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Highlights

• The proposed derivations of the foundations of fractional-order cir-
cuit theory are based on quasi-static approximations of fractional-order
Maxwell’s equations.

• Our approach is not limited by the geometry of the considered lumped
RLC elements and employs the concepts of voltage and current known
from the circuit theory.

• It can be further extended towards fractional-order multiterminal el-
ements, described by e.g. capacitance, inductance and conductance
matrices.

• The proposed theory is applied for interpretation of Poynting’s theo-
rem in the fractional-order electromagnetism, demonstrating its logical
coherence and applicability.
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Abstract

In this paper, foundations of the fractional-order circuit theory are revisited.
Although many papers have been devoted to fractional-order modelling of
electrical circuits, there are relatively few foundations for such an approach.
Therefore, we derive fractional-order lumped-element equations for capaci-
tors, inductors and resistors, as well as Kirchhoff’s voltage and current laws
using quasi-static approximations of fractional-order Maxwell’s equations.
The proposed approach is not limited by the geometry of the considered
lumped elements and employs the concepts of voltage and current known
from the circuit theory. Finally, the proposed theory of circuit elements is
applied to interpretation of Poynting’s theorem in fractional-order electro-
magnetism.

Keywords: Fractional order circuits, Maxwell’s equations,
Riemann-Liouville derivative

1. Introduction

The integer-order circuit theory is well established based on quasi-static
(QS) approximations of Maxwell’s equations [1, 2, 3], which allow for formu-
lation of lumped-element circuit equations for capacitors (C), inductors (L)
and resistors (R), as well as Kirchhoff’s voltage and current laws. However,
although many papers are devoted to fractional-order modelling of electri-
cal circuits [4, 5, 6, 7, 8, 9], to the best of the authors’ knowledge there
are no strong foundations for such an approach. In [10], the formulation of
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lumped-element equations for capacitors, inductors and resistors is presented.
However, it is not general and flexible enough in terms of the geometry of
basic circuit elements. That is, it assumes that the fractional-order capac-
itor consists of two parallel plates confining a dielectric described by the
fractional-order derivative, the fractional-order inductor is a toroidal frame
of rectangular cross section, and the fractional-order resistor is cylindrical.
In [11], the RLC circuit elements are identified in fractional-order Maxwell’s
equations based on the characteristic impedance of a fractional-order elec-
tromagnetic system, given by the ratio of the electric and magnetic fields.
However, such an approach does not employ the concepts of voltage and cur-
rent, which are typical for the circuit theory. Recent discussion in literature
[12, 13] suggests that clear derivations of the fractional-order circuit theory
foundations from electromagnetism are necessary.

Fractional-order circuits and systems design is definitely an emerging area
of interdisciplinary research [14]. The number of published papers in differ-
ent areas is increasing and will continue to grow in parallel with the diffusion
of the theory [15]. Hence, the growing number of applications and imple-
mentations of fractional-order circuits and systems is a motivation for our
research. Therefore, we have decided to revisit the fractional-order circuit
theory foundations. The proposed derivations are based on QS approxima-
tions [2] of fractional-order Maxwell’s equations [16, 17, 18, 19, 20] establish-
ing the fractional-order electrodynamics [21, 22, 23, 24, 25, 26]. Furthermore,
our approach is not limited by the geometries of the considered lumped el-
ements and employs the concepts of voltage and current known from the
circuit theory. Hence, it can be further extended towards fractional-order
multi-terminal elements, described by e.g. capacitance, inductance and con-
ductance matrices [2]. In the next step, Kirchhoff’s voltage and current laws
as well as the power conservation law are derived. Finally, the proposed the-
ory of circuit elements is applied for interpretation of Poynting’s theorem in
the fractional-order electromagnetism.

2. Basic Definitions of Fractional Calculus

Mathematical foundations of the fractional order calculus have a very
long history, which dates back to the beginnings of calculus itself, and to
some ideas of Leibniz. The concept was later developed, and proved useful
not only in mathematics, by numerous mathematicians - including Euler,
Abel, Liouville and Riemann, to name but a few. For the historical outline,
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we refer to the appropriate chapters of [27, 28, 29]. Throughout the paper,
we have tried to employ basic definitions consistent with the terminology
proposed in [10].

The Riemann-Liouville integral of the function f : R 7→ R is defined as

Jαf(t) =
1

Γ(α)

∫ t

a=0

f(τ)(t− τ)α−1dτ (1)

where α > 0 is an order of integration, Γ is the Gamma function and a is a
fixed base point set to zero. Based on this definition, the Riemann-Liouville
derivative of order α is introduced as

Dαf(t) = DJ1−αf(t). (2)

It is worth referring here to a similar concept of the Caputo derivative (see
Section 2.4. of [29]). This derivative definition and the Riemann-Liouville
derivative are actually the same for functions f , such that f(a) = 0 (a is the
base point). It appears though, that Riemann-Liouville derivative Dαf offers
an advantageous transition between f(t) and f ′(t) as α changes from 0 to
1. As seen in [30, Formula (1.14)], the Riemann-Liouville derivative satisfies
the property

lim
α→0+

(Dαf)(t) = f(t) (3)

whereas the Caputo derivative (Dα
C) satisfies the property

lim
α→0+

(Dα
Cf)(t) = f(t)− f(a). (4)

In this case, the Caputo derivative gives the result which might depend on
the choice of the base point. Therefore, from now on we focus in our consid-
erations on the Riemann-Liouville definition.

The properties of Riemann-Liouville fractional order integrals and deriva-
tives are thoroughly explained in classical monographs, e.g. [27, 28, 29]. Let
us now recall some of these properties, which are referred to in the sequel.

Theorem 1 ([28, Lemma 2.1.], see also [29, Theorem 3.11]). If f : [0,+∞)→
R is an absolutely continuous function1, then Jαf(t) is an absolutely contin-

1One of the equivalent characterization of absolutely continuous function on the interval
[a, b] is the function f which is almost everywhere differentiable, the derivative is an

integrable function and such that f(t) = f(a) +
∫ t

a
f ′(s)ds. However, we may also use the

stronger assumption of f being continuously differentiable.
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uous function and

Jαf(t) =
1

Γ(1 + α)

(
f(0)tα +

∫ t

0

f ′(τ)(t− τ)α
)
.

Remark 1. From the proof of the theorem, one can see that if the derivative
f ′ is continuous, then Jαf(t) is not only absolutely continuous but is also
differentiable everywhere, and its derivative is a continuous function.

Corollary 1 ([29, Corollary 2.1]). If α ∈ (0, 1) then

Dαf(t) ≡ 0⇔ f(t) = c · tα−1

for t > 0 and constant c ∈ R.

In what follows, we refer to multivariate fractional calculus (for the entire
theory see [28, Chapter 5.]). The definition of the fractional derivative is
very natural (see [28, Formula (24.9)]) and we do not repeat it here. Still, we
should mention that although, in general, the definition depends on the order
of differentiation when we assume that f is continuously differentiable up to
the order of m, this definition does not depend on the order of derivatives
(see the discussion in [28, Section 24.2]).

From now on, we assume that all the functions f : [0,+∞)× V → R and
vector fields F: [0,+∞) × V → R3, for a certain volume V ⊂ R3, are of an
appropriate smoothness – it would be safe to assume that they all belong to
the space C3([0,+∞) × V ), meaning that derivatives up to the third order
exist and are continuous.

3. Fractional Order Maxwell’s Equations

Let us consider Maxwell’s equations in free space

∇ ·D = ρ (5)

∇× E = −∂B

∂t
(6)

∇ ·B = 0 (7)

∇×H =
∂D

∂t
+ J (8)

5
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where E and H denote respectively the electric- and magnetic-field intensity,
D and B denote respectively the displacement- and magnetic-flux density, J
denotes the current density and ρ denotes the charge density. For space with-
out sources, the current density can be related to the electric-field intensity
by the generalized fractional-order Ohm’s law [10]

J = σαD
1−α
t E, 0 < α ≤ 1 (9)

which reduces to the classical law for α = 1, i.e.

J = σ1E. (10)

Other constitutive relations for the electromagnetic medium described by the
fractional-order model (FOM) are assumed as follows:

εβE = D1−β
t D, 0 < β ≤ 1 (11)

µγH = D1−γ
t B, 0 < γ ≤ 1. (12)

For β = 1 and γ = 1, one obtains the constitutive relations for the me-
dia described by the integer-order model (IOM), with permittivity ε1 and
permeability µ1

D = ε1E (13)

B = µ1H. (14)

In the case of a vacuum, the permittivity and permeability are denoted as ε0
and µ0, respectively. The problem of dimensional non-uniformity of FOMs
[13] is solved by taking the following SI units for parameters in (9), (11),

(12): [σα] = (Ωm)−1

secα−1 , [εβ] = F
sec1−βm , [µγ] = H

sec1−γm .
Equations (11)–(12) describe the media with power-law frequency dis-

persion [24, 25, 31]. For instance, power-laws are a common feature of the
dielectric response of most materials for wide frequency ranges. Dielectrics
are known in electrodynamics, with the so-called universal response being de-
scribed by fractional derivatives, which obey the universal fractional power
law and the fractional Curie-von Schweidler law. However, in circuit mod-
elling, the physical microscopic mechanisms causing power-law dispersion for
the media are not investigated. Therefore, we only postulate constitutive re-
lations (9), (11), (12) for the considered electromagnetic media described by
FOM and we do not limit considerations to any particular microscopic model

6
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of dielectric or magnetic material. It is worth noticing that the fractional-
order relation (12) is also allowed with regard to the magnetic field in the
considered electromagnetic media.

Circuit theory modelling assumes that time rates of change are slow
enough (frequencies are low enough), so that time delays resulting from the
propagation of electromagnetic waves are unimportant. Under this assump-
tion, QS approximations of Maxwell’s equations (5)–(8) can be obtained [2].
In the proposed derivations, we distinguish the electro-quasi-static (EQS)
approximation

∇ ·D = ρ (15)

∇× E = 0 (16)

∇ ·B = 0 (17)

∇×H =
∂D

∂t
+ J (18)

and the magneto-quasi-static (MQS) approximation

∇ ·D = ρ (19)

∇× E = −∂B

∂t
(20)

∇ ·B = 0 (21)

∇×H = J. (22)

The EQS and MQS approximations are obtained assuming respectively that
∂B
∂t
≈ 0 and ∂D

∂t
≈ 0 in Maxwell’s equations (5)–(8).

4. Fractional Order Circuit Elements

In this section, we introduce capacitance, inductance and resistance in
the medium described by FOM based on analogous definitions for IOM. We
assume that the media inside the considered circuit elements are isotropic
and homogeneous.
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4.1. Resistance

The application of the divergence operator to (18) gives the charge con-
servation law in the EQS approximation

∇ · J +
∂ρ

∂t
= 0. (23)

We assume as in [2], that excitations are essentially constant in time, in
the sense that the rate of accumulation of charge at any given location has
negligible influence on the distribution of current density. Hence, the time
derivative of the charge density in the charge conservation law (23), is negli-
gible and the current density is consequently solenoidal, i.e.

∇ · J = 0. (24)

Let us consider the system consisting of two electrodes (connected to termi-
nals) in a conducting medium described by IOM, i.e. a resistor, as shown in
Fig. 1. Let us assume that the EQS approximation can be applied to this
system. A conductance G between the two electrodes is defined as the ratio
of the electrode current i and the voltage v between two electrodes, i.e.

(1)

(2)

S2

S1

i

i

+
- v

Figure 1: Resistor consisting of two electrodes for conductance definition.

G =
i

v
. (25)
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where

i =

∮

S1

J · da = −
∮

S2

J · da (26)

and

v =

∫ (2)

(1)

E · ds. (27)

Equations (26) and (27) stem from the current-density definition and integral
formulation of (16), respectively. The electric field is irrotational, hence the
integral (27) can be calculated along any contour connecting the electrodes
1 and 2. Furthermore, the electric field intensity is the negative gradient of
the scalar electric potential Φ, i.e.

E = −∇Φ. (28)

In the case of the conducting medium described by IOM, one can write

i = σ1

∮

S1

E · da. (29)

Based on (10), (24) and (28), one obtains the Laplace equation for the con-
ducting medium described by IOM between the electrodes

∇2Φ = 0. (30)

In what follows, we assume that the electric-field potential Φ: [0,+∞)×
V → R, defined in a certain volume V ⊂ R3, is the function of the form

Φ(t, x, y, z) = φ(t)Φ0(x, y, z), (31)

satisfying the following assumptions

(A1) φ: [0,+∞)→ R is continuous with the derivative continuous in (0,+∞);

(A2) Φ0:V → R belongs to class C2.

That is, the QS solution (31) to Maxwell’s equations is obtained from the
static solution Φ0 by its multiplication with the time-varying function φ(t).
It is a reasonable assumption, taking into account that the QS approach
assumes no time retardation of potentials, hence, the QS solution has the
same spatial distribution as the static solution, but it may vary temporally.

Let us now consider the system consisting of two electrodes in a conduct-
ing medium described by FOM, i.e. a fractional-order resistor, as shown in

9
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Fig. 1. In this case, the conductance formula (25) can be generalized to a
differential operator, which maps the voltage function v = v(t) to the current
function i = i(t)

i = Gαv. (32)

Taking advantage of the current-density definition and the constitutive rela-
tion for the conducting medium described by FOM (9), one obtains for the
S1 surface

Gαv =

∮

S1

J · da =

∮

S1

σαD
1−α
t E · da = σαD

1−α
t

∮

S1

E · da. (33)

In the case of the conducting medium described by FOM, the scalar electric
potential solves the following equation resulting from (9), (24), (28):

∇ ·D1−α
t ∇Φ = 0. (34)

In accordance with the assumptions (A1)–(A2), we may change the order of
differentiation and write

∇2Φ0 D
1−α
t φ = 0.

One should notice that if D1−α
t φ ≡ 0, then φ(t) = Ctα−1, hence, it is

unbounded in the neighbourhood of 0, and the function φ does not satisfy
the natural assumption (A1). Therefore, we can conclude that D1−α

t φ =
ψ(t) 6≡ 0. Then, for some t0 ∈ (0,+∞), we have ψ(t0) 6= 0 leading to

∇2Φ = 0. (35)

This means that a Φ solution for the resistor in a conducting medium de-
scribed by IOM is also (for a fixed time t) a solution for the same geometry of
the resistor in a conducting medium described by FOM. Independent of the
media type, the EQS approximation (16) requires that the Laplace equations
(30), (35) be satisfied by the scalar electric potential Φ. Hence, (33) can be
written with the use of (25) and (29) as

Gαv = G1
σα
σ1

D1−α
t v (36)

where G1 denotes the conductance in a conducting medium described by
IOM, resulting from reference calculations for α = 1. Then, one can obtain
from (36) the formula for the conductance operator, i.e.

Gα = GαD
1−α
t (37)

10
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where Gα = G1
σα
σ1

(referred to as pseudo-conductance). The SI unit for

the pseudo-conductance is [Gα] = S
secα−1 which results from the constitutive

relation (9).
In the next step, one can define the resistance operator Rα, which is the

inverse of the differential conductance operator, i.e.

GαRα = RαGα = I (38)

where I denotes the identity operator. Hence, the resistance formula maps
the current function i = i(t) to the voltage function v = v(t) and is given by

Rα = G−1
α = G−1

α J1−α
t = G−1

α Dα−1
t . (39)

4.2. Capacitor

Let us consider the system consisting of two electrodes (connected to
terminals) in a medium described by IOM, i.e. a capacitor, as shown in Fig.
2. Let us also assume that the EQS approximation can be applied to this
system. Let us assume that the charge on the electrode 1 (q1) is brought to
it by a voltage source (v), which takes the charge away from the electrode 2
and deposits it on the electrode 1. Then, the charge on the electrode 2 (q2)
equals −q1, i.e. q2 = −q1. The capacitance C between the two electrodes
is defined as the ratio of charge on the electrode 1 divided by the voltage
between the two electrodes, i.e.

C =
q

v
(40)

where

q =

∮

S1

D · da = −
∮

S2

D · da (41)

and

v =

∫ (1)

(2)

E · ds. (42)

Equations (41) and (42) stem from integral formulations of (15) and (16),
respectively. The electric field is irrotational, hence the integral (42) can be
calculated along any contour connecting the electrodes 1 and 2. Further-
more, the electric field intensity is the negative gradient of the scalar electric
potential Φ, i.e.

E = −∇Φ. (43)
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(2)

+
- S2

S1

v

at infinity
Figure 2: Capacitor consisting of two electrodes for capacitance definition.

When the medium described by IOM is a vacuum, one can write

q = ε0

∮

S1

E · da. (44)

Based on (15) and (43), one obtains the Laplace equation for the medium
described by IOM in the space between the two electrodes

∇2Φ = 0. (45)

Let us now consider the system consisting of two electrodes in a medium de-
scribed by FOM, i.e. a fractional-order capacitor, as shown in Fig. 2. In this
case, the capacitance formula (40) can be generalized towards a differential
operator, which maps the voltage function v = v(t) to the charge function
q = q(t)

q = Cβv. (46)
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Taking advantage of Gauss’s law (41) and the constitutive relation for the
medium described by FOM (11), one obtains for the S1 surface

D1−β
t Cβv = D1−β

t

∮

S1

D · da =

∮

S1

εβE · da = εβ

∮

S1

E · da. (47)

In the case of the electromagnetic medium described by FOM, the scalar
electric potential satisfies the following equation resulting from (11), (15),
(43):

∇ · εβ∇Φ = 0. (48)

Hence, one obtains
∇2Φ = 0. (49)

It means that a Φ solution for the capacitor in a medium described by IOM
is also (for a fixed time t) a solution for the same geometry of the capacitor
in a medium described by FOM. Hence, (47) can be written with the use of
(40) and (44) as

Cβv = C0
εβ
ε0
Dβ−1
t v (50)

where C0 denotes the capacitance in the medium described by IOM being the
vacuum. Then, one can conclude from (50) the formula for the capacitance
operator, i.e.

Cβ = CβD
β−1
t (51)

where Cβ = C0
εβ
ε0

. The parameter Cβ is a constant (referred to as pseudo-
capacitance [9] or supercapacity [13]) in the circuit equation defining the
fractional-order capacitor, i.e.

i = Dtq = CβD
β
t v. (52)

The SI unit for the pseudo-capacitance is [Cβ] = F
sec1−β which results from

the constitutive relation (11).

4.3. Inductor

Let us consider an inductor having terminals 1 and 2, that links flux
through the surface enclosed by a contour composed of the path Pa along
the perfect electric conductor (PEC) and the path Pb completing the circuit
between the terminals, see Fig. 3. If the voltage is to be a well-defined
quantity, independent of the layout of the connecting wires, the terminals of
the inductor must be in a region where the magnetic induction is negligible

13
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compared to that in other regions and where, as a result, the EQS approx-
imation can be applied and the electric field is irrotational [2]. Hence, the
induced voltage between the terminals 1 and 2 is the negative integral of the
electric field intensity along the path Pb, i.e.

Pa
S

MQS

Pb
EQS

(2) (1)
Figure 3: Inductor consisting of a wire with two terminals for inductance definition.

v = Φ1 − Φ2 =

∫ (2)

(1) Pb

E · ds, (53)

for which the EQS approximation can be applied. Because the electric field
intensity is zero along the perfectly conducting wire, one obtains

∮

Pa+Pb

E · ds =

∫ (2)

(1) Pa

E · ds +

∫ (1)

(2) Pb

E · ds = −v. (54)

Then, the voltage between the terminals 1 and 2 can be determined with the
use of the integral form of Faraday’s law (20)

v = Dtλ (55)

where

λ =

∮

S

B · da. (56)

It is worth noticing the importance of having the terminals in a region where
the magnetic induction is negligible; hence the EQS approximation can be
applied to the terminals 1 and 2, whereas the MQS approximation is applied
to the rest of the inductor. The inductance L between the terminals 1 and 2

14
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is defined for the inductor in a medium described by IOM as the ratio of the
flux linkage and the terminal current, i.e.

L =
λ

i
. (57)

In the case of PEC within the medium described by IOM being a vacuum,
one can write

λ = µ0

∮

S

H · da. (58)

We assume that the medium adjacent to PEC does not contain any currents
J . Hence, the magnetic field intensity is irrotational in this medium (refer to
(22)), and can be calculated as the negative gradient of the scalar magnetic
potential Ψ, i.e.

H = −∇Ψ. (59)

Based on (14), (21) and (59), one obtains for the medium described by IOM
in the space adjacent to PEC

∇2Ψ = 0. (60)

Let us now consider the inductor in an electromagnetic medium described by
FOM, i.e. a fractional-order inductor, as shown in Fig. 3. In this case, the
inductance formula (57) can be generalized towards a differential operator,
which maps the current function i = i(t) to the flux-linkage function λ = λ(t)

λ = Lγi. (61)

Taking advantage of the constitutive relation (12), one obtains, for the surface
S

D1−γ
t Lγi = D1−γ

t

∮

S

B · da =

∮

S

µγH · da = µγ

∮

S

H · da. (62)

In the case of the medium described by FOM, the scalar magnetic potential
also solves the Laplace equation (60) resulting from (12), (21), (59). It means
that a Ψ solution for the inductor in a medium described by IOM is also a
solution for the same geometry of the inductor in a medium described by
FOM. Hence, (62) can be written with the use of (57) and (58) as

D1−γ
t Lγi = L0

µγ
µ0

i (63)
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where L0 denotes inductance of the considered wire in the medium described
by IOM being the vacuum. Then, one can conclude from (63) the formula
for the inductance operator, i.e.

Lγ = LγD
γ−1
t (64)

where Lγ = L0
µγ
µ0

. The parameter Lγ is a constant (refered to as pseudo-

inductance [9]) in the circuit equation defining the fractional-order inductor,
i.e.

v = Dtλ = LγD
γ
t i. (65)

The SI unit for the pseudo-inductance is [Lγ] = H
sec1−γ , which results from

the constitutive relation (12).

5. Kirchhoff’s voltage and current laws

In this section, Kirchhoff’s voltage law (KVL) and Kirchhoff’s current
law (KCL) are derived for fractional-order circuits based on the QS approx-
imations of Maxwell’s equations for the sake of comprehensive approach to
the topic. Then, the power conservation law (PCL) is obtained.

5.1. KVL

Let us consider a closed loop in a circuit as shown in Fig. 4. The elec-
tric field intensity along the loop consists of the impressed electric intensity
(voltage sources) and the electric intensity due to the reaction of currents
and charges in the circuit elements [1]. Independent of the element order,
one can distinguish in such a loop resistors and capacitors for which the EQS
approximation is applied, and inductors for which the MQS approximation
is applied. However, we assume that for any inductor (refer to Section 4), as
well as for voltage sources, the EQS approximation is still valid between the
terminals. Therefore, for any closed loop consisting of resistors, capacitors,
inductors and voltage sources, the electric field intensity is irrotational (16),
and then its integral along a path being a closed circuit loop equals zero, i.e.

∮

P

E · ds = 0. (66)

Integration of the electric field intensity between the terminals of circuit
elements gives terminal voltages (e.g. vR, vC , vL, vS). However, in the case
of inductors and voltage sources, integration paths are around the exterior
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VS

VL

VCVR

Figure 4: Closed loop of a fractional-order circuit.

of each of the components, from one terminal to the other in the space under
the EQS approximation. With the use of (66), one obtains KVL

k∑

n=0

vn = 0. (67)

5.2. KCL

Let us consider a circuit node as in Fig. 5. Here, as in Section 4.1, we
assume that the EQS approximation is valid around the node, hence the
current density is solenoidal (24). Therefore, the current flux through any
closed surface around the circuit node equals zero, i.e.

∮

S

J · da = 0. (68)

Integration of the current density (68) over cross sections of wires in the node
results in KCL

k∑

n=0

in = 0 (69)
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where currents flowing into the node are taken with a minus sign and currents
flowing out of the node are taken with a plus sign.

S

i1

iki3

i2

Figure 5: Node of a fractional-order circuit.

5.3. PCL

If KVL and KCL are satisfied, then, according to Tellegen’s theorem
[32, 33, 34], the sum of instantaneous powers at all elements in a circuit
equals zero, i.e.

k∑

n=0

vnin = 0. (70)

6. Application: Interpretation of fractional-order Poynting’s theo-
rem

Although the circuit theory stems from the QS approximation of Maxwell’s
equations, their discretization results in lumped-element circuit models which
allow for solving these equations. Such an approach is widely used in compu-
tational electromagnetics, e.g. in the transmission-line matrix method [3, 35]
which solves lumped-element circuit models to obtain solutions to Maxwell’s
equations.

Let us consider equations defining fractional-order capacitor (52) and
inductor (65). The electric power p = p(t) (the rate, per time unit at which
electrical energy w = w(t) is transferred by a considered circuit element) is
given by

p = Dtw = vi. (71)
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Hence, one obtains the following formulas for power calculations in the
fractional-order capacitor

pC = CβvD
β
t v (72)

and inductor
pL = LγiD

γ
t i. (73)

However, the changes of energy in a fractional-order capacitor (as well as in
an inductor) are associated not only with energy storage but also with its
dissipation [36].

Let us now consider fractional-order curl Maxwell’s equations in free space
(6), (8). Taking into account constitutive relations (11), (12), one obtains

∇× E = −µγDγ
t H (74)

∇×H = εβD
β
t E + J. (75)

Let us multiply (74) by H and (75) by E [2]. Then, one obtains

H · (∇× E) = −µγH ·Dγ
t H (76)

E · (∇×H) = εβE ·Dβ
t E + E · J. (77)

Subtracting (76) from (77) gives

E · (∇×H)−H · (∇× E) = εβE ·Dβ
t E + E · J + µγH ·Dγ

t H. (78)

Left-hand side of (78) can be represented as

∇ · (E×H) = H · (∇× E)− E · (∇×H). (79)

Hence, (78) can be written as

∇ · (E×H) + εβE ·Dβ
t E + E · J + µγH ·Dγ

t H = 0. (80)

Suppose now that V ⊂ R3 is a compact volume with the boundary S being
the piecewise smooth surface. Then, using Gauss’s theorem, one obtains
∮

S=∂V

E×H ·da+

∫

V

εβE ·Dβ
t Edv+

∫

V

E ·Jdv+

∫

V

µγH ·Dγ
t Hdv = 0. (81)

It is the integral form of Poynting’s theorem for fractional-order electromag-
netics. Its interpretation can be introduced based on lumped-element circuit
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models of the fractional-order capacitor and inductor. Let us assume that
the current density can be related to the electric field intensity by the clas-
sical Ohm’s law (10) for the sake of brevity. Then, the term E · J is the
power-dissipation density associated with Joule’s heating.

Let us consider an infinitesimally small volume ∆V = S∆l between the
surfaces S1 and S2 perpendicular to the electric field intensity (S1 ≈ S2 ≈ S),
see Fig. 6. Introduction of PEC plates instead of S1 and S2 does not disturb
the electric field and allows us to consider the volume as a fractional-order
capacitor. Since the electric field E is perpendicular to S, we may assume
that E = (0, 0, |E|) in an appropriate coordinate system. Then, one obtains
for v = |E|∆l

εβE ·Dβ
t E = εβ(∆l)−2vDβ

t v = εβ(∆l)−2pCC
−1
β =

pC
∆V

(82)

because the capacitance of a parallel-plate vacuum capacitor is given by
C0 = ε0S/∆l. Hence, the term εβE · Dβ

t E denotes the increase rate of the

E

S2

S1

l

Figure 6: Infinitesimally small volume fractional-order capacitor storing and dissipating
the energy of an electric field.

energy stored and dissipated in the electric field within the medium described
by FOM.

Analogously, let us consider a single coil winding on side surfaces of an
infinitesimally small volume ∆V , see Fig. 7. Then, similarly as above, one
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obtains for i = |H|∆l, H = (0, 0, |H|) (in an appropriate coordinate system)

µγH ·Dγ
t H = µγ(∆l)

−2iDγ
t i = µγ(∆l)

−2pLLγ
−1 =

pL
∆V

(83)

because the inductance of such a vacuum coil is given by L0 = µ0S/∆l.

H

S
l

Figure 7: Infinitesimally small volume fractional-order inductor storing and dissipating
the energy of a magnetic field.

Finally, (81) shows that the input power (surface integral of the power flux
density E×H [2]) is equal to the rate of increase of the total energy stored
and dissipated in the medium described by FOM plus the power dissipation
related to Joule’s heating. The rate of increase of the total energy is expressed
as an integral over the volume of power density in electric field (72) and in
magnetic field (73) within the medium described by FOM. The occurrence
of electromagnetic energy dissipation in the medium described by FOM is
not easily visible in (80)–(81) without the interpretation based on lumped
element models for which it is well known that the energy is not only stored
but also dissipated [36].

7. Conclusions

In this paper, we present comprehensive derivations of the fractional-order
circuit theory foundations from electromagnetism. The proposed derivations
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are based on the QS approximations of fractional-order Maxwell’s equations.
This allows for formulation of fractional-order lumped-element equations for
capacitors, inductors and resistors as well as Kirchhoff’s voltage and cur-
rent laws. Our derivations are not limited by the geometries of the consid-
ered fractional-order elements. Finally, the proposed theory is applied for
interpretation of Poynting’s theorem in fractional-order electromagnetism,
demonstrating its logical coherence and applicability.
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