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Featured Application: Determination of trade-offs between conflicting design objectives in order
to verify usefulness of the antenna for a range of application scenarios.

Abstract: Antenna structures for modern applications are characterized by complex and unintuitive
topologies that are difficult to develop when conventional, experience-driven techniques are of use.
In this work, a method for the automatic generation of antenna geometries in a multi-objective setup
has been proposed. The approach involves optimization of a generic spline-based radiator with an
adjustable number of parameters using a nested, trust region-based algorithm. The latter iteratively
increases the dimensionality of the radiator in order to gradually improve its performance. The
method has been used to generate a set of nine antenna designs, representing a trade-off between
minimization of reflection within 3.1 GHz to 10.6 GHz and a reduction of size. The properties of the
optimized designs vary along the Pareto set from −10 dB to −20 dB and from 230 mm2 to 757 mm2

for the first and second objectives, respectively. The presented design approach has been validated
against a genuine, population-based optimization routine. Furthermore, the smallest Pareto-optimal
design has been compared to the antennas from the literature.

Keywords: adjustable dimensionality; EM-driven design; multi-objective optimization; nested
optimization; UWB antennas

1. Introduction

Ultra-wideband (UWB) antennas belong to the key components of modern location
and tracking systems capable of providing centimeter-level accuracy [1–6]. For the men-
tioned services, the radiators may find application not only to data exchange, but also as
energy harvesting devices that provide the necessary power for sensors [7–10]. A variety
of application scenarios for tracking and location devices impose a range of potential
requirements on antenna performance (in terms of field and electrical properties), as well
as its dimensions (small footprint or specific shape) [10–15]. Consequently, a coherent
system often comprises a range of antenna solutions.

The development of radiators for UWB applications is widely covered in the available
literature [16–24]. Conventional design solutions include a range of planar components,
such as monopoles [17,18] or dipoles [19,20] as well as volumetric structures [21,22]. Other
antennas implement non-standard features that permit performance enhancement by
excluding or including specific frequency bands [18,23] or implementing composite topolo-
gies to achieve multiple-input multiple-output capability [24,25]. Although the discussed
antennas are characterized by varying dimensions or performance, their geometries stem
from the mentioned basic topologies [16–24]. Consequently, enhanced functionality of the
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latter is often achieved through the introduction of specific geometry abbreviations (e.g.,
slots [23], stubs [24], perforations [11], or combinations thereof [16]). The modifications are
predominantly introduced as a result of manual or semi-manual development, realized in
a trial-and-error manner and oriented toward balancing the complexity and performance
or size of the radiator [23,24].

Other approaches to the generation of an antenna structure involve representation of
its geometry using a set of characteristic points interconnected by lines or appropriately
defined curves [26–30]. Alternatively, the topology can be defined using a binary matrix
(often with overlapping components with variable dimensions) [31–33], [34] where zeros
and ones correspond to the areas with etched or continuous metallization [32]. Contrary to
conventional radiators, antenna topologies described using generic models are predomi-
nantly determined using optimization methods [35–39]. Notwithstanding, the applicability
of numerical algorithms to the generation of unconventional geometries is often demon-
strated based on relatively simple, single-objective problems [28,29]. Furthermore, the
optimization of generic models is normally undertaken using population-based routines
(e.g., particle swarm optimization, genetic algorithms, or ant colony methods), which
require thousands of evaluations to obtain the final solution [31,35,38,40]. To put that into
perspective, in [41], the particle swarm algorithm required a total of 248 EM simulations
to solve a set of 12 problems represented using only one input parameter. In [42], the
same method required over 1400 model evaluations to find an optimal design of frequency
selective surface represented using three adjustable variables. Due to the high evaluation
cost (being in the order of minutes to hours), the application of conventional, population-
based routines for the EM-driven optimization of antennas defined using generic models is
impractical from a computational standpoint.

The design of modern antennas is a multi-objective (MO) problem, where a set of
performance or geometry requirements is to be simultaneously fulfilled [38,43,44]. Conven-
tional approaches to MO tasks involve conversion of the performance requirements into
a single-objective function using aggregation techniques, penalty components, or design
constraints [35,39,43]. The design task, formulated in this manner, can be solved using
conventional single-objective routines [35,43]. On the other hand, aggregation techniques
provide only one solution to the problem per algorithm run, whereas the quality of the
result depends on the weights assigned to individual figures of interest [35]. Alternatively,
MO optimization can be performed using the genuine MO algorithms [39,43]. The latter
ones are especially useful when the designer’s priorities are not clearly defined, as they
provide a set of solutions representing trade-offs between the requirements. Such cognitive
studies are useful from the perspective of gaining a detailed insight into the capabilities
of the antenna, with respect to the desired application scenarios or environments [45].
Although multi-objective problems could be solved using population-based metaheuristic
methods, their practical applications are limited to rather simple structures due to the
prohibitive computational cost [35,37]. Less numerically demanding routines involve the
execution of evolutionary algorithms on the approximation models. Due to the curse
of dimensionality [46], the usefulness of approximation models and metaheuristics for
reliable MO optimization is limited either to low-dimensional structures or narrow search
spaces [43,47]. Notwithstanding, the mentioned methods proved to be useful for solving
problems characterized by over a dozen design parameters [43]. Alternatively, MO de-
sign can be handled using dedicated heuristic approaches oriented toward the sequential
generation of Pareto-optimal solutions [43,47]. Nonetheless, neither of the mentioned
methods are suitable for handling antenna models characterized by a flexible number of
adjustable parameters.

The above considerations indicate that contemporary UWB antennas can be catego-
rized into a few classes [16–24]. The topologies from each group are similar except for
features such as slots or stubs that are normally introduced as a result of manual, greedy
search-based studies to alter the functionality of the structure. In this regard, representation
of the antenna using a generic model might be useful for the automated development of
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its topology regarding the imposed performance and geometry requirements. Although
“universal” antenna models have been reported in the literature, they lack flexibility in
terms of the number of degrees of freedom used for their representation. Consequently,
they are either too simple or too complex (parameter-wise) to obtain compromise designs.
The application of generic topology (or its derivatives) for a range of application scenarios
should reduce the cost of system development, as well as its time to market. Unfortunately,
the available MO routines are inadequate for handling models with flexible parameter-
ization due to the lack of mechanisms for the adjustment of problem dimensionality in
the course of the optimization process. The motivation of this work is to address the
mentioned challenges.

In this paper, a generic EM model of a planar antenna with flexible parameterization
is presented. The structure is optimized in a bi-objective setup concerning minimization
of in-band reflection within a 3.1 GHz to 10.6 GHz band and size. A set of designs,
representing the trade-off between the requirements, is obtained using a novel framework
that sequentially generates candidate solutions. The latter are refined in a nested trust
region-based optimization loop that enables one to gradually increase the number of
parameters. The proposed model and optimization framework are demonstrated through
the generation of nine Pareto-optimal designs. Their geometries are represented using 30 to
46 input parameters. The variability of the antenna’s in-band performance and size along
the Pareto set is from −10.3 dB to −20.5 dB (over 10 dB) and from 230 mm2 to 757 mm2

(almost 70 percent), respectively. The presented algorithm has been compared against
other population-based metaheuristic routines in terms of optimization cost and the quality
of obtained solutions. Numerical validation of the generated designs and comparisons
of the smallest obtained UWB structure with the state-of-the-art compact antennas are
also provided.

2. Generic UWB Monopole Antenna

Consider a planar monopole antenna, shown in Figure 1. The structure consists of a
driven element in the form of a spline-parameterized radiator fed through a microstrip
line. The ground plane edge oriented toward the radiating component is also implemented
in the form of a spline curve. The presented topology generates closely located resonant
modes, which contribute to the broadband behavior [48,49]. Furthermore, the bandwidth-
related performance is enhanced using an L-shaped ground plane stub, which improves
the impedance matching of miniaturization-oriented designs [24]. The structure is im-
plemented on a Rogers RO4003 dielectric substrate with a permittivity of 3.58, thickness
of 0.813 mm, and loss tangent of 0.0027. The vector of the antenna input parameters is
y = [ya yg yr]T, where ya = [X lf l1 l2r w1 or]T, yg = [yg.1 . . . yg.L]T and yr = [yr.1 . . . yr.L]T

(L = 50 represents the number of points used to represent the ground plane and radiator in
the antenna model). The relative variables are l2 = (X − w1)l2r, Y = l1 + w1, lfr = min{0.5X,
0.5(Y − lf)}, o = 0.5X + or. Dimension wf = 1.8 remains fixed to ensure 50 Ohm input
impedance. The unit for all variables except dimensionless l2r is mm. It should be noted
that vectors yg = Y·zg, and yr = S·zr, where S = min{0.5(X − or), 0.5(Y − lf)} represent
the characteristic points (so-called knots) of the spline curves used to define the ground
plane and radiator, respectively (see Figure 1). To ensure the structure consistency, the gap
between each knot yg and yr is even. Hence, the vectors denote the relative distance of the
curve from the reference point (edge of the substrate for yg and center of the radiator for yr,
respectively; Figure 1). It is worth emphasizing that yr represents axial dimensions, as the
parameters of the radiator are defined in a cylindrical coordinate system. The EM model of
the antenna structure R is implemented in CST Microwave Studio and evaluated using its
time domain solver.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2021, 11, 3958 4 of 18

Figure 1. Geometry of the proposed spline-parameterized monopole antenna with highlights on its
design parameters, showing top and cross-section views. The dark and light gray areas represent the
radiator and ground-plane layers, respectively.

The presented antenna supports flexible parameterization. In other words, the number
of adjustable variables used for representation of the structure geometry can be changed
in the course of the design process. The rationale behind this feature is that—when the
generation of compromise design solutions is considered—the initial search space ranges
are set to be large to ensure that the optimal designs are captured within them. The
application of conventional (population-based) methods for exploration of the search
space with wide parameter ranges is numerically impractical due to the tremendous
number of iterations required for convergence [38,43]. Having a model with adjustable
dimensionality, one can narrow down the search space to the region of interest using a
relatively small number of parameters. The promising region can be further exploited
through optimizations of the model characterized by gradually increasing dimensionality.
Flexible parameterization has been implemented through implicit handling of the input
variables. Let xd = [ya xg.d xr.d]T, where xg.d = [xg.1 . . . xg.d]T, xr.d = [xr.1 . . . xr.d]T, d = 1, . . . , L
represent the d-knot spline curve used to represent the antenna ground plane and radiator,
respectively. Note that when d < 4, xg.d = xg.1 and xr.d = xr.1, because the implementation
of the spline used in this work requires at least four knots. The change of the antenna
dimensionality is realized through the interpolation of xg.d and xr.d to zg = zg.L and zr = zr.L
vectors, respectively. The process can be defined as follows:

z{g,r} ← sp
(

x{g,r} .d, L
)

(1)

where sp is the function that realizes L-point spline-based interpolation of the d-dimensional
input vector. The conversion process is transparent to the design optimization algorithm.
The lower and upper bounds for the structure optimization are lb = [6 4 10 0.05 0.5−1 lg.d lr.d]T

and ub = [30 15 30 1 2.5 1 ug.d ur.d]T, where lg.d = [0.2 . . . 0.2]T, lr.d = [0.1 . . . 0.1]T, and
ug.d = [0.8 . . . 0.8]T, lr.d = [1 . . . 1]T.

3. Design Methodology

In this section, the proposed design methodology is explained. To make the paper
self-contained, a short discussion of the multi-objective design problem, followed by a
brief description of the utilized optimization algorithm, are provided here. Next, the
introduced multi-objective optimization method that permits a gradual increase of the
number of antenna parameters is described. The section is concluded with the summary of
the presented design framework. Numerical results are provided in Section 4.
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3.1. Multi-Objective Design Problem

The multi-objective design problem can be defined as follows [39]:

x∗ ∈ argmin
x∈X

F(x) (2)

where x = xd (see Section 2) denotes the vector of the design parameters, X is the feasible
region of the search space, and x* represents the optimal design. The objective functions
are given as

F(x) = [F1(x), . . . , Fq(x)]T (3)

where q = 1, . . . , Q. Note that F(x) = F(R(x)), where R(x) is a vector of responses obtained
from EM evaluation of the antenna model at the design x. The responses may represent
the electrical performance (e.g., reflection over a frequency range or isolation between
radiators), field (e.g., single-direction gain over the frequency or radiation pattern at the
given frequency), or geometry (e.g., footprint or volume) of the structure. If Q > 1, the
conventional notion of performance improvement known from single-objective optimiza-
tion (i.e., the one based on direct comparison of the objective function responses obtained
for candidate solutions) is not applicable [39]. Instead, designs can be compared using a
domination relation [39]. One can say that the design x1 dominates over x2 if Fq(x1) ≤ Fq(x2)
for all q and Fq(x1) < Fq(x2) for at least one objective. A design xq

* is optimal in the Pareto
sense if there is no other design xr

* (q 6= r), such that xr
* dominates over xq

*. The solution
to the multi-objective problem is a set of Pareto-optimal designs. For a more detailed
description of the MO optimization concept, see [35,39,43].

3.2. Nested Optimization with a Variable Number of Design Parameters

Although conventional global-optimization algorithms proved to be useful for solving
complex problems, they suffer from an unacceptable numerical cost, associated with the
tremendous number of model evaluations required to find the optimal designs. On the
other hand, deterministic algorithms (such as gradient or pattern search methods [36,50])
are often characterized by a lower computational cost yet limited capability in terms of
escaping from local minima. In this work, the problem is mitigated by performing a
series of optimizations in a nested loop. The latter gradually increases the number of
design variables, first to identify and then to exploit the region of the search space of
interest. The analogy to this approach, from the perspective of the design objective space,
is observation of the landscape from a high altitude where the amount of visible details is
limited. With each iteration of the nested loop (that is associated with an increasing the
number of parameters), the “altitude” decreases, which allows the algorithm to “identify”
more details of the landscape and improve the design response.

Let d = [d1 . . . dn . . . dN]T, dn = 1, . . . , L, n = 1, . . . , N represent the set defining the
number of spline parameters (positive integer values) used to represent the ground plane
and radiator, respectively. In each step, the final dn dimensional design xdn

*, obtained in
the nth nested iteration, is used as a starting point for the n + 1 step. Assuming that the
vector d is defined, n is set, and the initial design xdn

* is available, the nested optimization
can be summarized as follows:

1. Set xdn+1
(0) ← sp(xdn

*,dn+1) (see Section 2);
2. Find design xdn+1

* using xdn+1
(0) as a starting point for optimization;

3. If n = N, END; otherwise, set n = n + 1 and go to 1.

It should be noted that the size N of vector d substantially affects the algorithm cost,
as the optimization process is reset at each iteration n = 1, . . . , N. On the other hand, the
number of iterations and step size between dn and dn+1 can be adjusted so as to mitigate the
risk of getting stuck in a poor local optimum while managing the optimization cost at the
acceptable level. Conceptual visualization of the objective function (a so-called feature) and
design spaces for the structure, represented using the increasing number of parameters, is
shown in Figure 2.
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Figure 2. Conceptual illustration of the feature space for the bi-objective problem, characterized by a gradual increase of
dimensionality. (a) d1, (b) d2 > d1, and (c) d3 > d2. The red line represents the Pareto front [39]. Note that the solutions that
are attainable for the structure represented using, for example, d1 variables, represent a subset of the responses that can be
found when the dimensionality is increased.

3.3. Generation of Trade-Off Designs

The presented bi-objective optimization algorithm involves two stages: (i) generation
of the extreme (or corner) designs and (ii) sequential determination of the Pareto set using
constrained optimizations. The first corner solution is obtained by solving the following
minimization problem:

x1.dn
∗ = arg min

xdn∈X
F1(xdn) (4)

Note that Equation (4) involves optimization of the structure in regard to a single
objective. The second design is obtained through constrained optimization, oriented
toward minimization of the second performance criterion:

x2.dn
∗ = arg min

xdn ∈ X
F1(xdn) ≤ F1.max

F2(xdn) (5)

The goal of Equation (5) is to minimize F2 while ensuring that the response of the
optimized design x2.dn

* does not violate the defined threshold F1.max. The reasoning behind
the introduction of a design constraint is to permit minimization of the second objective
while maintaining the response regarding F1(xdn) at an acceptable level. Generation of the
extreme points is conceptually illustrated in Figure 3.

In the second stage, the algorithm sequentially identifies the Pareto designs. In each
step, the new points are obtained between the already existing optimal solutions. Let xp.dn

*

(p = 1, . . . , lk; lk = 2k−1 + 1) represent the Pareto designs obtained in the k − 1 iteration,
where k = 1, . . . , K. It should be noted that l0 = 2 refers to two corner designs—x1.dn

*,
x2.dn

*—found in the first design stage. The candidate solutions are determined as follows:

x(0)c.dm
=
[
x∗p .dm

+ x∗p+1.dm

]
/2 (6)

where c = lk + b and b = 1, . . . , lk − 1. It should be noted that the reference designs in
Equation (6) are approximated using dm variables. Hence, the cth candidate design can
be generated even when using x*

p.dn and x*
p+1.do, dn 6= do (o = 1, . . . , N). This is ensured

by interpolating the reference designs’ dimensionality as xp.dm
(0) ← sp(xp.dn

*, dm), xp+1.dm
(0)

← sp(xp+1.do
*, dm) (see Section 2). The obtained candidate solutions are utilized as starting

points for constrained optimization:

xc.dn
∗ = arg min

xc.dn ∈ X
F2(xc.dn) ≤ F2.c.max

F1(xc.dn) (7)
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Figure 3. Generation of the extreme Pareto designs, with a conceptual illustration of the feature (left) and design (right)
spaces; optimization w.r.t. (a) first and (b) second design objective. Note that the design space is represented in the form
of three-dimensional projections (hence, the solutions for d1 = 3 are shown only on the black plot, whereas the designs
with dn and dN parameters are shown on two and three plots at a time). The optimal geometry obtained for the structure
represented using dn−1 dimensional design is used as a starting point for optimization of the dn dimensional antenna.

The goal of Equation (7) is to minimize the objective function F1 while maintaining the
structure response with respect to the second objective below the specified threshold. The
latter is set to F2.c.max = 0.5(F2(xp.dn

*) + F2(xp+1.dn
*)). In order to facilitate generation of the

Pareto set, the constraint on F2 is implemented in the form of a penalty coefficient included
with the objective function. The process in Equation (7) is performed in a nested optimiza-
tion loop as shown in Section 3.2. As already mentioned, such an approach allows one to
gradually increase the quality of the Pareto designs by appropriate adjustment of the an-
tenna dimensionality. Finally, the designs {xp.dn

*}p = 1, . . . , lk and {xc.dn
*}c = lk + (1, . . . , lk−1) are

concatenated as {x1.d
*, xb+1.dn

*, x2.dn
*, xb+2.dn

*, . . . , xlk−1.dn
*, x2lk−1.dn

*, xlk.dn
*} and reindexed

to {x1.d
*, x2.dn

*, x3.dn
*, x4.dn

*, . . . , x2lk−3.dn
*, x2lk−2.dn

*, x2lk−1.dn
*}. The discussed optimization

routine (see Figure 4 for a block diagram) can be summarized as follows:

1. Set the initial designs x1.d1
(0) and x2.d1

(0); set d = [d1 d2 . . . dm . . . dn . . . dN]T;
2. Obtain x1.dn

* and x2.do
* (n ≤ N, o ≤ N) by solving Equations (4) and (5) in a nested

loop (see Section 3.2);
3. Set k = 1;
4. Set p = 1;
5. Set xp.dm

*← sp(xp.dn
*, dm), xp+1.dm

*← sp(xp+1.do
*, dm) (see Section 2), and then calculate

xc.dm
(0) and set F2.c.max;
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6. Generate xc.dn
* by solving Equation (7) in a nested optimization loop;

7. If p = lk, go to 7; otherwise set p = p + 1 and go to 5;
8. Concatenate the designs as {x1.d

*, xb+1.dn
*, x2.dn

*, xb+2.dn
*, . . . , xlk−1.dn

*, x2lk−1.dn
*,

xlk.dn
*}, and then reindex the resulting set;

9. If k = K, END; otherwise, set k = k + 1 and go to 4.

Figure 4. Block diagram of the proposed bi-objective optimization algorithm.

In the first stage of the presented framework, the initial designs x1.d1
(0) and x2.d1

(0) are
obtained using a greedy search-based topology adjustment. The goal of the procedure is
to find reasonable starting points for the optimization process. Upon identification of the
initial designs, the generation of the Pareto set is handled by the above-outlined routine.

It is worth mentioning that the concept of generating intermediate designs is similar
to the one presented in [47]. Here, however, the bisections are used only for the generation
of candidate designs, which are further refined by means of constrained optimization.
Furthermore, the algorithm of [47] does not support increasing the dimensionality of
the problem in the course of structure optimization. Owing to the identification of new
designs between the already existing ones, the algorithm allows for obtaining a Pareto
set characterized by relatively even separation between the consecutive solutions (in the
objective function space). Generation of the Pareto designs using the discussed algorithm
is conceptually illustrated in Figure 5.
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Figure 5. Generation of the optimal designs between the existing solutions for K = 2, where: (a) k = 1 (before reindexing),
(b) k = K (before reindexing), and (c) k = K (after reindexing). Note that the candidate designs (red squares) are obtained
through approximation of the geometries optimized in previous iterations using dm dimensions. The white and green
triangles represent the optimized designs before and after reindexing, respectively. The final designs can be represented
using a varying number of variables.

3.4. Optimization Engine

The optimization engine used in this work for solving Equations (4), (5), and (7) is a lo-
cal gradient method [36]. The algorithm is embedded in a trust region (TR) framework [37].
The latter generates a series (i = 1, 2, 3, . . . ) of local models around what is currently the
best design x(i) in order to gradually approximate the optimal solution to be found. The
TR-based optimization is defined as [37]

x(i+1) = arg min
x:‖x−x(i)‖≤r(i)

F
(

G(i)(x)
)

(8)

where G(i) is a first-order Taylor expansion model, given by [51]

G(i)(x) = R
(

x(i)
)
+ J
(

x(i)
)
·
(

x− x(i)
)

(9)

where J(x(i)) represents the Jacobian generated around x(i) using a large-step finite differen-
tiation [51]. The TR radius r(i) (i.e., the region around x(i) for which the model is considered
valid) is adjusted based on the calculated gain ratio [51]:

ρ =
R
(

x(i+1)
)
−R

(
x(i)
)

G(i)(x(i+1)
)
−G(i)(x(i+1)

) (10)

The candidate design x(i+1) is accepted only if ρ > 0. Otherwise, the iteration is reset.
The radius is updated according to the standard rules [37]. The initial value r(0) is controlled
by the nested optimization loop (i.e., for n = 1, the radius is set to r(0) = 1, whereas for n > 1,
r(0) = 1/dn) (see Section 3.2). The algorithm is terminated either when the Euclidean distance
between two consecutive designs or the radius are smaller than a specified threshold (i.e.,
||x(i+1) − x(i)|| ≤ ε, or r(i+1) ≤ ε (here, ε = 10−2)). The algorithm can be summarized
as follows:

1. Set i = 0 and x(0), then set r(0) according to the iteration of the nested loop in Section 3.2;
2. Generate the Jacobian J(x(i)) and construct the local approximation model G(i);
3. Find x(i+1) by solving Equation (8);
4. Evaluate R(x(i+1)) and calculate ρ;
5. If ρ > 0.75, set r(i+1) = 2r(i). If ρ < 0.25, set r(i+1) = r(i)/3;
6. If ρ < 0, go to 3; otherwise, go to 7;
7. If the termination condition is met, END; otherwise, set i = i + 1 and go to 2.
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Owing to utilization of the Taylor model, the computational cost of the algorithm is
low, as it requires dn + 1 simulations of the R model per successful iteration. Additional
evaluations are required for the steps that do not improve the objective function value. The
justification for decreasing the initial radius when n > 1 is that with each iteration of the
nested loop, the goal of the algorithm is to exploit the region identified in the previous step.
For more comprehensive discussion on TR optimization methods, see [37,51].

4. Numerical Results

In this section, the presented antenna structure and design optimization algorithm
are numerically validated. The design problem involves bi-objective optimization of the
radiator for size reduction and minimization of reflection within the frequency band of
interest. The obtained EM simulation results were verified based on evaluations performed
using a frequency domain solver. Furthermore, the presented routine has been compared
against a conventional multi-objective optimization algorithm in terms of computational
cost and quality of the obtained Pareto designs. Finally, the smallest obtained antenna solu-
tion has been benchmarked against other structures from the literature. All computations
have been performed using an Intel Xeon E5-2650 processor with 32 GB of RAM.

4.1. Bi-Objective Antenna Optimization

The design objectives for the considered antenna optimization problem included the
following: the minimization of reflection F1, such that|S11| = |R(x)| = |R(x, f )|, where
f = fL, . . . , fH denotes the frequency points at which the radiator is evaluated (fL = 3.1
GHz, fH = 10.6 GHz), as well as the reduction of the structure footprint F2, defined as
A(x) = X × Y rectangle (see Section 2).

The starting points for determination of the extreme Pareto designs were x1.1
(0) = [10 6

16 0.8 1 0 0.35 0.6]T and x2.1
(0) = [24 10 27 0.2 1.5 0 0.4 0.8]T. It is worth noting that, due to

being represented using only one variable, the radiators and ground planes of the initial
designs were in the forms of circles and rectangles, respectively. Both antenna geometries
are shown in Figure 6. The objective function for optimization with respect to the first
performance requirement was defined as

F1(x) = α1E1(x) + min{0, E2(x)} (11)

where

E1(x) =
1
M∑

∣∣∣∣∣∣
∣∣∣S11

∣∣∣ fv − Smax

Smax

∣∣∣∣∣∣
2

(12)

E2(x) = max(|S11|) + Smax (13)

Figure 6. In-scale visualizations of the spline-parameterized antenna at the initial designs (a) x1.1
(0)

and (b) x2.1
(0).
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Here, |S11|fv represents the reflection at M frequency points fv ∈ f, the value of which
was higher than the Smax = −15 dB threshold. Note that the definition of Equation (12) in
the least squares sense provided smooth changes of the objective function values in the
course of the optimization process [51]. On the other hand, E1(x) = 0 when the antenna
response was below Smax for all fv points. In this case, the control over optimization was
taken over by the min-max component in Equation (13). The scaling coefficient was set to
α1 = 104 in order to ensure a smooth transition between the E1(x) and E2(x) functions. The
second design objective was given as

F2(x) = α2 A(x)2 + E1(x) (14)

where α2 = 0.01 in order to ensure that the contribution of E1(x) to F2(x) was noticeable for a
relatively small violation of Smax = F1.max = −11 dB. It should be noted that for the majority
of the antenna structures, a typical design requirement is to ensure that the reflection is
below the −10 dB threshold. However, in practice, minimization of Equation (14) often
leads to violation of the condition [43]. Setting a lower-than-required threshold Smax
allowed us to ensure that |S11| ≤ −10 dB within the frequency band of interest.

The vector representing the dimensionality of the antenna (spline-based features of the
structure) was d = [d1 . . . d6]T = [1 4 8 12 16 20]T. Hence, the number of nested optimizations
per corner solution was N = 6. Moreover, dm = d4 = 12 (see Section 3.3). Figure 7 shows the
antenna responses (corner points) obtained at each stage of the nested loop. The optimized
corner designs were x1.d4

* = x1.12
* = [26.07 10.56 28.56 0.06 0.5 0.51 0.38 0.44 0.46 0.41 0.47

0.39 0.36 0.44 0.43 0.42 0.43 0.59 0.78 0.77 0.71 0.73 0.81 0.75 0.65 0.72 0.9 0.88 0.78 0.75]T and
x2.d6

* = x2.20
* = [12.54 4.16 16.22 0.66 2.14 −0.19 0.35 0.37 0.33 0.27 0.22 0.2 0.2 0.2 0.2 0.23 0.4

0.37 0.34 0.35 0.34 0.34 0.32 0.32 0.31 0.23 0.46 0.5 0.53 0.52 0.48 0.44 0.45 0.5 0.55 0.61 0.7 0.73
0.66 0.62 0.65 0.64 0.69 0.74 0.73 0.64]T, respectively. Note that the dimensionality of the
extreme points was different (12 relative variables per feature—30 total—for x1

* vs. 20–46
total for x2

*), which was due to the lack of performance improvement from increasing the
number of x1 variables above 12. The obtained solutions were used as starting points for
generation of the Pareto set. In the second design stage, the Pareto designs were obtained
using an objective of the following form:

F1.c(x) = F1(x) + (max{0, A(x)− Ac})2 (15)

Figure 7. Reflection of the designs optimized in a nested loop with respect to (a) objective F1 and (b)
objective F2. The dimensionalities of the spline-parameterized antenna features (see Section 2) are
d1 = 1 (gray), d2 = 4 (◦◦◦), d3 = 8 (- -), d4 = 12 (···), d5 = 16 (·-·), and d6 = 20 (—), respectively. The gray
and red lines represent the characteristics of the initial and final designs obtained in the course of
nested optimization. The blue lines denote the threshold values for the design objectives.

The additive component of Equation (15) is a penalty coefficient activated when the
threshold Ac = 0.5(A(xm.d

*) + A(xm+1.d
*)) is violated. In F1(x), the parameter Smax = F1.c.max

(see Section 3.3). The number of algorithm iterations was set to K = 3. The candidate
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solutions for optimization were generated using Equation (6). The Pareto set, composed of
two corner and seven intermediate designs {x1.20

* x2.20
* x3.20

* x4.20
* x5.20

* x6.20
* x7.20

* x8.12
*

x9.12
*}, and the frequency responses of the selected optimal solutions are shown in Figure 8.

The obtained results indicate that the footprints of the optimized antennas ranged from
230 mm2 (with an in-band reflection of −10.3 dB) to 757 mm2 (reflection of −20.5 dB).
Hence, the change in antenna size and frequency responses along the Pareto set were
527 mm2 and 10.2 dB, respectively. It is worth noting that the miniaturization rate of
the smallest antenna with reference to the largest one was almost 70%. The gain pattern
responses were obtained for the selected antenna designs (i.e., x1.20

*, x9.12
* (corner designs),

and x5.20
* = [19.36 7.41 22.43 0.22 1.32 0.1 0.36 0.44 0.41 0.38 0.37 0.36 0.36 0.35 0.26 0.21 0.32

0.43 0.41 0.37 0.32 0.32 0.36 0.38 0.42 0.49 0.59 0.59 0.67 0.69 0.59 0.5 0.52 0.57 0.64 0.64 0.6
0.63 0.73 0.8 0.74 0.73 0.82 0.92 0.9 0.71]T) (see Figure 9 for a visualization of the topologies).
The characteristics shown in Figure 10 indicate that the x1.20

* design was characterized by
slightly more omnidirectional radiation patterns in the x–y plane and lower gain compared
with the x5.20

* and x9.12
* geometries.

Figure 8. Spline-parameterized antenna’s (a) Pareto set and (b) reflection responses obtained for the
designs x1.20

* (—), x3.20
* (- -), x5.20

* (···), x7.20
* (·-·), and x9.12

* (◦◦◦).

Figure 9. In-scale visualizations of the optimized antenna structures (a) x1.20
*, (b) x5.20

*, and (c) x9.12
*.
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Figure 10. Realized gain patterns obtained at 4 GHz (–), 7 GHz (- -), and 10 GHz (···) for the optimized antenna designs (a)
x1.20

*, (b) x5.20
*, and (c) x9.12

*. The top and bottom plots represent the characteristics obtained in the x–y and x–z planes (see
Figure 9), respectively.

4.2. Comparisons and Discussion

To confirm the validity of the numerical results, the x1.20
*, x5.20

*, and x9.12
* designs

were evaluated using a frequency domain solver (finite elements method with adap-
tive meshing) implemented in CST Studio [52]. The response characteristics (shown in
Figure 11) obtained using the time and frequency domain methods were similar, which
indicates that the EM models used in the optimization process were valid. Furthermore,
the plots of Figure 11 show that, at the lower corner frequency of 3.1 GHz, the x1.20

*,
x5.20

*, and x9.12
* designs featured radiation efficiencies of 76%, 89%, and 99%, respectively.

Note that for the x1.20
* design, an efficiency of over 90% was achieved above the 3.4 GHz

frequency, which is considered acceptable, keeping in mind its small footprint. Overall,
the considered antennas were characterized by average in-band efficiencies of 93%, 97%,
and 98%, respectively. Clearly, the high values were due to the utilization of a low-loss
substrate for implementation of the structures.

0 

-5
-10 

Iii' -15
:'.:'., 

= -20 � 
-25
-30 

-352 

_ ,_

-
,
-

4 6 

100 

- 90 

I 

- -

- - I --

80 

70 

60 

40 
-FEM
8 10 iio

Frequency [GHz] 

(a) 

�
>, 
() Iii'C: " :'.:'., 
·u

l:B �-" 
oi 
0 '"" 

0 

-5
-10 

-15

-25
-30 

.,.-··:·······--··(··········i"·········r···· .. 100 

/ I I I I \ 90 i I I I I -._ 
I I I I 

-1- - ----,- - 1- - r- - - 80 

70 

- 60 
I I 

__ _J __ J_ _ 

,
,
�

--:- =:;M 

- 50 

- - 40 

-352
' 

4 6 8 10 1i0 

Frequency [GHz] 

(b) 

0 

-5
�E.... -10 I-
>, 
() Iii'C: -15" :'.:'., 
·u

l:B �- -20 " 
oi -25 
0 '"" -30 

-35 2 

100 

-,- --FIT , - -

'�'
80 

I I 
_I_ --FEM 

I I I I 

4 6 8 10 

Frequency [GHz] 

70 

- 50 

- 40 

iio

�E.... 
>, 
() 
C: " 
·u

l:B " 
oi 
0 '"" 

(c)

Figure 11. Comparison of EM simulation results obtained using solvers based on the finite integration technique (FIT) and
finite elements method (FEM) for the designs (a) x1.20

*, (b) x5.20
*, and (c) x9.12

*. The dotted lines represent the total efficiency,
evaluated using the FIT method.
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Figure 12a shows a comparison of the optimal solutions obtained at different iterations
of the nested loop (represented using a varying number of parameters). As can be seen,
for the majority of the designs, increasing the dimensionality resulted in improvement
in the structure responses. However, for certain solutions, a larger number of variables
led to performance degradation. This was due to insufficient precision of the spline
approximation when the number of knots increased, which led to undesirable frequency
shifts at the edges of the operational bandwidth. Notwithstanding this, for most of the
designs, the imperfections were corrected by the optimization algorithm.

Figure 12. Comparison of the optimized antenna designs obtained using (a) different numbers
of adjustable parameters, as well as (b) conventional MOEA and the presented nested algorithm
(d4 = 12).

The computational cost of bi-objective optimization corresponded to 4389 evaluations
of the EM antenna model (~159.7 h of CPU time). The cost breakdown, with emphasis
on individual nested loops, is gathered in Table 1. It should be noted that the average
numerical expenses associated with the identification of a single Pareto-optimal design
corresponded to about 488 R model evaluations, which is low when having in mind the
dimensionality of the problem (up to 46 independent parameters). It is also worth noting
that optimization of the designs represented using more than 30 variables amounted to 57%
of the overall cost. For the sake of comparison, the antenna at hand was also optimized
using a standard population-based multi-objective evolutionary algorithm (MOEA) with
fitness sharing, mating restrictions, and Pareto dominance tournament selection [53]. The
setup of the benchmark routine was as follows. The population size and the number
of generations were set to 200 and 50 (a total of 10,000 EM simulations), respectively,
whereas the probability of mutation and crossover were fixed at 0.2 and 0.5, respectively.
Since the discussed algorithm did not support adjusting the antenna dimensionality, the
number of parameters was set to 30 (i.e., d4 = 12). Furthermore, the corner designs obtained
using the method in Section 3 were included into the initial population. The latter was
generated between the extreme points in order to narrow down the search space to the
region of interest. Figure 12b shows a comparison of the designs obtained using both
routines (the plots present the responses obtained for the antenna model, represented using
30 parameters). As can be seen, the algorithm of Section 3 outperformed the benchmark
method in terms of performance of the resulting designs. More importantly, the number of
R simulations required to obtain the final designs using the proposed algorithm amounted
to 1889, which was 81% less compared to the cost of MOEA operation. Even when the
optimization was performed in a nested loop, the cost of the presented algorithm (4389 EM
simulations) was over two times lower compared with the benchmark routine (while
providing noticeably better responses characterized by a more even spread between the
extreme designs and better in-band reflection).
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Table 1. Cost breakdown of the multi-objective optimization of the spline-parameterized antenna.

Design
Number of Model Evaluations [R] Total

[R]
Total

[h]n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

x1.dn
* 64 92 94 156 326 284 1016 36.97

x2.dn
* N/A N/A N/A 187 2 192 381 13.86

x3.dn
* N/A N/A N/A 158 41 145 344 12.52

x4.dn
* N/A N/A N/A 193 119 98 410 14.92

x5.dn
* N/A N/A N/A 128 198 146 472 17.18

x6.dn
* N/A N/A N/A 127 119 284 530 19.28

x7.dn
* N/A N/A N/A 158 41 238 437 15.90

x8.dn
* N/A N/A N/A 156 81 96 333 12.12

x9.dn
* 56 46 118 156 40 50 466 16.96

Total 120 138 212 1419 967 1533 4389 159.71

One should emphasize that the dimensions of the smallest Pareto-optimal antenna
design were only 12.5 mm × 18.4 mm (footprint = 230.4 mm2). The structure was com-
pared against other compact UWB monopoles from the literature in terms of size and
bandwidth. For the sake of fair comparison, the dimensions of the considered structures
were expressed in terms of the guided wavelength λg calculated for the lower corner fre-
quency and the electrical performance of the substrates on which the considered radiators
were implemented. The results gathered in Table 2 indicate that the proposed structure
was characterized by a competitive size while providing acceptable performance. Small
dimensions make the design’s potential use not only for a range of mobile UWB sensors
and IoT-based localization services, but also for body of area network applications [54].

Table 2. Spline-parameterized antenna (x1.20
*) in comparison with the benchmark designs.

Antenna fL
[GHz]

Bandwidth
[GHz]

Dimensions
[mm ×mm]

Size
[mm2]

Dimensions
[λg × λg]

Footprint #

[λg
2]

[55] 2.9 6.6 32.0 × 36.0 1152 0.56 × 0.64 0.359
[56] 3.0 8.0 28.0 × 38.0 1064 0.51 × 0.69 0.352
[57] 3.1 8.4 14.5 × 28.0 406 0.27 × 0.52 0.140
[11] 2.9 19.3 25.0 × 17.0 425 0.44 × 0.30 0.132
[18] 3.0 7.8 10.0 × 32.5 325 0.18 × 0.59 0.106
[54] 3.0 7.6 10.0 × 25.0 250 0.17 × 0.43 0.073
[58] 3.1 8.3 7.00 × 25.0 175 0.13 × 0.47 0.061

This work 3.1 8.9 12.5 × 18.4 230 0.32 × 0.22 0.069
# For fair comparison, the antenna size is expressed in terms of the guided wavelength corresponding to the substrate properties the design
is implemented on.

5. Conclusions

In this work, a spline-based UWB monopole antenna with an adjustable number of
parameters has been presented. The structure has been optimized in a bi-objective setup
using an algorithm that enables sequential generation of the Pareto designs between the
extreme solutions. Each step of the design process involves a trust region-based optimiza-
tion of the structure in a nested loop. The latter gradually increases the dimensionality of
the antenna. The trade-off solutions are generated through the optimization of candidate
designs, determined from bisections between the already existing solutions. The proposed
method was used to obtain a total of nine antenna designs, representing compromises
between a minimization of reflection within 3.1 GHz to 10.6 GHz band and size reduction.
The geometries of the optimized radiators were represented using 30 to 46 independent
parameters. The performance and sizes of the final designs along the Pareto front varied
from −10.3 dB to −20.5 dB and from 230 mm2 to 757 mm2, respectively. The method has
been favorably validated against a genuine multi-objective optimization algorithm in terms
of computational cost and the quality of the obtained solutions. Furthermore, the smallest
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Pareto-optimal antenna was compared against the state-of-the-art monopoles from the lit-
erature. The optimized radiator is characterized not only by competitive performance, but
also a small footprint, which makes it of potential use for UWB sensors, mobile localization
services, or body area networks. It is worth noting that the availability of the Pareto set
provides the designer a detailed insight into the capabilities of the antenna for a range of
application scenarios, which might be of high importance when designing heterogeneous
sensors or IoT networks dedicated to operating in diverse environments is considered.

Future work will focus on the application of spline-parameterized antenna models to
problems defined using more complex sets of requirements. The development of routines
oriented toward reduction of the optimization cost will also be considered.
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