.57×10-4 N/A2 

11

SC =35.3 N/m 

31

Sf =10-9 N/A 

31

Sq =3.4 N/A.m 

33

Sa =1.4×10-4 H/m 

In the first study of the correlation between flexomagnetic and surface effects, Figs. 3a and 3b 

are drawn with changes in nonlocal and strain gradient length scale (SGLS) coefficients. The 

aim here is that the surface layer affects the flexomagnetic behavior at smaller or larger values 

of these two small-scale parameters. In the first figure, which relies on the nonlocal parameter, 

it can be clearly seen that as we move towards the selection of larger values for the nonlocal 

parameter, the nonlocal parameter is effective in highlighting the flexomagnetic effect and it 

can increase the flexomagnetic response of the material even in the attendance of the surface 

effect. This result cannot be seen in Fig. 3b, and in fact, the boundary conditions have a direct 

effect on this achievement. Since the purpose of this study is to investigate the relationship 

between surface effect and flexomagnetic response, we will not interpret the results of the 

surface layer on the mechanics of the nanostructure. For example, the effect of the surface layer 

has led to a reduction in deflections and, as a result, greater stiffness of the material, which has 

been thoroughly discussed in the research background. Other results considered according to 
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these two figures show a growth in the flexomagnetic effect while the surface effect is not 

examined. This is because, as mentioned before, the effect of the surface leads to the stiffness 

of the material and as a result, deduces the deflections. As the deflections decrease, the 

flexomagnetic effect will be less important. In fact, if the nanostructure under study has 

inestimable surface effects, the flexomagnetic effect on that material will be larger. 

 

Fig. 3a. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

L/h=10, p0=0.1 N/m, l=1 nm, CC) 
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Fig. 3b. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

L/h=10, p0=0.05 N/m, l=1 nm, SS) 

In this section, by presenting Figs. 4a and 4b, there will be a similar study of Figs. 3a and 3b, 

with the difference that here the changes of the SGLS are evaluated. Since in the previous 

figures we have come to the conclusion that in larger values of the nonlocal parameter, despite 

the surface effect, the flexomagnetic effect becomes more dominant. This was because 

increasing the nonlocal parameter reduced the stiffness of the material, resulting in a larger 

strain gradient. Since the behavior of the SGLS parameter is the opposite of the nonlocal 

parameter, it means that its enhancement leads to an increase in the stiffness of the material 

and, as a rule, the flexomagnetic effect should be underestimated, which is simply shown in 

Fig. 4a. However, it cannot be found in Fig. 4b. 

 

Fig. 4a. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

L/h=10, p0=0.1 N/m, e0a=0.5 nm, CC) 
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Fig. 4b. Nonlocal parameter vs. deflections for beams with and without surface effects (Ψ=1 mA, 

L/h=10, p0=0.05 N/m, e0a=0.5 nm, SS) 

By preparing Figs. 5a and 5b, we consider the changes in transverse static load to find the effect 

of these changes on the connection between the surface layer and the flexomagnetic effect. As 

can be vividly seen, in the range of larger nonlinear deflections, the surface effect is more 

outstanding in particular when the loading is becoming greater in size. In the first figure, the 

difference between the results when the surface effect is examined compared with when it is 

omitted, the results are greater than those in the second figure. In fact, the first plot, which is 

prepared for the boundary condition of two clamped edges, shows that the larger the transverse 

load, the more substantial the surface effect, as well as its relationship to the flexomagnetic 

effect. However, if the two ends of the nanobeam use the hinge boundary condition, the 

differences will not increase significantly despite the larger static loads. 
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Fig. 5a. Static load vs. deflections for beams with and without surface effects (Ψ=1 mA, L/h=10, l=1 

nm, e0a=0.5 nm, CC) 

 

Fig. 5b. Static load vs. deflections for beams with and without surface effects (Ψ=1 mA, L/h=10, l=1 

nm, e0a=0.5 nm, SS) 
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ampere. In the first figure, in the boundary conditions of two fixed edges, no serious result is 

obtained. However, by examining the second figure, which is related to the boundary 

conditions of two hinged edges, it can be seen that while the problem involves the surface 

effect, increasing the magnetic potential values leads to a very small reduction in the difference 

between results of PFM and PM. In fact, very little effect resulted from variation of the 

magnetic potential on the flexomagnetic effect can be observed. Nevertheless, as a general 

conclusion, it can be stated that changes in the magnetic potential do not have a noteworthy 

impact on the relationship between the flexomagnetic behavior of the bulk and the surface layer 

effect. On the other hand, by comparing the two figures, it can be concluded that the downward 

trajectory of the results is faster due to the increase of the magnetic potential in the hinge 

boundary conditions. 

 

Fig. 6a. Magnetic ampere vs. deflections for beams with and without surface effects (L/h=10, l=1 

nm, p0=0.1 N/m, e0a=0.5 nm, CC) 
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Fig. 6b. Magnetic ampere vs. deflections for beams with and without surface effects (L/h=10, l=1 

nm, p0=0.1 N/m, e0a=0.5 nm, SS) 

6   Conclusions 

The work reported the effects of the surface layer on the various significance items included in 

a ferromagnetic structure for providing the flexomagnetic response. On the basis of the 

obtainable data of a flexoferroic material, an appropriate consideration was performed to 

predict the surface layer effect on the flexomagneticity. Euler-Bernoulli beam assumption was 

used to find out large deflections of clamped-clamped and pinned-pinned nanoscale beams. 

When the nonlocal strain gradient model is applied, it can generate the stress nonlocality and 

large gradient of atoms in the nanoscale. When the magnetic field gradient is applied, one can 

observe the converse flexomagnetic effect which was our case in this article. The contribution 

of the nonlinear von-Kármán strain aided us to mathematically model the problem. With the 

substitution of the differential quadrature method, which has been widely used and its precision 

has been entirely approved, the partial differential relations have been converted into algebraic 

equations. Thereafter, the algebraic relations were solved vis-à-vis the Newton-Raphson 
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technique to compute the large deflections. Further, investigations were warranted via a simple 

structure using a finite element commercial software before the results and discussion section. 

This study argued and demonstrated huge potential in affecting the flexomagnetic effect based 

on the surface layer. The suitable concluded remarks developed by this research will help the 

designers of small scale actuators and sensors, where some of them are indicated below, 

 If the end conditions are selected as less flexible, and values of nonlocal parameter or 

SGLS are respectively, big and small enough, the surface layer can affect and develop a 

further flexomagnetic response. 

 In general, the more dominant the surface effect, the stiffer the material, then the less 

important the flexomagnetic effect. 

 The less flexible the end conditions, the remarkable the surface effect and its coherency 

with flexomagnetic effect if the lateral load is increasing. 

 There was found no evidence to show that the relationship between the effect of the surface 

layer and the flexomagnetic influence can be affected by changes in values of the external 

magnetic ampere. 
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