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Abstract—In this paper a comparative study of the computa-
tional efficiency of two modeling methods applied to the analysis
of the plano- and double-concave Fabry-Perot open resonators
is presented. In both numerical approaches, a scattering matrix
method was applied, which allows splitting the analysis of the
resonator into several sections, including the one with a spherical
mirror, which requires the largest computing resources. Two
modeling techniques were utilized to evaluate the scattering
matrix of the spherical mirror, namely, the finite element method
and free-space Green’s function method. Resonant frequencies
and the corresponding field distributions of the selected Gaussian
modes were calculated and compared. Good agreement between
the methods was achieved; however, the Green’s function method
has occurred to be more computationally efficient.

Index Terms—Fabry-Perot open resonator, finite element
method, Green’s function, resonant frequency

I. INTRODUCTION

A Fabry-Perot open resonator (FPOR) is applicable in ma-
terial characterization [1]–[5]. There are two common config-
urations of the FPOR, namely, plano-concave [6] and double-
concave [7], as illustrated in Fig. 1. Both FPOR geometries
are unique, as compared to other types of the resonators,
due to a very high Q-factor of Gaussian modes, which are
evenly distributed in the frequency spectrum. Consequently,
it allows for broadband and highly accurate electromagnetic
characterization of low-loss dielectric sheets. However, due to
large electromagnetic dimensions, simulations of the FPOR
can be very challenging. The discrete full-wave electromag-
netic analysis with such methods as a finite-difference time-
domain (FDTD) method or a finite element method (FEM)
is expensive in terms of memory and computation time [8]–
[12]. Moreover, numerical dispersion may significantly alter
the parameters of tested materials.

Recently, a scattering matrix method (SMM) that substan-
tially alleviates the aforementioned challenges in the EM
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modeling of the FPOR has been developed [7]. Although the
FPOR is an open structure, fundamental Gaussian TEM0,0,q

modes do not radiate as they are concentrated around the
resonator’s revolution axis. Consequently, insertion of the
FPOR into a cylindrical waveguide, for modelling purposes
only, does not affect resonance frequencies of these modes.
The advantage of such approach is, however, that EM fields
can be represented as a discrete sum of waveguide modes.
In addition to that, the FPOR is divided in the SMM into
three non-resonant sections: two mirrors and a cylindrical
waveguide section where the sample can be present. For
each section, a multimode scattering matrix is calculated, and
all the sections are connected into a cascade to obtain the
characteristic equation, the solution of which brings resonance
frequencies of the FPOR. The multimode scattering matrix
of the waveguide section and that of a planar mirror can be
obtained analytically, whereas a spherical mirror has to be
computed numerically.

This paper is focused on the accurate determination of the
scattering matrix of the spherical mirror, which is numerically
the most challenging part of the SMM, so it should be
computationally efficient. Therefore, two different calculation
methods are utilized and the results are compared. The first one
is FEM which is the most general, however, its efficiency is
low. The second one involves the calculation of Green’s func-
tion in free space, which allows for obtaining the results much
faster than the utilization of waveguide Green’s function. Even
though the structure is modeled as a closed one, it is possible
to utilize Green’s function method in free space (GFM-FS)
as the waveguide modes are not taken into consideration. The
only drawback to this approach is the small radiation effect,
which results in the existence of imaginary part of the resonant
frequency. In order to validate the usage of GFM-FS approach
several Gaussian modes were investigated for resonators with
different radii of mirrors.

II. NUMERICAL METHODS

The investigated resonator structure is divided in the analy-
sis into three sections: two mirrors and a waveguide junction
(optionally with the analyzed sample). Let us denote the
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Fig. 1. a) Plano- and b) double-concave Fabry-Perot open resonators.

scattering matrix of the cascade connection of one mirror and
a waveguide junction at z = z0 by SP , and the scattering
matrix of spherical mirror at z = z0 by SM . It is worth
noting that in the case of plano-concave FPOR the SP matrix
can be obtained analytically. The cascade connection of this
components leads to the following formula [7]:

(I− SP (fr)SM (fr))a = 0 (1)

where fr is the resonant frequency and a represents the vector
of investigated mode amplitudes. In general, the problem can
be solved by finding zeroes of the characteristic equation:

det (I− SP (fr)SM (fr)) = 0 (2)

In this section, two methods of obtaining the scattering
matrix of the spherical mirror are presented.

A. Scattering matrix SM with the use of GFM-FS

This approach involves Green’s function in free space to
describe the scattering matrix of the mirror, hence some
radiation losses are introduced. In order to calculate scattering
matrix of the spherical mirror, firstly, the surface of a mirror
has to be discretized into cylindrical cells, as shown in Fig. 2
with unit vectors, n̂, normal to the mirror’s surface within each
cell. The mirror is, subsequently, illuminated with TE and TM
modes normalized by the following coefficient (square root of
power):

Ssq
(m,n) =

√√√√∣∣∣∣∣
∫∫

S

(E⃗t,(m,n) × H⃗∗
t,(m,n))ρdρdφ

∣∣∣∣∣ (3)

Fig. 2. Cylindrical discretization of a spherical mirror with normal surface
vectors (blue arrows).

where S represents a port defined in a transverse xy-plane, m
is an azimuthal mode order, n is a radial mode order and t in
the subscripts denotes transverse field components.

Subsequently, the following relation is used to compute an
equivalent electric surface current distribution at the mirror’s
surface:

J⃗s = n̂× 2H⃗(m,n) (4)

furthermore the magnetic field of the scattered wave is calcu-
lated with the use of near-field scattering equations [13]:

H⃗x,scat(x, y, z0) = (5)∫∫
A

[(z0 − z′)Js,y − (y − y′)Js,z]
1 + jkR

4πR3
e−jkR ds′

H⃗y,scat(x, y, z0) = (6)∫∫
A

[(x− x′)Js,z − (z0 − z′)Js,x]
1 + jkR

4πR3
e−jkR ds′

where A is a mirror surface and the primed coordinates
represent the mirror’s surface and the unprimed coordinates
represent the reference plane at z = z0. It may be noticed
that in above equation GFM-FS has been used. Due to that
computational effort has been reduced, however, it introduces
numerical losses which has to be taken into account as an
imaginary part of frequency.

Once the scattered field at given reference plane has been
computed, the scattering coefficients (from the i-th to the j-th
mode) may be obtained using the following relation [14]:

Sj,i =

∫∫
S

(E⃗t,inc,i × H⃗∗
t,scat,j)ρdρdφ (7)

B. Scattering matrix SM with the use of FEM

The scattering matrix of the spherical mirror with the use
of FEM is obtained from the generalized impedance matrix
(GIM). GIM requires finding the relation between the electric
and magnetic fields at the port of the mirror (in the reference
plane z0). We assume that the fields at this port can be
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expressed as a sum of the modal basis functions of a circular
waveguide e⃗

(·),p
ξ,q and h⃗

(·),p
ξ,q defined in [15] for ξ = {t, φ}:

E⃗ξ =

Q∑
q=1

(V TE
q e⃗TE

ξ,q + V TM
q e⃗TM

ξ,q ), (8)

H⃗ξ =

Q∑
q=1

(ITE
q h⃗TE

ξ,q + ITM
q h⃗TM

ξ,q ), (9)

where Q is a number of modes taken into account in the anal-
ysis. The relation between above coefficients is represented by
GIM as follows:

V = ZI. (10)

where V = [V TE
1 , . . . , V TE

Q , V TM
1 , . . . , V TM

Q ]T and I =

[ITE
1 , . . . , ITE

Q , ITM
1 , . . . , ITM

Q ]T . The algorithm for obtaining
GIM has been comprehensively described in [15], [16]. It
is worth to mention that to reduce the number of elements,
the Body-Of-Revolution approach was incorporated. Once the
GIM is calculated, the scattering matrix can be determined
using the formula:

SM = (Z+U)−1(Z−U) (11)

where U is the unit matrix.

III. NUMERICAL RESULTS

Numerical analysis considers the PC FPOR with dimensions
D = 100 mm and Dap = 200 mm for different radii R of
the spherical mirror from 120 mm to 180 mm. The resonant
frequencies fr of a few Gaussian modes TEM0,0,q and the
corresponding eigenvectors a representing the field distribution
in the resonant structure were calculated. The scattering matrix
SM of spherical mirror was obtained with the use of FEM
and GFM-FS. The mesh utilized in FEM involved 75 − 100
thousand of elements (second order and curvilinear) depending
on R. In the GFM-FS the angular step ∆φ was equal to 5◦

and the radial step ∆ϱ was equal to 1.0 mm.
In table I the resonant frequencies of Gaussian modes are

collected. As can be seen by comparing the results the relative
error between the investigated models is in the order of 0.01 %.
The imaginary part of fr obtained from GFM-FS is 3 orders
of magnitude smaller than the real part.

Fig. 3. The eigenvectors of Gaussian modes TEM0,0,14 – circles, TEM0,0,24

– squares and TEM0,0,33 - diamonds for R = 120 mm; FEM – contour and
GFM-FS – filled

Fig. 4. The eigenvectors of Gaussian modes TEM0,0,14 – circles, TEM0,0,24

– squares and TEM0,0,33 - diamonds for R = 150 mm; FEM – contour and
GFM-FS – filled

Fig. 5. The eigenvectors of Gaussian modes TEM0,0,14 – circles, TEM0,0,24

– squares and TEM0,0,33 - diamonds for R = 180 mm; FEM – contour and
GFM-FS – filled

In Figs. 3 – 5 the eigenvectors of the Gaussian modes
TEM0,0,14, TEM0,0,24 and TEM0,0,33 for different radii of
spherical mirror are illustrated. First 16 elements correspond
to TE modes while the elements from 17 to 32 – to TM modes.
The obtained results are in good agreement. However, as
expected, the accuracy of the eigenvectors evaluation (field dis-
tribution) is lower than the eigenvalues (resonant frequency).

TABLE I
RESONANT FREQUENCY OF TEM0,0,q MODES

FEM GFM-FS relative

q
R Re(fr) Re(fr) Im(fr) error

[mm] [GHz] [GHz] [MHz] [%]

14

120 21.532 21.535 10.454 0.0151
130 21.494 21.497 7.819 0.0161
140 21.464 21.467 6.251 0.0158
150 21.439 21.443 5.195 0.0151
160 21.419 21.422 4.433 0.0143
170 21.401 21.404 3.854 0.0136
180 21.385 21.388 3.401 0.0129

24

120 36.523 36.525 5.760 0.0060
130 36.484 36.486 4.290 0.0059
140 36.454 36.456 3.418 0.0057
150 36.430 36.432 2.836 0.0053
160 36.409 36.411 2.406 0.0050
170 36.391 36.393 2.081 0.0047
180 36.376 36.377 1.827 0.0045

33

120 50.014 50.015 3.927 0.0032
130 49.975 49.977 2.902 0.0031
140 49.945 49.947 2.294 0.0029
150 49.921 49.922 1.884 0.0028
160 49.900 49.901 1.587 0.0026
170 49.882 49.883 1.362 0.0024
180 49.866 49.868 1.186 0.0023
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IV. CONCLUSIONS

The results of a Fabry-Perot open resonator analysis ob-
tained from scattering matrix method involving FEM and
GFM-FS were compared. Good agreement was achieved,
which confirms the equivalence of both presented approaches.
Since the use of GFM-FS is numerically significantly less
expensive (at least several hundred times faster calculation)
than FEM, its application seems to be much more efficient
from a practical point of view. This aspect is particularly
important in material characterization when the analysis must
be performed multiple times (different frequency points).
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