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Abstract Pawlak’s flowgraphs were utilized as a base idea and knowledge container
for prediction and decision making algorithms applied to experimental video sur-
veillance system. The system is used for tracking people inside buildings in order to
obtain information about their appearance and movement. The fields of view of the
cameras did not overlap. Therefore, when an object was moving through unsuper-
vised areas, prediction was needed to identify the same object in the adjacent camera.
Moreover, while being unobserved, the object was represented by measurements of
probability of appearing in the subsequent camera’s field of view. Those probability
values were obtained on the basis of knowledge from the past events contained in
the flowgraph. Backward Route Reconstruction methods generated paths of objects
providing input for prediction of next steps in the path. This prediction was named
as Forward Route Reconstruction. The output of the prediction algorithm is a tree
of probabilities of future object movement. Methods for creating a flowgraph from
the paths of objects and for obtaining probability values for movement prediction are
presented in this paper together with some experimental results and discussion.
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1 Introduction

In a video surveillance system it is not possible to observe all areas in each part of a
building. Most often the observed places are: doors, entrances, exits, corridors and
staircases. In these kinds of places, people are usually in motion. Accordingly, they
appear, pass by, and leave the FOV (Field Of Vision) of a given camera. Spatio-
temporal dependencies between cameras can be described with a directed (mostly
bidirectional) weighted graph, the so-called topology graph. The decision which has
to be made concerns determining if two visible objects seen by two different cameras
represent the same physical object. Such decisions can be made based on following
premises:

– Two appearances of the same physical object should have significant resem-
blance. The resemblance can be measured by comparing visual features of the
objects present in the view of the camera.

– Certain paths of the object’s movement are more probable than others. This
information is encoded in the topology graph. Therefore, the probability of the
object appearing in a certain area can be numerically expressed.

– Moreover, time dependencies are contained in the topology graph as well. The
time period between the object observations is also taken into consideration.

– The last premise is the behaviour of the object. It is frequently observed that
certain objects follow typical and repeatable paths. The knowledge of their
typical behaviour should be gathered and stored in the system to support decision
making.

The first three clues can be obtained instantly when two observations are available.
However, in order to acquire knowledge of the behaviour of objects many more
observations are necessary. Moreover, the behaviour can change over time, therefore
a reaction to these fluctuations is desired. The gathered knowledge should be
stored in a form which makes it easily accessible. The idea of Pawlak’s flowgraph
(hereinafter referred to as FG) complies with these conditions. Prediction of the
next steps of the object’s movement is expressed in the form of a probability tree.
Every time an object is observed in the supervised area, its path is added to the set of
observed paths. Subsequently, required changes are applied to the FG, incorporating
the newly gathered knowledge. In order to keep the FG up to date, the paths stored
in the system only cover a specified period of time (e.g., one month).

The remaining part of paper is organized as follows. In Section 2, the related work
on using FGs as a tool for decision making is discussed. Methods for adapting FGs to
changing trends in the analyzed environment are also presented. Additionally, other
methods for prediction of object movement are mentioned. Section 3 describes the
details of employing FGs for route reconstruction. We introduce, how the knowl-
edge is gathered from past observations to construct the FG. Next, the process of
refreshing the parameters of the FG is explained. Finally, the algorithm of movement
prediction is mentioned. In Section 4, we use the proposed methods with the example
data in order to clearly present to the reader the details of the engineered method.
Section 5 describes computation complexity issues related to FGs. Section 6 contains
the results and discussion of using the proposed algorithm with real data from a video
surveillance system. Finally, Section 7 presents our conclusions and plans for future
development of the method are discussed.
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2 Related work

The foundations of the flowgraph idea were provided by Greco et al. (2002) and
Pawlak (2005b). Many extensions to the original FG concept have been made.
Simplicity of the FG and its applicability to problems of decision making and
prediction are significant advantages. Determining strength, certainty and coverage
values for paths in the FG has also been described in the literature (Pawlak 2005b). In
related publications it has been shown how the FG can be used to create a decision
tree (Pawlak 2006b). Moreover, the idea of FGs is strongly connected with Rough
Sets and the Bayes’ theorem (Pawlak 2003). Clear rules that control the FG allow
for quick understanding of its principles, as well as for adaptation of this idea in
numerous fields, including data mining (Pawlak 2005a), music metadata processing
(Czyzewski and Kostek 2004), and conflict analysis and negotiations (Pawlak 2005c,
2006a). The FG is even applicable to making decision about deregulation of aviation
market. Such solutions have been introduced, for instance, by the government of
Taiwan (Ou Yang et al. 2008).

In order to predict the movement of an object between non-overlapping cameras,
methods such as particle filters, joint probabilistic data association, Markov chains,
Bayesian networks and other statistical algorithms can be used. Lev-Tov and Moses
(2010) assign objects to two types of locations: unobserved (hidden) or visible to the
camera. The state of the given object is composed of a vector of appearance descrip-
tors and locations (hidden or visible) which the object is currently observed in. In
order to decide in which state the object is, a particle filter is applied. Cheng
et al. (2006) used joint probabilistic data association of visual features for matching
of tracked objects. Javed et al. (2003) proposed a method for fusion of many
types of clues for matching the same object in multiple non-overlapped cameras.
A framework based on the Bayes Theorem was applied for this purpose. Kim
et al. (2009) proposed an approach to the problem of tracking people utilizing a
method based on Markov Chain Monte Carlo (MCMC). In this method probabilities
of transitions between cameras are given a-priori. Moreover, Leung et al. (2008)
proposed a probabilistic method based on a probability density function (p.d.f.) with
entrance and exit events treated as random events. Additionally, determination of
the probabilities of the object’s possible routes is achieved with a dispersion function
which can be interpreted as the conditional probability of a given exit event when a
particular entrance event has occurred.

Movement of people through the supervised area can be considered as a flow of
objects. Thus, such a phenomenon can be described and analyzed with the FG and
methods employed for this task are described in the following subsections.

3 Proposed methods

In a video surveillance system in which the algorithms for making paths of the objects
are implemented, methods for Forward Route Reconstruction can be applied as
well. If the surveillance system has been operating for some time, certain statistics
of the object movement can be gathered. Collected input data for Forward Route
Reconstruction are the set of paths of observed objects from the past, as well as new,
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recently finished paths. The outcome encompasses the probability of object next
path, provided it remains in the supervised area.

3.1 Building the flowgraph

In order to use Pawlak’s flowgraph for prediction, some assumptions need to be
made. A path is constructed from observations of an object in subsequent cameras.
An observation is expressed by the identifier of a camera and the index determining
which step of the path this observation denotes. Thus, these two parameters, as a
pair, can be considered as an attribute for the FG. Furthermore, a class of attributes
for the FG can be defined as a subset of all attributes which have the same index of
step. It means that each consecutive vertical layer of vertices in the FG corresponds
to the subsequent step in the path.

According to work of Greco et al. (2002), an information system S = (U, A)

can be described on the basis of a set of paths. Thus, U is a set of objects that
enter and exit the area observed by the surveillance system and A is a set of the
abovementioned attributes. Transforming the set of paths to FG is done using the
following formulae. In (1), σ(xi, y j) defines the rate of objects passing from camera x
in step i of the path to camera y in step j of the path. The number of objects passing
from xi to y j is denoted as ϕ(xi, y j), and the total number of paths in the database is
denoted as ϕ(G).

σ
(
xi, y j

) = ϕ
(
xi, y j

)

ϕ (G)
(1)

Similarly, in (2), ϕ(xi) is the number of objects that passed the node xi.

σ (xi) = ϕ (xi)

ϕ (G)
(2)

The next two formulas ((3) and (4)) are used for probability estimation. The names
of these parameters, that is certainty (cer) and coverage (cov), are taken from
terminology related to FGs.

cer
(
xi, y j

) = σ
(
xi, y j

)

σ (xi)
(3)

The value of cer(xi, y j) estimates the probability that the object which left camera
x in step i of the path will appear in camera y in step j. Equation (4) is used to
calculate the coverage factor cov(xi, y j) for node y j, so that it determines estimation
of probability that an object which appears in camera y in step j of the path was seen
before in camera x in step i of the path.

cov
(
xi, y j

) = σ
(
xi, y j

)

σ
(
y j

) (4)

In (1), (3) and (4) j is equal to i + 1, thus it is related to the next step on the object
path (the following layer in the FG).

The idea of FG needs some modification and adjustment in order to be used in
Forward Route Reconstruction. The flow of objects through the video surveillance

J Intell Inf Syst (2014) 43:521–535524

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


system can be described by a properly prepared FG. In such a system, the cameras
which observe the entrances and exits (e.g., doors, gates) correspond to the first and
last step of the path. The path of the object comprises several steps. Each step is
associated to the object’s appearance in one of the cameras. The first step is easily
obtained when the object is first observed in the observed area. Subsequent steps
are derived from following observations. The last step, which denotes the object’s
disappearance, is appended to the path after it has been observed that the object has
left the supervised area. The FG encompasses all the observed paths. The nodes of
the graph relate to steps on the object’s path. The FG is arranged in layers, whose
number corresponds to the order of the particular nodes in the observed paths.
Therefore, the first layer of the FG represents the entrance (input) nodes, whereas
the exit (output) nodes can be in all layers but the first one. Additionally, the last
layer of the FG contains only one exit node. In other words, since the lengths of
paths can vary, exit nodes can appear in layers l ≥ 2. An example FG is presented
in Fig. 1.

The example in Fig. 1 presents the FG for the monitoring system composed of two
cameras (x and y) which can be both entered and left and transitions between them
are possible in both directions. The longest considered path has the length of two
steps. Additional output steps are marked as nodes o2 and o3.

3.2 Prediction of the object movement based on the flowgraph

On the basis of collected statistical data about the paths and employing (1)–(4), the
FG is constructed and appropriate weights are assigned to the edges. The next step
is using the prepared FG to predict the movement of an object located within the
supervised area. The result of Forward Route Reconstruction is a probability tree
describing probable next steps of objects. The root of the probability tree (denoted
xroot) is the node in FG which represents current step of the path of theobject
which remains in the supervised area. The certainty values are used as probability
measurements. In case of prediction more than one step ahead from the root, the
probability needs to be estimated as a product of probabilities of subsequent steps.

Fig. 1 The simple example of a modified FG employed in Forward Route Reconstruction
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In (5) it is shown how the probability of the path from the node xroot to zend is
calculated (Pawlak 2005b):

cer [xroot, . . . , zend] =
i=end∑

i=root

cer (xi, yi+1) (5)

The xroot position is changing as the object moves in the graph. Thus, the first node
of the previous tree becomes a new root. Such prediction can be made as long as the
object is present in the supervised area.

3.3 Updating the flowgraph

When the object enters the supervised area, it is assigned a copy of the FG. This
copy is derived from the most up-to-date information. It is then used for movement
prediction. The object’s copy of the FG remains unchanged as long as the object is
present in the system. When the object leaves the area, its path is used to update the
general FG.

Updating the FG is based on adding a new path to the set of observed paths.
The updated set of paths is an input for refreshing the FG by using (1)–(4). Another
method cleans up the set of paths in order to remove paths which are obsolete. This
method is triggered periodically in order to keep the database of paths up to date
and to enable adaptation of the FG to the changing behaviour of objects. Adjusting
this adaptation period influences the rate of ‘forgetting’ information from the past.

4 Usage example of flowgraph

The prototype of an example FG for Forward Route Reconstruction is a topological
structure of the considered video surveillance system described with the topology
graph. In our assumed situation, there will be four cameras and two of them have
entrance and exit in their FOV(nodes x and y). A detailed topology is shown in Fig. 2.

The next stage is to obtain statistical data. An example set of paths is presented in
Table 1. Paths can have various lengths and the number of layers in the FG depends
on paths lengths. The paths in Table 1 are used to construct the FG shown in Fig. 3.
The number of layers equals the number of steps in the longest path plus one, because
of adding exit (output) nodes. Analysis of the FG structure allows to reconstruct the

Fig. 2 An example topology
graph
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Table 1 An example set
of paths

Index Path Index Path

1 x → w → z → y 9 y → x → w → z → x
2 x → y 10 x → w → z → x → y
3 x → w → z → x 11 x
4 y → z → w → x 12 y
5 y → x → w → z → y 13 x
6 y → z → x 14 x → z → y
7 y → z → w → x 15 y → z → x
8 x → w → z → y 16 x → z → y

Fig. 3 The flowgraph constructed on the basis of a set of paths

Table 2 Flow measures of
objects passing through given
nodes

Node ϕ(xi) σ (xi) Node ϕ(xi) σ (xi)

x1 9 9/16 = 0.5625 z3 4 4/16 = 0.2500
y1 7 7/16 = 0.4375 o3 1 1/16 = 0.0625
w2 4 4/16 = 0.2500 x4 4 4/16 = 0.2500
x2 2 2/16 = 0.1250 y4 2 2/16 = 0.1250
y2 1 1/16 = 0.0625 z4 2 2/16 = 0.1250
z2 6 6/16 = 0.3750 o4 4 4/16 = 0.2500
o2 3 3/16 = 0.1875 x5 1 1/16 = 0.0625
w3 4 4/16 = 0.2500 y5 2 2/16 = 0.1250
x3 2 2/16 = 0.1250 o5 5 5/16 = 0.3125
y3 2 2/16 = 0.1250 o6 3 3/16 = 0.1875
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Table 3 Flow and probability
measures for edges in the
flowgraph

Edge(xi → y j) ϕ(xi, y j) σ (xi, y j) cer(xi, y j) cov(xi, y j)

x1 → w2 4 0.2500 0.4444 1.0000
x1 → y2 1 0.0625 0.1111 1.0000
x1 → z2 2 0.1250 0.2222 0.3333
x1 → o2 2 0.1250 0.2222 0.6667
y1 → x2 2 0.1250 0.2857 1.0000
y1 → z2 4 0.2500 0.5714 0.6667
y1 → o2 1 0.0625 0.1429 0.3333
w2 → z3 4 0.2500 1.0000 1.0000
x2 → w3 2 0.1250 1.0000 0.5000
y2 → o3 1 0.0625 1.0000 1.0000
z2 → w3 2 0.1250 0.3333 0.5000
z2 → x3 2 0.1250 0.3333 1.0000
z2 → y3 2 0.1250 0.3333 1.0000
w3 → x4 2 0.1250 0.5000 0.5000
w3 → z4 2 0.1250 0.5000 1.0000
x3 → o4 2 0.1250 1.0000 0.5000
y3 → o4 2 0.1250 1.0000 0.5000
z3 → x4 2 0.1250 0.5000 0.5000
z3 → y4 2 0.1250 0.5000 1.0000
x4 → o5 3 0.1875 0.7500 0.6000
x4 → y5 1 0.0625 0.2500 0.5000
y4 → o5 2 0.1250 1.0000 0.4000
z4 → y5 1 0.0625 0.5000 0.5000
z4 → x5 1 0.0625 0.5000 1.0000
x5 → o6 1 0.0625 1.0000 0.3333
y5 → o6 2 0.1250 1.0000 0.6667

topology graph on the basis of possible transitions between the cameras contained in
the FG. In the graph presented in Fig. 3, some nodes are neither sources nor sinks,
i.e., they are not connected to other nodes (e.g., w4, w5, z5). In this case camera was

Fig. 4 Probability tree for the
object O
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Table 4 Probability measures for the tree with the root in node z2

Path [xroot, . . . , zend] cer [xroot, . . . , zend]
[z2, y3, o4] 0.3333 · 1.0000 = 0.3333
[z2, x3, o4] 0.3333 · 1.0000 = 0.3333
[z2, w3, x4, o5] 0.3333 · 0.5000 · 0.7500 = 0.1250
[z2, w3, x4, y5, o6] 0.3333 · 0.5000 · 0.2500 · 1.0000 = 0.0417
[z2, w3, z4, x5, o6] 0.3333 · 0.5000 · 0.5000 · 1.0000 = 0.0833
[z2, w3, z4, y5, o6] 0.3333 · 0.5000 · 0.5000 · 1.0000 = 0.0833

never a 4-th or 5-th step of any path. These nodes can be omitted and ignored in the
process of creating the probability trees.

Equations (1)–(4) allow us to calculate the parameters for each edge in the FG.
First, the number of transitions through each edge and through each node in the FG
must be obtained. The measure of object flows through particular nodes is calculated
according to (2) and presented in Table 2. Equation (1) determines the flows through
the given edges. Therefore, a probability estimate of a particular transition can be
obtained with (3) and (4). The listing of these probability measures is presented
in Table 3.

The FG prepared in such way can be used to predict the movement of an object
O which is located within the observed area. The current path of the object O is,
for example, x → z →?. Thus, in the FG, this object is localized in the node z2. The
node z2 becomes the root of the nascent probability tree. The probability tree can
be considered a subgraph of the FG, as it is shown in Fig. 4. In case of prediction of
only one future step in the path of the object O, probability measures can be taken
directly from the FG as values of cer(z2, x3), cer(z2, y3) and cer(z2, w3). If more
than one-step prediction is needed, (5) can be used to obtain the probability tree with
root in z2. In the example, the query [z2, w3, x4] results in cer[z2, w3, x4] = 0.3333 ·
0.5000 = 0.1667. Example queries, which are rooted in the node z2, and responses to
them are presented in Table 4.

In this example, when the object O exits the supervised area, its path, i.e. x → z →
w → z → y, is added to the set of paths and the FG is refreshed and rebuilt. The new
version of the FG is built on the updated set of paths. If the path of the object O is
the same as the one present in the set of paths, there are no changes in the structure
of the FG, but the values ϕ(xi, y j), ϕ(xi), ϕ(G), σ(xi, y j), cer(xi, y j), and cov(xi, y j)

are updated. The new FG parameters are presented in Tables 5 and 6. The values

Table 5 Updated flow
measures of objects passing
through given nodes

Node ϕ(xi) σ (xi) Node ϕ(xi) σ (xi)

x1 10 10/17 = 0.5882 z3 4 4/17 = 0.2353
y1 7 7/17 = 0.4118 o3 1 1/17 = 0.0588
w2 4 4/17 = 0.2353 x4 4 4/17 = 0.2353
x2 2 2/17 = 0.1176 y4 2 2/17 = 0.1176
y2 1 1/17 = 0.0588 z4 3 2/17 = 0.1765
z2 7 7/17 = 0.4118 o4 4 4/17 = 0.2353
o2 3 3/17 = 0.1765 x5 1 1/17 = 0.0588
w3 5 5/17 = 0.2941 y5 3 3/17 = 0.1765
x3 2 2/17 = 0.1176 o5 5 5/17 = 0.2941
y3 2 2/17 = 0.1176 o6 4 4/17 = 0.2353
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Table 6 Updated flow and
probability measures for edges
in the flowgraph

Edge(xi → yj) ϕ(xi, y j) σ (xi, y j) cer(xi, y j) cov(xi, y j)

x1 → w2 4 0.2353 0.4000 1.0000
x1 → y2 1 0.0588 0.1000 1.0000
x1 → z2 3 0.1176 0.3000 0.4286
x1 → o2 2 0.1176 0.2000 0.6667
y1 → x2 2 0.1176 0.2857 1.0000
y1 → z2 4 0.2353 0.5714 0.5714
y1 → o2 1 0.0588 0.1429 0.3333
w2 → z3 4 0.2353 1.0000 1.0000
x2 → w3 2 0.1176 1.0000 0.4000
y2 → o3 1 0.0588 1.0000 1.0000
z2 → w3 3 0.1765 0.4286 0.6000
z2 → x3 2 0.1176 0.1176 1.0000
z2 → y3 2 0.1176 0.1176 1.0000
w3 → x4 2 0.1176 0.4000 0.5000
w3 → z4 3 0.1765 0.6000 1.0000
x3 → o4 2 0.1176 1.0000 0.5000
y3 → o4 2 0.1176 1.0000 0.5000
z3 → x4 2 0.1765 0.5000 0.5000
z3 → y4 2 0.1176 0.5000 1.0000
x4 → o5 3 0.1765 0.7500 0.6000
x4 → y5 1 0.1176 0.2500 0.3333
y4 → o5 2 0.1176 1.0000 0.4000
z4 → y5 2 0.1176 0.6667 0.6667
z4 → x5 1 0.0588 0.3333 1.0000
x5 → o6 1 0.0588 1.0000 0.2500
y5 → o6 3 0.1765 1.0000 0.7500

which must be updated because of adding a new path to the set of paths, are shaded.
If another object enters the supervised area, it will get the newest updated version of
the FG.

5 Computational complexity

In order to determine computational complexity some assumptions must be made.
These assumptions are related to a practical use of the flowgraph idea. A computer
representation of the graph has an impact on the space complexity and the time
complexity. In general, a graph can be stored in the computer memory as an
adjacency matrix or as an adjacency list. Moreover, the matrix adjacency structure
is more suitable for a dense graph that is a graph in which the number of edges is
bigger than the squared number of vertices. The structure of the adjacency list is
recommended for sparse graphs (Kubale 1998).

The following assumptions were made in order to determine the computational
complexity: the number of cameras in system (corresponding to the number of
vertices in a single layer) C is constant, the number of steps in the longest path
(corresponding to the number of layers in the FG) L is equal to C. From the practical
point of view the number of cameras in a deployed surveillance system changes very
rarely. Additionally, we assume that all paths are as long as possible (the length is
equal to L).

J Intell Inf Syst (2014) 43:521–535530

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Thus, the number of vertices in the theoretically worse case can be estimated as
V = L · (C + 1) ≈ C2. Therefore, the number of edges in the FG is strongly related
to the number of edges in the topology graph. In the case, when a topology graph is
a clique and the FG contains all possible transitions between consecutive layers, the
maximum number of edges can be determined as E = C · [1 + (L − 1) · (C + 1)]) ≈
C3. Going one step further the FG can be considered as an L-partite graph. In this
case, an application of the representation of adjacency list is more suitable for the FG.

The space complexity (amount of needed memory) of the FG represented as an
adjacency list is equal to O(V + E). Following the assumptions that C and L are
constant, the space complexity is O(1).

Application of associative containers to store vertices and edges entails a constant
time of access or adding a vertex and O(log(E/V)) time complexity while accessing
or adding an edge. The time complexity of the operation of adding a new sample
(path) to the FG is O(L · log(E/V)) but according to the assumptions made, the
time complexity is O(1). After adding a path to the FG (changing values of ϕ()) an
updating process (changing values of σ(), cer(), and cov()) occurs. This process has
the time complexity O(C2 · log(E/V)). If we assume that C and L are constant, then
the time complexity of updating process is O(1).

6 Results of experiments

The topology graph, on which the possible inter-camera transitions are presented, is
shown in Fig. 5. For the experiment, four cameras were selected. Each camera was
considered an entrance-exit camera. The views from these cameras are presented
in Fig. 6.

In the presented setup, analysis of 6 hours of the recorded video was performed
and 925 paths of objects were obtained. The analysis was made by a person but
automated techniques application is also possible, provided that tracking methods
are adequately efficient. Otherwise an error propagation would occur. The 925 paths
are summarized in the FG (Fig. 7).

The values of strength and certainty for each edge in the FG are contained
in Table 7. Values of cer(xi, y j) are used to create probability trees using the
methods presented in previous sections. Probabilities of particular paths, which can
be predicted from the probability tree with the root node placed in node A1 are
presented in Table 8.

Fig. 5 The topology graph of
the set of cameras in the
experiment
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(a) Camera A (b) Camera D

(c) Camera B (d) Camera C

Fig. 6 Screenshots of cameras fields of view used in the experiment, areas where people go in and
go out from FOVs of the cameras are marked with yellow color

Fig. 7 The flowgraph presenting the statistical structure of people behaviour
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Table 7 Probability measurements calculated for the collected set of paths

Edge(xi → y j) σ(xi, y j) cer(xi, y j) Edge(xi → y j) σ(xi, y j) cer(xi, y j)

A0 → B1 0.1524 0.4764 B1 → A2 0.0022 0.0135
A0 → D1 0.1157 0.3615 B1 → Out2 0.1578 0.9865
A0 → Out1 0.0519 0.1622 C1 → B2 0.0130 0.1212
B0 → A1 0.1611 0.6712 C1 → D2 0.0032 0.0303
B0 → C1 0.0076 0.0315 C1 → Out2 0.0908 0.8484
B0 → Out1 0.0714 0.2973 D1 → A2 0.0497 0.2190
C0 → B1 0.0076 0.0398 D1 → C2 0.0162 0.0714
C0 → D1 0.1114 0.5852 D1 → Out2 0.1611 0.7095
C0 → Out1 0.0714 0.3750 A2 → Out3 0.0519 1.0000
D0 → A1 0.1027 0.4113 B2 → A3 0.0032 0.1579
D0 → C1 0.0995 0.3983 B2 → Out3 0.0173 0.8421
D0 → Out1 0.0476 0.1905 C2 → Out3 0.0162 1.0000
A1 → B2 0.0076 0.0287 D2 → Out3 0.0205 1.0000
A1 → D2 0.0173 0.0656 A3 → Out4 0.0032 1.0000
A1 → Out2 0.2389 0.9057

In order to validate the knowledge contained in the prepared FG a set of the new
paths gathered in the same place at different times were added to the previously
created database of paths (for this purpose 101 new paths were obtained). Average
absolute deviation is used as a measure of the new FG conformity with the old FG.
Calculation of this measure is performed according to (6).

D =

∑

Edges

∣∣cer1
(
xi, y j

) − cer0
(
xi, y j

)∣∣

N
(6)

where D determines how much the new FG differs from the previous one, cer1(xi, y j)

and cer0(xi, y j) are certainty parameters assigned to the edge xi → y j in the new
and old FG respectively and N is the number of edges in the new FG. In the case
when a new edge is added, which was not present in the old FG, we assume that
cer0(xi, y j) = 0. The values of cer(xi, y j) are normalized to 1, thus the value of D
describes the degree of changes in the FG. When D is equal to 0 it is understood
that no changes were made to the FG. Calculation of measure of conformity for the
extended set of paths yields D = 0.0158. This value equals the average change in
certainty of edges in the FG.

Table 8 Forward Route
Reconstruction
results—probabilities of future
path of the object which is
currently in the second step of
its path and is observed by the
Camera A

Path [xroot, . . . , zend] cer[xroot, . . . , zend]
[A1, B2] 0.0287
[A1, B2, A3] 0.0045
[A1, B2, A3, Out4] 0.0045
[A1, B2, Out3] 0.0242
[A1, D2] 0.0656
[A1, D2, Out3] 0.0656
[A1, Out2] 0.9057
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7 Conclusions

Pawlak’s flowgraphs can be successfully applied to video analysis in a surveillance
system which observes areas inside buildings. The useful feature of the FG is
automatic creation and updating of rules, as well as clear representation of the
object route statistics. Moreover, probability measurements can be used to predict
next steps of the object’s movement on the basis of a hitherto traversed path and
information contained in the FG. The next advantage is possibility of using finished
paths for updating the FG. Moreover, prediction of future steps in the path of an
object can be made for various numbers of steps ahead of the current location.

An extension of the presented algorithm can be a more sophisticated method
for updating the FG that would be based on assessment of changes in general
behaviour of objects observed by a surveillance system, e.g., based on amount of
information contained in FG. Additionally, representation of time-dependencies
between cameras can also be included in the FG.
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