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Abstract: Instantaneous acoustic heating of a fluid with thermodynamic relaxation is the subject of investigation.
Among others, viscoelastic biological media described by the Maxwell model of the viscous stress tensor,
belong to this type of fluid. The governing equation of acoustic heating is derived by means of the special
linear combination of conservation equations in differential form, allowing the reduction of all acoustic terms
in the linear part of the final equation, but preserving terms belonging to the thermal mode responsible for
heating. The procedure of decomposition is valid for weakly nonlinear flows, resulting in the nonlinear
terms responsible for the modes interaction. Nonlinear acoustic terms form a source of acoustic heating in
the case of dominative sound, which reflects the thermoviscous and dispersive properties of a fluid. The
method of deriving the governing equations does not need averaging over the sound period, and the final
governing dynamic equation of the thermal mode is instantaneous. Some examples of acoustic heating
are illustrated and discussed, conclusions about efficiency of heating caused by different sound impulses
are made.
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1. Introduction bient temperature should be distinguished from the excess
temperature associated with the sound wave. The latter
of which is a wave quantity, damped during sound prop-
agation in a fluid with standard attenuation. The role of
periodic sound in the origin of acoustic heating in stan-
dard thermoviscous fluid flows is well-studied theoreti-
cally and experimentally [1-3]. Interest in acoustic heat-
ing has grown over the last few years in connection with

It is well-known, that standard attenuation of fluids leads
to a linear dissipation of sound. The acoustic heating
is an increase of the ambient fluid temperature caused by

nonlinear losses in acoustic energy. This increase in tem-
biomedical applications. Such applications require accu-

rate estimation of heating during medical therapy, which
applies sound of different kinds including impulses [3, 4].

perature is not an acoustic quantity but a value referred to
as the entropy, or thermal mode. The increase in the am-
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non-equilibrium thermodynamic deviations involve relax-
ation. Examples are vibrational relaxation of diatomic
molecules (as in air at audible frequencies) and chemical
relaxation in seawater below 500 kHz. In air, vibrational
relaxation is the dominant attenuation mechanism at au-
dible frequencies. Relaxation in general is an inalienable
part of physical reality, and one of its manifestations is
attenuation of sound [5]. It plays a significant role in the
dynamics of liquids, especially those that are biological.
This study is devoted to nonlinear dissipation of sound
energy in a fluid where relaxation processes take place.
The mathematical technique has been worked out and ap-
plied previously by one of the authors to some problems of
nonlinear flow. It allows the separatation of the equations
governing sound, vorticity and entropy modes [6-8]. The
method and results based on its application are described
in Secs. 3, 4. Some illustrations of acoustic heating caused
by stationary or impulse sound are discussed in Sec. 5.

2. Dynamic equations in a fluid with
dispersive properties

The continuity, momentum and energy equations for a
thermoviscous fluid flow without external forces read:

a—’t’+$’-(p7)=o
i—i—(V}-?)v—l(—V +DtvP)

or pF W
de - =, 1 = _

Y V)e—p( p(V - V) + xAT

Here, v denotes the velocity of the fluid, p, p are density
and pressure, e, T mark the energy per unit mass and tem-
perature, correspondingly, x is the thermal conductivity,
and x;, t spacial coordinates and time. The operators Div
and Grad denote the tensor divergence and dyad gradi-
ent respectively. P is the tensor of viscous stress. The
equation connecting the viscous stress tensor and particle
displacements u;(7, t) in the medium at a given point in
space and time, for viscous liquids fits the Maxwell model,
in two equivalent forms (g is the relaxation time) [5, 9]:
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Two thermodynamic functions e(p, p), T(p, p) complete the
system (1). Their excess quantities may be written as a

series of excess internal energy e’ = e — ey and tempera-
ture T" = T — Ty in powers of excess pressure and density
p'=p—po p = p— po (ambient quantities are marked
by the index 0):
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where Eq,...05 are dimensionless coefficients, and C,

marks the heat capacity per unit mass under constant vol-
ume. The series (3) allows the consideration of a wide
variety of fluids in the general form. A discrepancy in the
thermodynamic properties of fluids is manifested namely
by the coefficients different for different fluids. The ex-
pressions for coefficients E; and E; are as follows:

_Gopo
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_ poCix

E; K E, =
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where C, denotes the heat capacity per unit mass under
constant pressure, k and B are the compressibility and
thermal expansion, correspondingly:

- () -1 (2)
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The common practice in nonlinear acoustics is to focus on
the equations of the second order of acoustic Mach num-
ber M = vy/co, where v is the magnitude of a particles
velocity, and ¢ = w/% is an infinitely small sig-
nal velocity. The present study is further constrained by
considering nonlinearities of the second order, so that in
the series (3) only terms up to the second order are kept.
A small variation in entropy is a total differential, that
gives the link of the first coefficient in the series of excess
temperature (3):

Cvp()To _ (1 — E2)91

0, =
: Eipo E;

(6)

The next small parameter, responsible for relaxation m =
p/(pocd) and the dimensionless thermal conductivity: & =

ng;;) (w is the characteristic frequency of sound), should

be of the same order. We choose to treat attenuation due
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to thermal conductivity 6 and M of comparable small-
ness. We shall consider weakly nonlinear flows discard-
ing O(M?) terms in all expansions and confining terms to
be considered to those including m® and m'. The result-
ing model accounts for the combined effects of nonlinear-
ity, attenuation and weak dispersion of one-dimensional
sound and thermal modes.

3. Definition of modes in the planar
flow of infinitely small amplitude

We consider the one-dimensional flow along axis Ox.
Based on the linearized version of Eq. (1), the roots of
the dispersion equation can be obtained. They determine
three independent modes of infinitely small-signal dis-
turbances in an unbounded fluid. In one dimension, there
exist the acoustic (two branches), and thermal (or entropy)

|

modes. In general, every perturbation of the field variables
contains contributions from each of the three modes, for
example, o' = p, | + p,, + p,. This allows the sepa-
ration of the governing equations into linear parts using
the specific properties of respective modes. The method
developed in [6, 7] provides the possibility of consequent
decoupling of the initial system. All formulae that fol-
low, including links of modes and governing equations,
are written in the leading order.

It is convenient to rearrange formulae into the dimension-
less quantities in the following way:

R L_P gV
- 2 7 - ’ - 1
Co " Po Po Co (7)
X = —, t" = wt, T = WTR.
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Starting from Eq. (8), the upper indexes (asterisks) denoting dimensionless quantities will be omitted throughout the

text. In the dimensionless quantities, accounting for Egs. (2, 3), Eqs. (1) take the form:
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ot “ox . Vox Pox
~0? 2
%Jr%— 1%—52%=—vg—i+(D1p+sz)%+E%%A%
+63%+64a;5+556352”).

the following dimensionless quantities:

_ X%w
= ,07065@51' 2
O3xw 1—-E
3= —25— 0.
> EipociC, E !
1 1-E
Di=—|-1+2 Es+ Es5 |, D
h £, + £, 3+ Es p)

Downloaded from mostwiedzy.pl

where m = p/(pocd) = cZ/cz — 1 is the dimensionless dispersion (c,, is a frozen speed of sound, of infinitely large
frequency), and A denotes the dimensionless operator acting on a scalar function ¢(x,t) : Ap = m fjoo pe~ =1t dy.
The terms of order M? form the right-hand side of the set (8). The dynamic equations in the rearranged form include
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The sum of the first two coefficients, is the coefficient of linear attenuation due to thermal conductivity, 0 = 01 + 3. The
linearized version of Eq. (8) describes a flow of infinitely small amplitude, when M — 0:
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The linear hydrodynamic field is represented by acoustic modes, propagating in the positive and negative directions of
axis Ox and the entropy mode. Every type of motion is determined by one of the roots of the dispersion relation of the
linear flow, w(k) (k is the wave number) [1, 2, 10] and fixes links of perturbations, which are independent of time [6, 7].
The dispersion relations for acoustic modes propagating in the positive direction of axis Ox (marked by index 1), the

negative direction of axis Ox (marked by index 2), and entropy modes (marked by index 3) are as follows [8]:

m(kt)? ik? mk’t

Wogp =k+ ——5+—=0+i——> We2 = —

T+ (tk2 2 T+ (Tk)?2'

(k2 T2

k)? ik? K?
m(tk) + 554 s T(TZ)Z' we = —ik*d,. (1)

They uniquely determine links of excess density inside every mode, which are valid at any time:

Pa 1 1 1
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The equations for every type of motion may be extracted
from the system (8) in accordance with specific links inside
every mode. This may be formally accomplished by means
of projecting of the equations into specific sub-spaces [6—
8]. Every equation includes a first-order derivative with
respect to time.

The linear dynamic equations are obviously independent.
The equation describing the acoustic excess density in a
wave, propagating in the positive direction of axis Ox, is:

ot ax 2] ox2

0pq 0pPq ~ 6\ p,
p“+p'1—(A ) Pad _o.  (13)
The density perturbation for entropy motion satisfies the
diffusion equation:

dpe %pe
1)
at %79

=0. (14)

4. Dynamic equations in a weakly
nonlinear flow

4.1. Weakly nonlinear dynamic equation for
sound

The nonlinear terms in every conservation equation from
the right-hand side of system (8) include, in general, in-
puts of every mode in the weakly nonlinear flow. We
fix links determining every mode in the linear flow and
consider every excess quantity as a sum of the specific
excess quantities of every mode. The consequent decom-
posing of the governing equations for sound and thermal
modes may still be achieved by means of linear projec-
tion, for details refer to [8]. In simple terms, projecting

(12)

(

is the linear combination of equations in such a way as
to keep the terms of the chosen mode in the linear part,
and reduce all other terms. Keeping only the terms cor-
responding to the acoustic rightwards progressive wave in
the nonlinear part, and expressing all acoustic quantities
in terms of excess acoustic density by use of links (41
from Egs. (12)), one can easily obtain the equation supple-
menting the well-know Burgers’ equation (accounting for
standard attenuation exclusively) by the terms responsible
for dispersion:

apa,1 apuJ Aazpa,‘l 0 azpﬂﬂ
x ot o T2 ax
1-Di-D, 9

2 Peiog
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The nonlinear term in the right-hand side of Eq. (15) may
be considered as a result of the self-action of sound, which
corrects the dynamic equations by nonlinear terms.

4.2. Interaction of thermal mode with domi-
nant sound. Acoustic heating.

The important property of projection is not only to decom-
pose the specific perturbations in the linear part of equa-
tions, but to distribute nonlinear terms correctly between
different dynamic equations. In the context of acoustic
heating, the magnitudes of excess density specific to the
entropy mode is small compared to that of the sound. It
may be easily verified, that the modes with links (12) sat-
isfy, in the leading order terms, (up to order 6%) the equal-
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ity below: cific to the Riemann wave in the ideal gas [11]:

Pan + Pa2 + Pe

~ 0 00 1
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Pa1 = Pa, ax P 2( + D1+ Ds)pgq
Pan + Pa2 + Pe (1 7)
(16)
which suggests a way of combining of the set of Egs. (8). The nonlinear corrections of second and higher order
The links inside dominant sound should be completed by terms depend on the equation of state, and in the case
nonlinear quadratic terms making sound isentropic in the of an ideal gas they coincide with the well-known links in
leading order. These corrections are similar to those spe- the Riemann wave with D; = —y, D, = 0.

J

For simplicity, let sound be associated only with waves propagating in the positive direction of axis Ox: p, = paa,
Pa = Pats Va = Va1. The linear combination of the left-hand sides of the equations of (8) in accordance to (16) results

in:
a a P Pp _op
So—p-05Ly-62pi5LP 152P
GtP TP OGN T 0GP T oG hgs
P Pp. & F e 86 3
w2 _9 9 i _p,%Pa 29 o)
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In the simple evaluations above, the corrected links (17) are used, as well as the dynamic Eq. (13) to exclude the
partial time derivative in the nonlinear terms. In the context of acoustic heating, the sound is dominant, so that only
acoustic quadratic terms are kept. Combining in a similar way the right-hand sides of the equations from the set (8),
and comparing the result with Eq. (18), one obtains the dynamic equation for acoustic heating:

0 ?p. O %p? dp, 0, 0%p?
—pe + 0 ——B+Di+D S+ (1+Di+ D)) | —po—r + ==L | =
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o) which becomes simpler after ordering:
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_% 0 apa ?
o + §(3D1 + D, +3) = 8(1 + Dy + D) — 2(03 + 04 + 05) a | (20)
c
8
[a) It is remarkable, that the dynamic equation for acoustic heating is a result of the combining of the energy and continuity

equations in the absence of thermal conduction. When there is thermal conduction it is the result of the combining of
momentum, energy and continuity equations in accordance with Eq. (16). The acoustic terms of the leftwards propagating
sound are also completely reduced in the linear part of final equation.

This section is restricted to the consideration of the acoustic field represented by rightwards propagating sound, thought
it may be easily expanded to include leftwards propagating waves or any mixture of the two acoustic branches.
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5. Numerical examples

The solution of Eq. (20) governing the decrease in the
ambient density p,, is a fairly complex problem consider-
ing that the excess acoustic density itself should satisfy
Eq. (15), which itself is nonlinear and accounts for attenu-
ation due to thermal conduction and dispersion. It should
be noted that p, is not an acoustic quantity. The equa-
tion governing its dynamics includes nonlinear acoustic
terms proportional to dissipative coefficients. They play
the role of a nonlinear source of heating and reflect the
fact that the origin of the phenomenon are nonlinearity
and viscosity, which follow from dispersion and thermal
conductivity. The diffusion equation Eq. (20) is instanta-
neous, it describes the dynamics of the thermal mode at
any time, and does not require the periodicity of the sound
in the role of a source. Let us consider only terms orig-
inating from relaxation, both in the governing equations
for sound and entropy excess density (Egs. (15, 20)).

In terms of dimensional temperature T,, and accounting for
Eqgs. (3), (20), the governing equation of acoustic heating
becomes:

dT. _ ©opy 0
ot poC, o’

20;pom dp, /t 9pq ’ ’
= — —(t—t dt’. (21
poCEr Ox ). o exp(—( )/7) (21)

Assuming, that

2
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? Po dp p poB (22)

Eq. (21) rearranges into

t
aTe _ 2m apu/ 9pa exp(—(t — {)/7)dt

ot  BE, ox J_, ox
2m  dp,

t 9pe , ,
~ poCok 0x )., ox exp(—(t —t)/T)dt". (23

Eq. (23), along with Eq. (20), is the main result of this
study.

5.1. Acoustic heating caused by stationary
sound

The stationary solution of nonlinear Eq. (15) with 6 =0,
has the form [13]

pa(n) = Mtanh (n/2GT), (24)

(t—x/cp)
1 2 3 4 2Gry

Figure 1. Stationary waveform (bold line) and associated increase
in temperature (normal line).

where n = t — x is the retarded time, and G = (1—D12+DZ)M
measures the ratio of relaxation effects to nonlinear effects.
It is valid in the limit of weak nonlinearity, G > 1. The

stationary waveform and dimensional temperature T,
(&= poCvk _ _BE
T 2MZm T 2MZm
with the help of Mathematica as functions of (n/2GT),
which equals (t — x/cg) /2Gtg in dimensional t, x, Tg, are
shown by Fig. 1.
The constant asymptotic value of temperature at infinitely
large n, is the trace which sound gives up after its passing.
It is positive due to the nonlinear transform of acoustic

is measured in 1/K° ), are calculated

energy into that of the thermal mode.

5.2. Efficiency of acoustic heating caused by
pulses

Let us consider an excess dimensionless acoustic density
in a form of three traveling single waves, the first, second,
and third, correspondingly:

pa(n) = V2Mexp (=),
pa (1) = Mexp (—n°/4), (25)
paln) = 2V2Mnexp (=1) .

They are solutions of the linear wave Eq. (13). The energy
of all waveforms, proportional to ffzo pa(n)?dn, is equal
for all three impulses. Eq. (23) may be numerically inte-
grated. The results for different relaxation times are shown
by Figs. 2b, 2¢, 2d. The initial waveforms are shown in
Fig. 2a. Fig. 2 shows dimensional time and temperature, w
represents the characteristic inverse duration of the ini-
tial waveform. Despite the fact that all waveforms from
Eq. (25) have equal energy, the third waveform causes
the most effective heating, producing the largest excess
temperature after the pulse amplitude decreases to zero.
The difference obviously is much greater in the vicinity of
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wTr = 1, where the attenuation of sound itself achieves a
maximum.

The next series of impulses compared are the following
(the first, second and third, correspondingly):

Pa(n) =1.3511M exp(—n1 - n%) sin(n),
Pa(n) =M exp(=n; - ) sin(n), (26)
Pa(n) =0.6815M exp(—n3 - n?) sin(n),

where ny = 0.01, n, = 0.003, n3; = 0.0005 to keep
the energy of all waveforms equal. The initial waveforms
are shown by Figs. 3a, 3¢, 3e, the dimensionless tem-
perature ®T, for different relaxation times are shown by
Figs. 3b, 3d, 3f. The acoustic heating increases with de-
creasing of values n. The concrete quantities of excess
temperature depend on the Mach number M, the disper-
sion parameter m, the characteristic inverse duration of an
impulse w and thermodynamic properties of a fluid. For
an ideal gas, BE, = 1/(To(y — 1)), but for liquids (with the
exception of the metallic ones) it is a small quantity, much
smaller than that of gases. The coefficient & - M? = %
depends exclusively on the molecular properties of a fluid.
The viscoelastic fluid glycerin, which can be described by
the Maxwell stress tensor P, has a ® - M? of 22207%.
The authors have computed it based on experimental re-
sults [14-16]. The acoustic Mach number is typically in
the domain between 10~3 and 1072 A single pulse is
hardly expected to produce a large increase in tempera-
ture. Pulse polarity is not of importance because of the
quadratic form of the acoustic source. Its curvature how-
ever, plays a significant role.

6. Conclusions

The equation governing acoustic heating, Eq. (20) is the
result of the decomposition of the weakly nonlinear equa-
tions for acoustic and non-acoustic motion. The method
may be applied to a wide variety of flows with different
mechanisms of dissipation and dispersion. It leads to in-
stantaneous equations and does not need temporal aver-
aging of the conservative equations with respect to the
period of sound. This distinguishes it from the traditional
decomposition of equations for acoustic and non-acoustic
motion based on averaging of conservation equations over
the period of sound [1, 2]. The main result of this study,
besides Eq. (20), is Eq. (23) describing the excess temper-
ature of the entropy mode of the relaxing fluid.

The acoustic heating grows with increase of acoustic Mach
number M and dispersive parameter m. It also increases
with increasing wtg, which measures the ratio of the
characteristic duration of sound and the relaxation time.

T

b) -6 4 2 2 + 6 i)

w(t=x/cg)
C) -6 -4 -2 2 4 6

w(t=x/cg)

d) -6 -4

Figure 2. Initial waveforms (2a) (Egs. (25)) and excess temperatures
caused by them for different 1 = wtr (2b, 2¢, 2d).
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Smaller wtg results in more efficient heating. In view of
the mathematical difficulties, the effects of shear viscosity
and thermal conductivity are not considered in the numeri-
cal examples. The inclusion of shear viscosity and thermal
conductivity would result in the larger attenuation of the
sound itself, and the thermal conductivity would further
result in the attenuation of the entropy mode.

These general peculiarities may be concluded a priori.

|

Jﬂ } '\f -
—% J
a) "1
| W'\ |
_E——_;"/\,’w/ /\ /ﬁ\ e
| LHH | |
LH\
c) 10
. M"
il »\/\* MW -
H| j{ | WI
e)

The question about efficiency of heating caused by dif-
ferent impulses of equal energy, is of importance in many
medical and technical applications of ultrasound. Investi-
gations have to be based on instantaneous equations gov-
erning acoustic heating, Eq. (23). Preliminary numerical
evaluations reveal the comparative efficiency of heating
caused by some types of sound. They may be repeated
for any other waveform as the origin of acoustic heating.

wlt—x/cg)
b) ’
wlt—x/cg)
d) ’
wlt—x/cg)
f) ’

Figure 3. Initial waveforms (3a, 3c, 3e) (Egs. (26)) and excess temperatures caused by them for different t = wtr: wtr = 1.5 (3b), wtr = 10 (3d),

wtr = 100 (3f).
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