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Abstract- The performance of selected Equivalent Single-Layer (ESL) models is evaluated within several classical 

benchmark tests for small amplitude free vibration analysis of multi-layered plates. The authors elaborated their 

own Finite Element software based on the first-order shear deformation theory (FOSD) with some modifications 

incorporated including a correction of the transverse shear stiffness and an application of zig-zag type functions. 

Seven different ESL models were considered in the study; beside the classical FOSD model, there were three 

FOSD models with various transverse shear corrections and three ESL models enhanced by the application of zig-

zag functions and based on the Reissner’s Mixed Variational Theorem.  
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1. Introduction

Since the publication of the meaningful paper of Mindlin [1] it is commonly 

acknowledged that the effect of the transverse shear deformation and rotatory inertia should be 

included in the flexural vibration analysis of moderately thick plates. Although theories of 

moderately thick plates could also be found in papers published before [1] e.g. by Reissner [2, 

3] and Hencky [4], but it was Mindlin who was the first to consider the effects of rotational

inertia and shear in the analysis of plates (cf. [5]). The plate theory accounting for those effects 
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usually identified as the First Order Shear Deformation (FOSD) theory (or even more 

frequently, though not quite properly as the Mindlin-Reissner plate theory - cf. [6]) became a 

standard formulation for the bending analysis of moderately thick isotropic plates. However, 

already 100 years ago Timoshenko [7] indicated that the FOSD theory suffers from an 

overestimation of the transverse shear energy what implies a need to apply special correction 

for the transverse shear stiffness. The shear correction factor  = 5/6 is commonly employed in 

FOSD models used in the static bending analysis of isotropic plates. This particular value can 

be deducted from the Reissner proposal [2], but also can be attained by matching the transverse 

shear strain energy predicted by the FOSD model with that obtained from the three-dimensional 

elasticity theory. An alternative approach was adopted by Mindlin [1], who suggested a slightly 

smaller number  = 2/12 based on the consideration of shear wave velocities calculated using 

the FOSD model and the three-dimensional approach. Yang et al. [8] initiated the use of FOSD 

models also in the analysis of heterogeneous anisotropic plates with particular emphasis on 

multi-layered panels. The shear effect is important in the analysis of fiber-reinforced polymer 

composite (FRPC) laminates, regardless of their thickness, which is due to the fact that while 

the material properties of FRPC in the direction of the fibers are determined by the 

characteristics of the reinforcement, their material properties in the thickness direction are 

dominated by a much weaker and more flexible polymer matrix [9, 10]. Consideration of 

rotational inertia seems particularly important in the analysis of sandwich structures. These two 

factors have determined the widespread use of FOSD models in the analysis of composite and 

sandwich panels [11]; however, it was required to apply the appropriate shear correction 

depending on the layering structure [12, 13]. In 1984, Reddy [14] presented his Third Order 

Shear Deformation (TOSD) theory without need to use any shear correction coefficients, but 

with parabolic distribution of transverse shear strains across the plate thickness and the 

transverse shear stresses vanishing on the top and bottom surfaces. However, no increase in the 

degree of interpolation of the displacement field over the thickness of the plate is able to map 
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the characteristic zig-zag deformation profile of a multi-layered plate with visible changes in 

the slope on the layer interfaces. This phenomenon resulted from the discontinuity of material 

properties in layered structures and the significant shear compliance of FRPC could be observed 

experimentally in many laminates. Such deformation pattern should be accompanied by a 

corresponding piecewise profile of stresses. A pertinent zig-zag deformation profile can be 

incorporated into the kinematic model of the layered plate by introducing some additional 

warping functions with a different slope in each layer [15]. However, a similar zig-zag effect 

can be noticed also in some stress based formulations (see e.g. Ambartsumyan [16]). A relevant 

zig-zag theory for multi-layered plates was proposed in 1986 by Murakami [17]. A noteworthy 

synthesis encompassing all the above-mentioned theories for multi-layered plates, which can 

be classified as equivalent single-layer (ESL) models, was presented by Reddy [18]. In more 

advanced computational models named discrete-layer (DL) theories or the layer-wise (LW) 

formulations a multi-layered plate is considered as a stack of laminas bounded together by 

appropriate conditions at ply interfaces [10]. The results obtained with the LW (DL) approach 

are very close to the results of 3D analysis [19]; however, due to the fact that the number of 

degrees of freedom in LW (DL) models directly depends on the number of layers, the final 

number of unknowns in the analysis of multi-layered plates using such models is many times 

higher than the number of unknowns within the ESL approach. This condition is a main reason 

that the use of LW (DL) models is in practice limited to the analysis of simple examples. 

Undoubtedly, it seems more attractive to combine both those approaches with the dominant 

involvement of ESL models, while LW (DL) modeling would be used only in selected regions 

of the plate [20].  

In their earlier work [21], the authors examined performance of selected ESL models in 

a linear static Finite Element Analysis of multi-layered plates by confronting the obtained 

results with the available 3D analysis solutions. As one could expect, the computational models 

enhanced by the application of the zig-zag functions generally performed better than FOSD 
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models; however, FOSD models with a global (cross-sectional) transverse shear correction also 

did unexpectedly well. In the current work, a similar investigation has been carried out in the 

natural vibrations analysis of multi-layered panels.  

 

2. Plate models considered in the current study  

Within the general ESL formulation considered in the current report the entire multi-layered 

laminate is represented by a single-layer plate where the variation of the displacement through 

the plate thickness can be described as 

     ( , , ) ( ) ( , )U   Φ u  x y z z x y , (1) 

with the following notation: 

    

( , )
( , )
( , )( , , )
( , )( , , ) ( , , ) and ( , )
( , )( , , )
( , )
( , )
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ϕ
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, (2) 

In the classical FOSD formulation [10] the displacement distribution through the plate 

thickness is taken as 

 

( , , ) ( , ) ( , )
( , , ) ( , ) ( , )
( , , ) ( , )
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, (3) 

where u, v, and w are usual translational displacement components at the mid-surface, with x 

and y standing for rotational components. 

The deformation profile (3) can be furtherly enhanced by adding appropriate zig-zag functions 


(k)(z),  = x, y (see Fig. 1) which represent the through-the-thickness warping effects:  
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ϕ φ ψ

ϕ φ ψ , (4) 
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with x and y being two supplementary unknown parameters that can be identified as the 

weighted-over-thickness amplitudes of the zig-zag effects.  

For a general ESL formulation (1), which can cover the models given by equations (3, 4) one 

should assume 

  

   
   

1 0 0 0 0

( ) 0 1 0 0 0
0 0 1 0 0 0 0

Φ

k
x

k
y

z z

z z z

 
 
 

  
 
 
  

φ

φ . (5) 

 

 
 

Fig. 1 First Order Shear Deformation model enhanced by Zig-zag function 

 

According to the ESL concept the multi-layered medium is replaced by a single-layer plate with 

resultant stiffness obtained via the integration of the mechanical properties over the laminate 

thickness. The multi-layered plate is built of orthotropic layers with the following constitutive 

relations between stress and strain (assuming plane stress condition) [9, 10] 
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 (6) 

where {} and {} represent vectors of stresses and strains; subscripts B and S refer to bending 

and shear components, respectively. Elements of the constitutive matrix marked with the tilde 

(  ) in (6) represent the transverse shear stiffness that requires a special correction in the FOSD 
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model. As mentioned earlier in Chapter 1 it can be modified by the local transverse shear 

correction factor κ:  

 ij ijc c κ=  (7) 

This local transverse shear correction factor κ in (7) is introduced at the layer level. It is an 

alternative to the global (cross-sectional) transverse shear correction factors which can be 

derived from suitable assumptions valid for the entire multi-layered cross-section, described in 

the following. 

The transverse shear forces can be obtained from the through-the-thickness integration of the 

appropriate stress components 

 
2 2

2 2

, .
h h

h h
xz xz yz yzdz dzσ σ

− −

Τ = Τ =∫ ∫  (8) 

These resultants can be expressed as a function of the transverse shear strains:  

 55 45

45 44

   ,xz xz

yz yz

a a
a a
 

 

γ
γ

Τ    
=    Τ     

 (9) 

where ija  (i, j = 4, 5) stands for the transverse shear stiffness of the whole laminate. This 

stiffness can be estimated from the following relations:  

 
2 2 2

2 2 2

2 2
55 1 55 45 1 2 45 44 2 44( ) , , ( )

h h h

h h h

a k c dz a k k c dz a k c dz  

− − −

= = =∫ ∫ ∫ , (10) 

where k1, and k2 denote the global composite transverse shear correction factors. They are 

dependent on material properties as well as on stacking sequence of the layers and their 

orientation angles (see e.g. [12, 13]). The values of k1, and k2 follow from matching the 

transverse shear strain energy estimated by the FOSD plate model with that obtained from the 

3D elasticity theory by making use of the assumption of a cylindrical bending mode of the plate 

and by utilizing the differential relation between the resulting transverse shear forces and 

bending moments. Rolfes & Rohwer [22] implemented an ”improved transverse shear 
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stiffness” in their modified FOSD model. They evaluated the effective transverse shear stiffness 

based on similar assumptions as those applied in [12, 13]; however, the final results are slightly 

different; mainly due to an independent evaluation of the stiffness term 45a . The results provided 

by both those approaches for static tests performed in [21] were almost identical for the most of 

the considered examples, therefore only the concept of Rolfes & Rohwer [22] has been examined 

in the current research.  

The linear strain components within general ESL formulation can be obtained as appropriate 

derivatives of the displacements:  

 

( , , )( , , )
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ε
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γ

 (11) 

The first three equations of (11) representing the in-plane strain components can be given as 

      0( , , ) ( ) ( , )ε   Λ B u  B Bx y z z x y . (12) 

with 
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, (13) 
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 (14) 

and 

    ( ,  ) .u T
x y x yx y u v w ϕ ϕ ψ ψ  (15) 

Accordingly, the transverse shear strain components can be presented as: 

 
   ( , )( , , ) ( , ) ( , ), , .
k

z

zw x yx y z x y x y x y
z

α
α α α

φ
γ ϕ ψ α

α
     


   

 
 (16) 

From (16) it appears, that only the last component depends on the variable z and the choice of 

a particular warping function. Analogously to [21], the following two options of the warping 

function are considered in the current report: 

1) the zig-zag function of Murakami [17]:  

 

( ) ( ) ( ) ( )

( 1) 0 ( 1)

( ) ( 1) ,

, , 0.5 , ,

1...,

k k k
x y k

k k k k k

z z f z

z z z z h z z h

k N

φ φ ζ

− −

= = = −

∈ = − = +

=

 (17) 

where hk is the thickness of the kth layer and ζ k is the local dimensionless coordinate of the kth 

layer:  

 2 1, 1, 1 , 1...,k
k k

k

z z k N
h

ζ ζ−
= + ∈ − = . (18) 

2) the zig-zag function of Tessler et al. [23]:  
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  (19) 

where N indicates the total number of layers and k 1, N identifies the number of the current 

layer; Q(k)
 stands for the diagonal coefficients of the constitutive matrix for the kth layer (Qxx 

= c55 and Qyy = c44). The weighted-average transverse shear stiffness coefficients G follow from 

    

1 10.5

10.5

1 1 , ,
h N

k
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hdzG x y
h hQ Qα

αα αα
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 . (20) 

One can notice, that the derivatives of the above mentioned zig-zag functions with respect to 

the coordinate z are constant over the thickness of the layer: 

a) for the zig-zag function of Murakami (17): 

 
        2( 1)

kk
yx k

k

zz
z z h

φφ 
   

 
. (21) 

b) for the zig-zag function of Tessler et al. (19): 
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. (22) 

Consequently, the transverse shear strains remain constant over the thickness of the layer:  

      ( ) ( )( , , ) ( , ) ( , ) ( , )ε  ε  B  u  k k
S S Sx y z x y x y x y       (23) 

with  
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0 0 / 1 0 0
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0 0 / 0 1 0

B  

k
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k
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x
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y
z

              
 

φ

φ
. (24) 

The motion equations of the FE displacement formulation can be derived from D'Alembert's 

form of the Principle of Virtual Displacement (PVD) where the virtual work of external forces  

            ( , ) ( , ) ( , , ) ( , , )q P u t U fT T T
ext B

A V

W x y x y dA x y z x y z dV   δ δ δ δ  (25) 

include inertia forces  

       ( , , ) ( , , ) ( ) ( , )f U Φ u  B x y z x y z z x y 

ρ ρ  (26) 

with {u} and {q} standing for, respectively, variations of the mid-plane displacements and 

variations of nodal displacements; while {P} represents nodal forces, {t} is a vector of surface 

tractions and  is a mass density that can be different in various laminate layers. 

The internal virtual work, δWin, for the layered plate is 

         
( 1)

( )
1

ε σ ε σ
k

k

zN
T T

in B B S S a
kA z

W dz dA




                
 δ δ δ , (27) 

where {σ} and {} represent vectors of stresses and virtual strains; subscripts B and S refer to 

bending and shear components, respectively. 

With an appropriate interpolation of displacement unknowns  

     ( , ) ( , )x y x yu  N  q , (28) 

where [N(x, y)] stands for shape functions matrix and {q} is the vector of nodal displacements, 

the virtual strain and stress fields can be expressed with the standard formulas: 

          0( , ) ( )ε q N  B ΛT T T T T
B Bx y zδ δ , (29) 

       ( )( , ) ( , )ε q N  B  
TT T T k

S Sx y x y    δ δ , (30) 
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        0( ) ( , )C Λ B N  qB B Bz x yσ , (31) 

       ( ) ( , ) ( , )C B  N  qk
S S S x y x y    σ . (32) 

With expressions (29-32) the formula for the internal virtual work of the layered plate (27) can 

be transformed to  

     q K qT
inW δ δ , (33) 

where {q} is the global vector of displacements and [K] stands for the global stiffness matrix:  
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N B C B N

kel

el k

k

el k

zN N
T T T

B B B el
el kA z

zN TT k k
S S S el

kA z

z z dz dA
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 (34) 

From (27) one can deduce the following interpolation of accelerations  

     ( , ) ( , )u  N  qx y x y  , (35) 

and then the virtual work of external forces can be presented as 

           
1

q P N t M q
el

el

N
T T

ext el
el A

W dA


                
  δ δ . (36) 

In (36) the first two components are related to the concentrated forces and surface loads, and 

the last component represents the inertia forces, with the global mass matrix given as: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


I., Kreja & A., Sabik: Equivalent single layer models in free vibration analysis of laminated multi-layered plates page 12 

 

         

 

( 1)
1 1

1
0 1 0

1
0 1 0

0
1

1 2 1
1

1 2 1
1 1 2

0 1 0
1 1 2

0 1 0

( , ) ( ) ( ) ( , )

0 0 0 0
0 0 0 0
0 0 0 0 0 0

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

M N  Φ Φ N  

N

kel

el k

zN N
T T

el
el kA z

x

y

T
x

y

x x x

y y y

x y z z dz x y dA

I I J
I I J

I
I I J

I I J
J J J

J J J


 

                        





   ρ

 
1

.N
el

el

N

el
el A

dA


                                               

 

. (37) 

Formulas for the inertia components given in (37) can be found in the Appendix A.  

Finally, with (33) and (36) one can arrive at the classical form of the motion equation governing 

undamped forced vibrations of linear systems: 

        K q M q R  , (38) 

where vector {R} represents all excitation forces. Assuming zero excitations and harmonic 

form of dynamical deflections one can easy transform (38) to the standard eigenvalue problem 

equation describing natural free vibrations:  

        2K M A 0 ω , (39) 

where  indicates the circular frequency of free vibrations and {A} represents the eigenvector 

describing the corresponding vibration mode.  

Before proceeding to practical applications of equation (39), let's consider alternative FE 

formulation to the displacement version given by (27). By assuming a mixed variational 

formulation with an independent interpolation of transverse stress components as proposed by 

Reissner [24] and known in the literature as Reissner’s Mixed Variational Theorem (RMVT), 

one can ensure the interlayer shear stress continuity and zero transverse shear stresses on the 

top and bottom surfaces. Murakami [17] constructed his theory for laminated plates by 

assuming the FOSD hypothesis for each individual layer of the multi-layered plate, but, due to 
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implementation of the RMVT he could impose the parabolic distribution of the transverse shear 

stress components in each layer and simultaneously ensure the inter-laminar stresses continuity. 

This approach was also followed by others, see e.g. [25, 26].  

The variation of the internal work in the plate built of N layers within the framework of  RMVT 

can be expressed as:  

              
( 1)

( ) ( ) ( )
1

k

k

zN TT T
in B B S S a S a S S a

kA z

W dz dAδ δ δ δε σ ε σ σ ε ε




                  
  , (40) 

with k standing for the layer number, hk being the thickness of the kth layer, ε and σ representing 

strains and stresses, where subscripts B and S refer to bending and shear components, 

correspondingly. An additional subscript (a) is used for the assumed field of transverse shear 

stresses and the related field of transverse shear strains (via Hooke’s law). 

The first and the second components in (40) denote the internal energy associated with bending 

and the transverse shear of the plate, respectively. In variational sense they match the 

equilibrium condition. The third term on the other hand expresses variationally the 

compatibility of the transverse shear stresses.  

The transverse shear stress σS(a) in (40) can adopt various distribution in the plate thickness 

direction. In the current research, a quadratic distribution of transverse shear stresses is assumed 

in each layer after [17] as  

 ( ) ( ) ( ) ( )( ) , ,k top k k bot k
z top z m z bot zz F F F x yα α α ασ σ σ α= + Τ + = , (41) 

with ( )top k
zασ  and ( )bot k

zασ signifying the transverse shear stress at the top and bottom surfaces of the 

layer k, and ( )k
zαΤ indicating the corresponding resultant forces for the layer k 

 
( 1)

( ) , ,
k

k

z
k
z z

z

dz x yα ασ α
−

Τ = =∫ . (42) 

Ftop, Fm and Fbot are the stress interpolation functions which have a form: 
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 ( ) ( ) ( ) ( )
2

2 2
3 11 3 1 3; ; .

4 2 4 2 4 2 4
kk k

top k k m k bot k k
k

F F F
h
ξξ ξξ ξ ξ ξ ξ

⋅ −
= − + + = = − − +

⋅  (43) 

The stress variables can be eliminated from the set of unknowns by invoking the stress 

continuity requirements at layer interfaces: 

 ( ) ( 1) ( ) ( 1) 1, 2,... 1top k bot k top k bot k
xz xz yz yz k Nσ σ σ σ+ += = = − , (44) 

and zeroing of transverse shear stress at the top and the bottom surfaces: 

 0)2/(0)2/( =±==±= hzhz yzxz σσ . (45) 

As a consequence, one can obtain a pure displacement based model with seven kinematical 

unknown parameters as presented in (4) (cf. [17, 21, 25, 26]). 

The set of computational models examined in the current study consists of seven formulations 

presented in Table 1.  

Table 1. Considered computational models  

Tag Transverse shear deformation 
Variational 
formulation 

Number of 
unknowns at 
single node 

Transverse shear 
stress continuity 

FOSD_0 
“pure” FOSD model without transverse 

shear correction 
PVD  
(27) 5 NO 

FOSD_1M 
FOSD with the local shear correction 
factor  = 2/12 for every layer in (7) 

after Mindlin [1] 

PVD  
(27) 

5 NO 

FOSD_1R 
FOSD with the local shear correction 
factor κ = 5/6 for every layer in (7)  

after Reissner [2] 

PVD  
(27) 

5 NO 

FOSD_3 

FOSD with global correction of 
composite transverse shear stiffness 

following Rolfes & Rohwer [22] (see 
Appendix B) 

PVD  
(27) 5 NO 

ZZ_1 
zig-zag function (17) 
after Murakami [17] RMVT (40) 7 YES 

ZZ_2 
zig-zag function (19) 

after Tessler [23] 
PVD  
(27) 

7 YES 

ZZ_3 
zig-zag function (19) 

after Tessler [23] RMVT (40) 7 YES 

 

3. Numerical Examples 

Since, in the early 1970s, Srinivas et al. [27, 28] and Noor [29] presented their exact 

solutions to the problems of free vibrations of multi-layer plates obtained on the basis of the 
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three-dimensional theory of elasticity, their examples have been widely adopted as mandatory 

benchmarks for testing new computational models. Additional reference results could be found 

in Reddy & Kuppusamy [30] and Noor & Burton [31, 32], and more recently in Kulkarni & 

Kapuria [33]. Test examples taken from the aforementioned classic works have been used in 

this report to examine the performance of the selected ESL models in a small amplitude free 

vibration analysis of multi-layered plates. All own results presented in the current report have 

been calculated with the authors’ own finite element software [26, 34] suitably supplemented 

by the implementation of the Bathe subspace iteration method for solving eigenvalue problem 

[35]. In the FE discretization, appropriately dense meshes of isoparametric Lagrangian 16-node 

finite elements were used to minimize the error of FEM approximation. Supplementary 

verification calculations were also performed using 9-node elements. Moreover, at the initial 

stage of preparing the FEA software, the correctness of solving the eigenvalue problem by the 

subspace iteration method was additionally positively verified using the SECANT procedure 

[35]; the results obtained with both methods were identical, but the computation times for the 

SECANT procedure were twice as long. 

3.1. Simply supported three-layer orthotropic square plate  

The first example to be considered in the present study is the classical benchmark 

problem introduced by Srinivas & Rao [28], who analyzed the change in the vibration 

fundamental frequency of a square (a = b) 3-layered simply supported orthotropic plate as a 

result of changing the stiffness of thinner covers (h1 = h3 = 0.1 h, h = 0.1 a) in relation to the 

constant modules of the thicker core (h2 = 0.8 h), with h standing for the total thickness. The 

following constitutive parameters (cf. (6)) can be determined for aragonite crystal (CaC03) used 

as a material of the inner layer [28]: c11 = 0.999781 χ;  c12 = 0.231141 χ;  c22 = 0.524771 χ;  

c13 = c23 = 0.0; c33 = 0.262931 χ;  c44 = 0.266810 χ;  c55 = 0.159914 χ; with χ = 160 GPa. By 

multiplying these numbers by the factor  one can get the corresponding cij components for the 

material assigned to both the external layers.  
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The assumed boundary conditions (SSSS) fully match the set “SS-1” of simply support 

constraints defined by Reddy [10]: 

 

( , 0) ( , ) 0
(0, ) ( , ) 0
( , 0) (0, ) ( , ) ( , ) 0
( , 0) ( , ) 0
(0, ) ( , ) 0
( , 0) ( , ) 0
(0, ) ( , ) 0

  
  
    
  
  
  
  

x x

y y

x x

y y

u x u x b
v y v a y

w x w y w x b w a y
x x b

y a y
x x b

y a y

 
 
   
 

 

 

 

ϕ ϕ
ϕ ϕ

ψ ψ
ψ ψ

, (46) 

 
The dimensionless frequency obtained for varying value of the modular ratio,  and 

normalized according to [28] as  

 
2h


ρλ ω
χ

 (47) 

is presented in Table 2 and compared with the exact 3D solution provided by Srinivas & Rao 

[28]. 

Table 2. Natural vibration fundamental frequency for three-layer simply supported (SSSS) orthotropic plate 

 
FOSD_0 FOSD_1M FOSD_1R FOSD_3 

 Error 
[%]  Error 

[%]  Error 
[%]  Error 

[%] 
1 0.047698 0.59 0.047380 -0.08 0.047403 -0.03 0.047403 -0.03 
2 0.057751 1.25 0.057283 0.42 0.057317 0.48 0.057017 -0.04 
5 0.080362 4.17 0.079524 3.08 0.079585 3.16 0.077116 -0.04 

10 0.107696 9.78 0.106405 8.46 0.106498 8.56 0.098049 -0.06 
15 0.129279 15.39 0.127636 13.93 0.127754 14.03 0.111947 -0.08 

 
ZZ_1 ZZ_2 ZZ_3 

Exact 3D [28] 
 Error 

[%]  Error 
[%]  Error 

[%] 
1 0.047403 -0.03 0.047403 -0.03 0.047403 -0.03 0.047419 
2 0.057078 0.06 0.057106 0.11 0.057078 0.06 0.057041 
5 0.077167 0.02 0.077193 0.06 0.077167 0.02 0.077148 

10 0.098109 0.01 0.098136 0.03 0.098109 0.01 0.098104 
15 0.112030 0.00 0.112056 0.02 0.112030 0.00 0.112034 

 

Srinivas & Rao [28] indicated that the error of the thin plate (CLT) approximation for 

the current example significantly increased with the increase of the modular ratio,  from 
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4.74% for  = 1, to 24.06% for  = 15), therefore one should not be surprised to observe a 

similar tendency for the FOSD models. Although, by taking into account the transverse shear 

and rotational inertia, the FOSD_0 model offers for a homogenous plate ( = 1) a notably better 

performance than CLT, but the error exceeds 15% for  = 15. This performance could not be 

significantly improved by the application of local shear correction factors κ (either models 

FOSD_1M or FOSD_1R). However, the global correction of composite transverse shear 

stiffness as applied in model FOSD_3 worked much better and turned out to be almost as 

effective as application of zig-zag functions. When it comes to the zig-zag theories, it may be 

interesting to note that the values of 4 out of 8 inertia components 1 1 2 2
1 1 0 0( , , , )x y x yJ J J J  are 

distinctly different in the ZZ_1 and ZZ_3 models; however, the final solutions obtained with 

them, both in terms of frequency and vibration modes, were identical. In this example, one can 

observe a slight advantage of the RMVT-based models ZZ_01 and ZZ_03 over the PVD-based 

ZZ_02. It should also be noted that the frequency obtained for  = 1 with models FOSD_3, 

ZZ_01, ZZ_02 and ZZ_03 is identical to that obtained for FOSD_1R, which results from the 

features of these models when applied to single-layer boards.  

 

3.2. Simply supported composite square plate  

Kulkarni & Kapuria [33] provided exact 3D elasticity results for free vibrations of 

several rectangular multi-layered plates. The one considered in this example is a square simply-

supported plate constructed as a symmetric cross-ply (0/90/90/0) composite laminate with 4 

layers of equal thicknesses. The graphite-epoxy layer is characterized by the following material 

parameters: EL = 181 GPa; ET = 10.3 GPa; GLT = 7.17 GPa; GTT = 2.87 GPa; vLT = 0.28.  

The first ten natural frequencies calculated for three different values of the length to 

thickness ratio (a/h) are tabularized in Table 3 with the application of the following 

normalization: 
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2

T

a
h E


ρλ ω . (48) 

One can observe that the exact 3D reference results [33] were provided only for the first 

five flexural vibration frequencies, while the set of boundary conditions (46) applied in 

computations allows also for in-plane vibration modes (frequencies enclosed in parentheses).    

Table 3. Natural frequencies of simply supported (SSSS) square cross-ply (0/90/90/0) plate  

a/h mode 
FSDT_0 FSDT_1M FSDT_1R FSDT_3 ZZ_1 = ZZ_3 ZZ_2 Exact 

3D  
[33]  Error 

[%]  Error 
[%]  Error 

[%]  Error 
[%]  Error 

[%]  Error 
[%] 

5 

1 9.5256 11.27 9.1080 6.39 9.1366 6.72 8.4713 -1.05 8.5485 -0.15 8.6255 0.75 8.5611 

2 (13.1057)  (13.1057)  (13.1057)  (13.1057)  (13.1057)  (13.1057)  - 

3 (13.1057)  (13.1057)  (13.1057)  (13.1057)  (13.1057)  (13.1057)  - 

4 17.1251 7.84 16.3092 2.70 16.3654 3.06 15.6578 -1.40 15.8338 -0.29 16.1477 1.69 15.8799 

5 20.5641 17.45 19.0718 8.93 19.1701 9.49 16.8095 -3.99 17.4941 -0.08 17.7012 1.10 17.5087 

6 25.1694 13.21 23.5120 5.76 23.6223 6.25 21.4693 -3.43 22.1867 -0.20 22.5499 1.43 22.2319 

7 (26.2114)  26.0759 1.79 26.1898 2.24 25.1497 -1.82 25.5275 -0.35 26.2492 2.47 25.6164 

8 (26.2114)  (26.2114)  (26.2114)  25.3798  27.4067  27.8234  - 

9 27.7608 8.37* (26.2114)  (26.2114)  (26.2114)  30.0049  30.7226  - 

10 31.9006  29.2788  29.4494  (26.2114)  30.7569  31.2744  - 

10 

1 11.9284 5.58 11.6958 3.52 11.7123 3.67 11.2750 -0.20 11.2915 -0.06 11.3367 0.34 11.2981 

2 22.0567 3.78 21.5886 1.58 21.6219 1.74 21.1367 -0.55 21.2193 -0.16 21.4031 0.71 21.2529 

3 (26.2114)  (26.2114)  (26.2114)  (26.2114)  (26.2114)  (26.2114)  - 

4 (26.2114)  (26.2114)  (26.2114)  (26.2114)  (26.2114)  (26.2114)  - 

5 32.3621 14.21 30.7743 8.60 30.8828 8.99 28.0579 -0.98 28.3288 -0.03 28.5548 0.77 28.3362 

6 38.1024 11.27 36.4320 6.39 36.5465 6.72 33.8851 -1.05 34.1939 -0.15 34.5022 0.75 34.2444 

7 39.2862 4.55 38.0346 1.22 38.1227 1.46 37.2828 -0.78 37.4954 -0.21 38.0936 1.38 37.5751 

8 50.7240  48.5592  48.7085  46.1184  46.6019  47.2479  - 

9 (52.4229)  52.0650  52.3119  46.1386  47.2691  47.7537  - 

10 (52.4229)  (52.4229)  (52.4229)  50.2086  51.3447  51.8807  - 

20 

1 12.9501 1.80 12.8714 1.18 12.8771 1.23 12.7167 -0.03 12.7188 -0.02 12.7354 0.11 12.7210 

2 24.2798 1.25 24.1160 0.57 24.1279 0.62 23.9399 -0.17 23.9672 -0.05 24.0322 0.22 23.9803 

3 41.2158 6.52 40.3400 4.25 40.4024 4.41 38.6374 -0.15 38.6918 -0.01 38.8418 0.38 38.6947 

4 45.8192 1.61 45.2970 0.45 45.3347 0.53 44.9630 -0.29 45.0592 -0.08 45.3204 0.50 45.0944 

5 47.7139 5.58 46.7832 3.52 46.8495 3.67 45.1001 -0.20 45.1660 -0.06 45.3470 0.34 45.1926 

6 52.4229  (52.4229)  (52.4229)  (52.4229)  (52.4229)  (52.4229)  - 

7 52.4229  (52.4229)  (52.4229)  (52.4229)  (52.4229)  (52.4229)  - 

8 63.3390  62.1606  62.2447  60.5132  60.6701  61.0078  - 

9 74.9216  73.5986  73.6934  72.4677  72.8190  73.2775  - 

10 80.9489  77.9447  78.1540  72.8963  73.1098  73.8024  - 
* Due to the transfer in vibration modes, this error value was calculated with respect to the 5th flexural frequency from the reference solution  

By examining the error measures given in Table 3 one can judge that the basic FOSD 

model (FOSD_0), can provide an acceptable estimation only for the fundamental frequency of 
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the thinnest of considered plates (a = 20 h). An improvement of results obtained by an 

application of the local transverse shear correction in models FOSD_1M and FOSD_1R is very 

limited. However, the global shear correction implemented in FOSD_3 has been much more 

effective, what resulted in a very good performance of that model. Here again, both the zig-zag 

models based on the RMVT (ZZ_1 and ZZ_3) gave identical numbers and an excellent 

agreement with the reference solution of Kulkarni & Kapuria [33]. The performance of model 

ZZ_2 is slightly worse but the accuracy of the results calculated with this approach can be 

compared with that offered by FOSD_3. 

Selected flexural vibration modes achieved with the zig-zag model ZZ_1 for a = 10 h 

plate are presented in Fig. 2. 

 

   

Mode 1,  = 11.2915 Mode 2,  = 21.2193 Mode 5,  = 28.3288 

   

Mode 6,  = 34.1939 Mode 7,  = 37.4954 Mode 8,  = 46.6019 

Fig. 2 Selected vibration modes obtained with model ZZ_1 for simply supported plate, a = 10 h 

 

3.3. Square composite plate with all-round clamped boundary 
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In the next example the free vibration analysis has been performed for the same graphite-

epoxy composite plate (0/90/90/0) as in the previous example, but now the plate is clamped at 

the edges. The dimensionless frequencies normalized according to (48) are given in Table 4 for 

three different values of the length to thickness ratio (a/h). The results of the three-dimensional 

finite element analysis (3D FEA) as provided by Kulkarni & Kapuria [33] have been used as 

the reference solution.  

 

Table 4. Natural frequencies of clamped (CCCC) square composite (0/90/90/0) plate  

a/h mode 
FSDT_0 FSDT_1M FSDT_1R FSDT_3 ZZ_1 = ZZ_3 ZZ_2 3D FEA  

[33] 
  Error 

[%]  Error 
[%]  Error 

[%]  Error 
[%]  Error 

[%]  Error 
[%] 

5 

1 12.8730 12.08 11.9810 4.31 12.0400 4.82 10.9205 -4.92 11.4592 -0.23 11.6856 1.74 11.4860 

2 19.9014 8.78 18.5308 1.29 18.6217 1.78 17.5204 -4.24 18.2021 -0.51 18.6979 2.20 18.2956 

3 21.8339 12.94 20.1230 4.09 20.2347 4.67 17.7433 -8.22 19.2791 -0.27 19.6533 1.66 19.3319 

4 26.8090 10.54 24.8010 2.26 24.9328 2.81 22.6211 -6.72 24.1466 -0.43 24.7146 1.91 24.2519 

5 29.4901 7.86 27.3789 0.14 27.5184 0.65 25.9017 -5.26 27.1758 -0.60 28.0164 2.47 27.3411 

6 32.6013 12.76 29.8585 3.27 30.0366 3.89 26.2090 -9.35 28.8015 -0.38 29.4207 1.76 28.9117 

7 34.6477  32.0550  32.2256  29.5606  31.6129  32.4872   

8 36.2003  33.2732  33.4641  29.9338  32.3812  33.1311   

9 40.0625  37.0431  37.2420  34.2091  36.9314  38.1557   

10 42.3713  39.0088  39.2288  35.4980  38.3602  39.3565   

10 

1 19.7334 11.17 18.7893 5.85 18.8535 6.22 17.3794 -2.09 17.7321 -0.10 17.9213 0.96 17.7502 

2 30.2931 7.41 28.9580 2.68 29.0497 3.00 27.7001 -1.78 28.1432 -0.21 28.6118 1.45 28.2032 

3 37.3573 15.12 34.8990 7.55 35.0619 8.05 31.1311 -4.07 32.4177 -0.10 32.8171 1.13 32.4505 

4 44.3626 11.83 41.7413 5.22 41.9165 5.66 38.3265 -3.39 39.5891 -0.20 40.1782 1.28 39.6697 

5 46.6503 6.62 44.3475 1.36 44.5048 1.72 42.8870 -1.98 43.6058 -0.33 44.5835 1.90 43.7521 

6 57.1973 13.36 53.9287 6.88 54.1486 7.32 47.7378 -5.39 50.4004 -0.11 51.0903 1.26 50.4570 

7 58.5988  54.3058  54.5880  50.7220  52.1275  53.1505   

8 63.5733  59.1979  59.4868  52.9777  55.5646  56.3848   

9 66.0450  62.3657  62.6147  60.4474  61.5688  63.1985   

10 73.3649  68.5602  68.8793  62.7322  65.3519  66.5152   

20 

1 25.1742 6.13 24.6049 3.73 24.6452 3.90 23.5784 -0.60 23.7103 -0.05 23.8225 0.43 23.7212 

2 37.7470 3.94 37.0160 1.93 37.0680 2.07 36.1099 -0.57 36.2849 -0.08 36.5265 0.58 36.3153 

3 55.1367 11.15 52.8801 6.60 53.0360 6.91 48.9095 -1.40 49.5851 -0.04 49.9519 0.70 49.6061 

4 60.2497 4.47 58.9004 2.13 58.9963 2.30 56.9457 -1.26 57.6213 -0.09 58.0650 0.68 57.6707 

5 62.9390 8.04 60.6492 4.10 60.8076 4.38 57.8675 -0.67 58.1922 -0.11 58.7909 0.91 58.2579 

6 79.6068 6.92 76.9878 3.40 77.1699 3.64 73.5913 -1.16 74.3569 -0.14 75.0794 0.83 74.4577 

7 89.7996  87.2758  87.4539  80.0812  81.7878  82.5324   

8 93.2220  88.3227  88.6550  85.6654  86.3827  87.5857   

9 98.7306  93.8346  94.1667  85.9957  87.5433  88.3519   

10 104.6949  101.1810  101.4260  97.8054  98.8037  100.0839   
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By examining the numbers given in Table 4, one can see that the clamped boundary conditions 

turned out to be more demanding for the FOSD models, the behavior of which cannot be 

considered satisfactory, perhaps with the exception of the FOSD_3 model, but only for the 

thinnest plate under consideration (a = 20 h). One should remember that the global shear 

correction proposed by Rolfes & Rohwer [22] was constructed assuming a cylindrical 

deformation profile, which, however, differs significantly from that of the clamped plate. The 

three models based on the zig-zag functions can provide satisfactory solutions for all three 

aspect ratios considered, but here, again, the best accuracy can be obtained when the zig-zag 

deformation profile is enhanced by the RMVT formulation ensuring continuity of interlaminar 

shear stress (models ZZ_1 and ZZ_3).  

The vibration modes for the clamped plate followed a predictable and quite regular 

scheme as can be observed in Fig. 3. 

3.4. Clamped square sandwich plate (0/90/Core/90/0) 

Kulkarni & Kapuria [33] provided the results of the three-dimensional fine mesh ABAQUS 

analysis of natural vibrations for different variants of sandwich panels with faces made as fiber 

reinforced composite laminates. These results can serve as an excellent reference solution for 

benchmarking other models. The problem discussed in this section relates to a sandwich panel 

consisted of an orthotropic glass fiber honeycomb core and two thin face-sheets each made as 

2-layer cross-ply (90/0) graphite-epoxy composite. Such a structure can be also described as a 

five-layer (0/90/Core/90/0) laminate. The thickness of the central core is taken as 0.8 h, while 

that of each graphite-epoxy ply is 0.05 h. The material parameters are given in Table 5. 

Table 5. Material parameters for sandwich plate 

 
 

[kg/m3] 
Ea 

[GPa] 
Eb 

[GPa] 
Gab 

[GPa] 
Gac 

[GPa] 
Gbc 

[GPa] 
ab 

graphite-
epoxy faces 681.8 276 6.9 6.9 6.9 6.9 0.25 

honeycomb 
core 1000 0.5776 0.5776 0.1079 0.1079 0.22215 0.0025 
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Mode 1,  = 17.7321 Mode 2,  = 28.1432 Mode 3,  = 32.4177 

   

Mode 4,  = 39.5891 Mode 5,  = 43.6058 Mode 6,  = 50.4004 

   

Mode 7,  = 52.1275 Mode 8,  = 55.5646 Mode 9,  = 61.5688 

Fig. 3. The first 9 vibration modes calculated with model ZZ_3 for clamped composite plate a = 10 h  

 

Estimations of the first six natural frequencies calculated with the examined ESL models 

for three different values of the length to thickness ratio (a/h) have been confronted with the 

3D FEA results provided by Kulkarni & Kapuria [33] applying the following normalization: 

 
( )

( )

100 core

a core

a
E


ρ

λ ω . (49) 

The error rates of own solutions are listed in Table 6. 
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Table 6. Accuracy of ESL models for clamped (CCCC) square sandwich plate (0/90/Core/90/0) 

a/h Mode 
3D FEA 

[33] 
 

FOSD_0 
Error 
[%] 

FOSD_1M 
Error 
[%] 

FOSD_1R 
Error 
[%] 

FOSD_3 
Error 
[%] 

ZZ_1  
Error 
[%] 

ZZ_2  
Error 
[%] 

ZZ_3  
Error 
[%] 

5 

1 12.0464 165.86 143.56 145.01 -8.49 153.77 0.84 0.76 
2 18.2701 175.28 151.86 153.38 -12.00 162.26 0.92 0.82 
3 20.5724 147.01 126.19 127.54 -9.39 135.98 0.99 0.91 
4 24.8738 157.92 135.99 137.41 -11.43 146.01 1.00 0.90 
5 26.4054 175.65 151.31 152.88 -16.21 161.98 1.30 1.15 
6 30.6442 141.95 120.78 122.15 -12.62 130.81 1.20 1.10 

10 

1 11.2236 146.99 130.99 132.06 -3.86 138.42 0.53 0.48 
2 16.6777 171.38 151.43 152.74 -5.31 160.33 0.53 0.47 
3 18.9650 139.33 122.11 123.24 -4.22 130.29 0.65 0.59 
4 22.7096 155.66 136.61 137.86 -5.00 145.38 0.61 0.55 
5 23.5270 187.82 165.09 166.57 -6.84 175.11 0.54 0.48 
6 28.0728 143.17 124.43 125.65 -5.89 133.38 0.68 0.62 

20 

1 10.1635 92.92 86.34 86.80 -1.61 89.46 0.61 0.57 
2 15.2734 128.21 117.68 118.40 -2.42 122.82 0.71 0.66 
3 17.2645 106.16 95.74 96.45 -1.91 100.46 0.85 0.79 
4 20.7882 121.73 110.33 111.11 -2.26 115.67 0.82 0.76 
5 21.8260 155.52 141.01 141.98 -2.91 148.07 0.71 0.66 
6 26.0346 117.75 104.43 105.32 -2.66 110.36 0.78 0.73 

 

Even a quick glance at the results presented in Table 6 shows that most of the tested models 

were not able to provide a satisfactory estimation of the natural frequency for the clamped five-

layer (0/90/Core/90/0) plate. The error values for four models (FOSD_0, FOSD_1M, 

FOSD_1R and ZZ_01) even exceeded 100 percent. It is true that the application of the global 

transverse shear correction in the FOSD_3 model significantly improved the accuracy of the 

solution, but only the results for the thinnest of the analyzed plates (a = 20 h) can be considered 

satisfactory. The low accuracy of the model ZZ_01 may be also a negative surprise; however, 

it should be noted that this formulation does not take into account the relatively large difference 

in stiffness of the core and the faces. Since this difference is included in the Tessler zigzag 

function (19), both models in which it was used (ZZ_2 and ZZ_3) were able to provide very 

good accuracy of solutions. It may be interesting that the same example of the clamped five-

layer (0/90/Core/90/0) plate was analyzed in [36] with the Refined Zigzag Theory based also 
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on the function (19); however, the accuracy of the results presented in [36] was lower than that 

obtained with the use of the ZZ_2 and ZZ_3 models. 

 

3.5. Clamped-free (CFCF) square sandwich plate (0/90/Core/90/0) 

Another interesting example from the collection of problems with the 3D FEA results provided 

by Kulkarni & Kapuria [33] is the same square sandwich plate (0/90/Core/90/0), as analyzed in 

the previous example but with modified boundary conditions - now the plate is clamped at two 

opposite edges, and the other two remain free (CFCF).  

Table 7 presents the assessment of the accuracy of own results in terms of the first six 

frequencies of flexural free vibrations tin relation to the FEA 3D results [33].  

Table 7. Accuracy of ESL models for clamped-free (CFCF) square sandwich plate (0/90/Core/90/0) 

a/h Mode 
3D FEA 

[33] 
 

FOSD_0 
Error 
[%] 

FOSD_1M 
Error 
[%] 

FOSD_1R 
Error 
[%] 

FOSD_3 
Error 
[%] 

ZZ_1 
Error 
[%] 

ZZ_2 
Error 
[%] 

ZZ_3 
Error 
[%] 

5 

1 7.5449 197.59 172.32 173.96 -10.34 183.33 0.74 0.66 

2 9.2411 152.07 132.35 133.63 -6.01 140.93 0.54 0.48 
3 15.5981 186.66 162.16 163.75 -13.38 172.82 0.92 0.81 
4 17.3404 158.61 141.38 142.53 -10.92 149.52 0.76 0.68 
5 18.9511 141.96 124.31 125.59 -3.59 132.89 0.37 0.34 
6 23.5989 95.93 94.31 94.31 -13.82 94.31 0.56 0.50 

10 

1 7.0119 180.70 161.88 163.14 -4.80 170.22 0.45 0.40 

2 7.7131 161.12 144.03 145.17 -3.33 151.60 0.40 0.36 
3 14.1496 137.50 127.04 127.75 -6.00 131.93 0.50 0.45 
4 15.1975 167.57 147.27 148.60 -4.90 156.16 0.45 0.40 
5 17.0942 142.30 124.42 125.59 -1.28 132.25 0.14 0.12 
6 21.3089 115.19 115.19 115.19 -5.23 115.19 0.26 0.23 

20 

1 6.4836 118.29 110.40 110.95 -2.09 113.99 0.59 0.55 

2 6.7496 114.44 106.69 107.23 -1.71 110.22 0.58 0.54 
3 13.0570 64.08 60.14 60.41 -2.81 61.97 0.74 0.69 
4 13.5350 141.56 128.62 129.50 -2.42 134.41 0.70 0.65 
5 13.6626 142.39 129.54 130.41 -0.50 135.29 0.17 0.16 
6 18.1674 105.58 96.16 96.80 -1.38 100.40 0.41 0.38 

 
 

It should be noted that the boundary conditions adopted in this example do not eliminate 

the in-plane vibration modes. The vibration frequency corresponding to such a form of vibration 

could be easily identified in the results of own calculations because its normalized value  (49) 
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was equal to 22.9555 for all three considered plate thicknesses regardless of the choice of the 

calculation model. However, because the set of results of the 3D FEM analysis presented in 

[33] does not include in-plane modes, therefore, for the sake of clearer presentation, only the 

out-of-plane vibrations have been included in Table 7.  

From the results shown in Table 7, almost exactly the same conclusions can be drawn 

as in the analysis of the results of the previous example. The modification of boundary 

conditions did not change much here. It is worth noting, however, that the analysis of the 

obtained values of natural frequencies alone is usually not sufficient to evaluate the 

computational models. It should be remembered that with different computational models it is 

also possible to obtain a different order of vibration modes.  

The flexural vibration modes established with application of model ZZ_3 for the square 

CFCF sandwich plate a = 5 h are illustrated in Figure 4. 

 

4. Final conclusions 

The performance of seven various ESL models in a natural vibration FEA of multi-

layered plates has been examined in the paper. The four variants of the classical FOSD 

formulation diversified by an application of different transverse shear correction were 

accompanied by three models refined by the application of the zig-zag functions. The 

comparative examination of the selected models has been performed for the variety of 

benchmark examples with available reference solutions, either exact analytical 3D elastic or 3D 

FEA, for free vibration analysis of multi-layered plates with various support conditions.  

The difference in the values of the shear correction coefficients in Reissner’s ( = 5/6) and 

Mindlin’s ( = 2/12) variants is slightly above 1 percent, but the use of the latter variant usually 

allows for a better estimation of the fundamental frequency of free vibrations of moderately 

thick isotropic plates. However, in the cases of multi-layered plates examined in this study, it 
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was difficult to observe a similar advantage of the FOSD_1M model over the FOSD_1R one, 

as, generally, both those approaches do not account for the layered structure of the plate and 

ignore stiffness differences among individual layers. The concept of global transverse shear 

correction applied in model FOSD_3 offered a better accuracy of calculations; nevertheless, it 

did not work as good as in static applications which should not come as a surprise given the 

static nature of the compounds from which this concept is derived. It should also be noted that 

the efficiency of the model FOSD_3 strongly depends on the support conditions; for freely 

supported slabs, the solutions obtained with this model offered an accuracy similar to that 

obtained with the use of models based on zig-zag functions.  

   

Mode 1,  = 7.5946 Mode 2,  = 9.2858 Mode 3,  = 15.7246 

   

Mode 4,  = 17.4575 Mode 5,  = 19.0157 Mode 7,  = 23.7178 

   

Mode 8,  = 24.8592 Mode 9,  = 26.2555 Mode 10,  = 27.4899 

Fig. 4. The first 9 flexural vibration modes calculated with model ZZ_3 for CFCF sandwich plate a = 5 h  
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It came as no surprise that computational models based on zig-zag functions performed 

generally better than the FOSD models. In most of the analyzed cases, it was also possible to 

notice the advantage of models ZZ_1 and ZZ_3 based on the RMVT formulation ensuring the 

continuity of the interlayer shear stress over the ZZ_2 approach built of PVD, in which these 

continuity conditions were not met. However, in the last two examples it turned out that the 

ZZ_1 model utilizing the Murakami function (17) which simulates the zig-zag effect in an 

arbitrary manner without considering the material stiffness, failed when there was a large 

difference in shear stiffness between the layers. It was surprising that even the FOSD_1M and 

FOSD_1R models performed better in these examples than the ZZ_1 one. Taking into account 

all the presented results, it should be noted that the ZZ_3 model offered the best accuracy 

among all the tested models. 

Finally, it seems reasonable to point out that in similar comparative analyzes as carried out in 

this report, one cannot limit oneself only to determining the value of the frequency of vibrations, 

because depending on the adopted calculation model, there may be shifts in the order of 

vibration modes.  
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Appendix A 
 

Formulas for the inertia components introduced in (37):  
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Appendix B 
 

The global transverse shear stiffness for the FOSD_3 model is calculated following the 

proposal of Rolfes & Rohwer [22] starting with the idea that transverse shear stresses can be 

obtained from the equilibrium equations: 

 
, , , 0
, , , 0

xx x yx y zx z x

xy x yy y zy z y

f
f

   

   

σ σ σ

σ σ σ
 (B.1) 

with fx and fy standing for the appropriate components of body forces. In the absence of body 

forces one would obtain: 
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 (B.2) 

By analogy to (8) the membrane forces and bending moments can be acquired by the through-

the-thickness integration of the appropriate stress components: 
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In the FOSD formulation, the in-plane strain components for a plate can be presented as 
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After introducing the following substitutions ({N} should be distinguished from [N] standing 

for the shape functions matrix, and {M} should not be mistaken with [M] introduced earlier to 

represent the mass matrix): 
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the following constitutive relation can be presented  
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Rolfes & Rohwer [22] suggested that the influence of membrane forces {N} on the transverse 

shear stresses could be ignored what resulted in  

       1
0 A B

ε κ  (B.12) 

and consequently  
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          1

*

M D B A B

D


 

   



κ (B.13) 

With (B.4) and (6) the formula (B.2) can be transferred to 

                
2

1 0 2 0( ) [ ] , , [ ] , ,C C
h

z

S B x x B y yz b z b z dz


    ε κ ε κσ  (B.14) 

where two Boolean matrices were introduced: 

1 2

1 0 0 0 0 1
[ ] , [ ]

0 0 1 0 1 0
b b

   
          

. (B.15) 

Next by using (B.12) and (B.13) in (B.14) one can arrive at 

       1 2( ) [ ] ( ) , [ ] ( ) , ,S x yz b F z M b F z M σ (B.16) 

with the following substitution: 

         
2

11 *( ) .C
h

z

BF z z A B dz D




       (B.17) 

Further considerations require the use of the cylindrical bending assumption; then by utilizing 

the differential relation between the resulting transverse shear forces and bending moments 

separately for x and y directions one can adopt the following relations:  

   
, 0 0

, 0 0 , , , .
0 0 0 0

x x xz

x y y y yz

M T
M M M T

                                                                                 

 (B.18) 

With (B.16) and (B.18) one can arrive at the following relation between transverse shear 

stresses and the resulting transverse shear forces:  

11 32

31 22

( ) ( ) ( )
( ) ( ) ( )

xz xz

yz yz

z TF z F z
z TF z F z

                         

σ
σ

. (B.19) 

In the final phase of derivations the expression for the complementary transverse shear energy 

calculated from transverse shear stresses should be compared with the same energy but 

expressed by resultant shear forces: 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


I., Kreja & A., Sabik: Equivalent single layer models in free vibration analysis of laminated multi-layered plates page 33 

        
2

2

1
1 55 45

45 44

1 1
2 2

C
h

h

TT xz
S S S xz yz

yz

Ta a
dz T T

Ta a






               


 

 

σ σ (B.20) 

what finally, after using (B.19), brings the expression for the improved global transverse shear 

stiffness (which replaces the formula given (10)): 

 
2

2

1

155 45 11 31 11 32

45 44 32 22 31 22

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

C
h

h

S

a a F z F z F z F z
dz

a a F z F z F z F z







                            


 

 

. (B.21) 
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