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1. Introduction

The aim of this paper is to establish a Leray–Schauder equivariant degree theory for equivariant completely continuousupper semicontinuous vector fields in Banach representations of a compact Lie group. There are several versions ofequivariant degree, see e.g. [3] or [2] and references therein. We have chosen a modest version without a parameter,which is the closest to the classical Leray–Schauder degree. The method is quite standard. We use equivariantapproximation results obtained recently in [6], and equivariant Schauder projections. It is well known that the degreetheory is a powerful tool in existence theory for differential equations and inclusions, cf. e.g. [15]. The same is withequivariant versions, see [3, 11] and references therein. We decided to present a multiplicity result for a second ordermultivalued Dirichlet boundary value problem (see Theorem 6.4) with some symmetries. The calculation of the equivariantdegree is quite complicated in general; however, many special cases (especially for finite groups and linear maps) weretreated in [3]. They may serve as a kind of a “black box”, and this is the idea of our approach, cf. e.g. Example 4.2 andRemark 6.3. We do not pretend to the greatest generality of results. It is clear that the same method works for otherboundary conditions and other differential inclusions with symmetric right hand side.
∗ E-mail: zdzedzej@mif.pg.gda.pl
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Equivariant degree of convex-valued maps applied to set-valued BVP

The paper is organized as follows. In Section 2, basic definitions and remarks concerning group actions, equivariantmaps and properties of vector Haar integral are formulated as well as some definitions concerning set-valued maps. InSection 3, we give fundamental approximation results in equivariant setting. Section 4 is devoted to the equivariantdegree in a finite-dimensional orthogonal representation of a compact Lie group. An infinite-dimensional Leray–Schauderdegree is defined in Section 5. The last section is devoted to second order differential inclusions with Dirichlet boundaryconditions.
Notation.In the sequel, we consider only Hausdorff topological spaces. If X is a topological space and A ⊂ X , then A denotes the
closure of A. If X is a metric space (with the metric denoted by d by default), A ⊂ X and ε > 0, then B(A, ε) = {x ∈
X : d(x, A) = infa∈A d(x, a) < ε}; in particular B(a, ε) is the open ball with radius ε > 0 centered at a ∈ X . Moreover,let D(A, ε) = {x ∈ X : d(x, A) 6 ε}. In what follows E denotes a Banach space with the norm ‖ · ‖ over real or complexnumbers. Note that if A ⊂ E and ε > 0, then B(A, ε) = A + εB(0, 1) = A + B(0, ε). The convex (resp. closed convex)hull of A ⊂ E is denoted by convA (resp. convA).
2. Preliminaries

We start with some notation for group actions, see [5] for more details. Let G be a group. If H ⊂ G is a subgroup, wedenote by G/H the set of left cosets gH. Two subgroups H and K of G are conjugate if there exists g ∈ G such that
K = g−1Hg. The conjugacy class of H is denoted by (H). There is a natural partial order on the set Φ(G) of conjugacyclasses: (K ) 6 (H) if there exist K ∈ (K ) and H ∈ (H) such that K ⊂ H.Throughout the whole paper, we consider only compact Lie groups and their closed subgroups. Given a subgroup
H ⊂ G, let N(H) be the normalizer of H. The Weyl group of H is the quotient W (H) = N(H)/H. Let us denoteΦ0(G) = {(H) ∈ Φ(G) : dimW (H) = 0}.A G-set is a pair (X, ξ), where X is a set and ξ : G×X → X is an action of G on X , i.e., a map such that(i) ξ(g1, ξ(g2, x)) = ξ(g1g2, x) for g1, g2 ∈ G and x ∈ X ,(ii) ξ(e, x) = x for x ∈ X , where e ∈ G is the group unit.
In the sequel we write gx instead of ξ(g, x). For every subgroup H ⊂ G the set G/H is a G-set by the action
g(g̃H) = gg̃H. If ξ is continuous, we call (X, ξ) a G-space. We say that a real (resp. complex) Banach space E is a
real (resp. complex) Banach representation of G if E is a G-space and, for each g ∈ G, the map ξE(g, ·) : E 3 x 7→ gxis linear and bounded.For x ∈ X , the subgroup Gx = {g ∈ G : gx = x} is called the isotropy group of X at x. The conjugacy class of an isotropygroup is called an isotropy type. We denote by Iso(X ) the set of all isotropy types in X . The set Gx = {gx : g ∈ G} iscalled an orbit through x.For a given subgroup H ⊂ G we specify several subspaces of a G-space X : XH = {x ∈ X : H = Gx}, X(H) = {x ∈ X :(H) = (Gx )}, XH = {x ∈ X : H ⊂ Gx}, X (H) = {x ∈ X : (H) 6 (Gx )}.We define the Burnside ring of G as follows (cf. [3] for details and examples): As a group A(G) we take the freeabelian group generated by (H) ∈ Φ0(G). In other words, elements a ∈ A(G) can be viewed as formal finite sums
a = nH1 (H1) + · · · + nHm (Hm) with coefficients nHi ∈ Z and (Hi) ∈ Φ0(G). The operation of multiplication in A(G) isa bit more sophisticated. Let (H), (K ) ∈ Φ0(G). Consider the diagonal action of G on (G/H)× (G/K ). Then for any(L) ∈ Φ0(G), the spaces G/HL and G/K L consist of finitely many W (L)-orbits. Therefore, the space ((G/H)× (G/K ))(L)/Gis finite. Let nL(H,K ) denote the number of elements of this space. Define

(H) · (K ) = ∑
(L)∈Φ0(G)nL(H,K )(L).

There are some useful, easy to prove, properties of open coverings of G-spaces.
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Z. Dzedzej

Lemma 2.1 ([13]).
Let X be a G-space and {Uλ}λ∈Λ an open, locally finite covering of X . Then every point x ∈ X has a G-neighborhood
V such that the set {λ ∈ Λ : Uλ ∩ V 6= ∅} is finite, and the covering {GUλ}λ∈Λ is locally finite.

Definition 2.2.A covering U = {Uλ}λ∈Λ is G-invariant if each Uλ is G-invariant. A covering U is a G-covering iff(i) gUλ ∈ U for every Uλ ∈ U and every g ∈ G,(ii) the index set Λ is a G-set satisfying gUλ = Ugλ.
If U = {Uλ}λ∈Λ is a G-covering, we can produce an invariant covering called the saturation of U: Ũ = {

Ũα =⋃
λ∈α Uλ

}
α∈Λ/G .

Proposition 2.3 ([13, Proposition 1.4]).
Let X be a paracompact G-space. Then(1) Every open G-covering U of X has an open refinement V which is a G-covering and the saturation Ṽ of which is

locally finite.(2) Every open invariant covering V = {Vα}α∈A admits an invariant partition of unity {pα}α∈A such that p−1
α ((0, 1]) ⊂ Vα

for every α ∈ A.(3) The orbit space X/G is paracompact.

Let us denote by C (G) the space of all continuous real functions on a group G. The left (right) translation of f : G → Ris the map Lsf given by (Lsf)(x) = f(sx) (resp. (Rsf)(x) = f(xs)).
Theorem 2.4 ([16, Theorem 5.14]).
If G is compact, then there exists a unique normalized Haar measure on G, which is a left-invariant probabilistic Borel
measure: ∫

G
f dm = ∫

G
(Lsf)dm s ∈ G, f ∈ C (G).

It is also right-invariant, i.e., ∫
G
f dm = ∫

G
(Rsf)dm s ∈ G, f ∈ C (G).

Moreover, ∫
G
f(x)dm(x) = ∫

G
f(x−1)dm(x) f ∈ C (G).

The following proposition is formulated in a great generality in [1]. It is true in particular for Banach space-valuedfunctions. One can find it e.g. in [10, Proposition 3.30], see also [16, Theorem 3.27] or [6].
Proposition 2.5.
Assume that V is a complete (in the sense of the natural uniformity induced from Z ) convex invariant subset of a
locally convex topological vector space Z on which a compact group G acts linearly. Let C (G,V ) denote the space
of all continuous maps f : G → V endowed with the compact-open topology. Then the vector-valued Haar integral∫ : C (G,V )→ V is a well-defined continuous map satisfying the following properties:(1) ∫G f(hg)dg = ∫G f(g)dg = ∫G f(gh)dg for any h ∈ G,(2) ∫G hf(g)dg = h

∫
G f(g)dg for any h ∈ G,(3) ∫G f(g)dg = v0, if f(G) = {v0} for a point v0 ∈ V .
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Equivariant degree of convex-valued maps applied to set-valued BVP

Let us note that in case of a finite group G or a finite-dimensional space Z , the completeness assumption is superfluous.If E is a Banach representation of G, then one can define a norm ‖ · ‖G on E such that the action of G on E is isometric,i.e., ‖gx‖G = ‖x‖G for all g ∈ G and x ∈ E. Indeed, it is sufficient to put
‖x‖G = ∫

G
‖gx‖dg, x ∈ E.

This new norm is complete since it is equivalent to the original norm ‖ · ‖ in E.Now, we recall some information about set-valued maps, for more details see [4, 8]. Let X, Y be two metric spaces.By a set-valued map φ from X into Y (written φ : X ( Y ) we mean a map that assigns to each x ∈ X a nonempty
closed subset φ(x) of Y . If, for any closed (resp. open) set U ⊂ Y , the preimage φ−1(U) = {x ∈ X : φ(x) ∩ U 6= ∅} isclosed (resp. open), then we say that φ is upper (resp. lower) semicontinuous; φ is continuous if it is upper and lowersemicontinuous simultaneously. The graph Gr(φ) = {(x, y) ∈ X×Y : y ∈ φ(x)} of an upper semicontinuous map φ isclosed. A map φ is upper semicontinuous and has compact values (i.e. for each x ∈ X , the set φ(x) is compact) if andonly if, for any sequence (xn, yn) ∈ Gr(φ) such that xn → x ∈ X , there is a subsequence (ynk ) such that ynk → y ∈ φ(x)(in other words the restriction pφ : Gr(φ) → X of the projection X×Y → X is proper). Recall that a continuous map
f : X → Y is proper if, for each compact K ⊂ Y , the preimage f−1(K ) is compact. It is worth to remind that f is properif and only it is perfect, i.e., continuous, closed and such that, for any y ∈ Y , f−1(y) is compact (this is so since Y is,by assumption, a metric space). Observe that a continuous surjection f : X → Y is perfect if and only if the multivaluedmap Y 3 y ( f−1(y) ⊂ X is upper semicontinuous and has compact values. We say that a map φ is compact if it isupper semicontinuous and the closure clφ(X ) is compact; φ is completely continuous if the restriction φ�B of φ to anybounded subset B ⊂ X is compact.
3. Equivariant selections and approximations

Definition 3.1.Let X and Y be G-spaces. A multivalued map F : X ( Y is G-equivariant if F (gx) = gF (x) for all g ∈ G and x ∈ X .
The following is the classical Michael selection theorem [12].
Theorem 3.2.
Let X be a paracompact space, Y a Banach space and F : X ( Y a lower semicontinuous map such that F (x) is a
nonempty, closed, convex set for every x ∈ X . Then there exists a continuous map f : X → Y such that f(x) ∈ F (x) for
all x ∈ X .

The equivariant version is easy.
Theorem 3.3 (cf. [1]).
Let X be a paracompact G-space, Y a Banach G-representation, F : X ( Y an equivariant lsc map with nonempty
closed convex values. Then F admits an equivariant continuous selection.

Proof. According to Theorem 3.2 there is a continuous selection f : X → Y of F . Let dg be the normalized Haarmeasure on G. We define a new map φ : X → Y by the formula
φ(x) = ∫

G
g−1f(gx)dg,

where the integral is the vector-valued integral with respect to the Haar measure, see Proposition 2.5. Observethat g−1f(gx) ∈ g−1(F (gx)) = g−1(gF (x)) = F (x). Since F (x) is closed and convex then convAf ⊂ F (x), where
Af = {g−1f(gx) : g ∈ G}. By [16, Theorem 3.27] the integral belongs to convAf . Continuity and equivariance followimmediately from the properties of the integral.
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Z. Dzedzej

Corollary 3.4.
Let X be a paracompact G-space, Y a Banach G-representation, A ⊂ X an invariant closed subset and F : A( Y an
equivariant lsc map with nonempty closed convex values. Let f : A → Y be a continuous equivariant selection of F�A.
Then there exists an equivariant selection h : X → Y of F such that h�A = f .

Proof. Consider a map φ : X ( Y given by
φ(x) = {f(x) if x ∈ A,

F (x) if x /∈ A.

It is easy to verify, that φ is lower semicontinuous, equivariant and thus by Theorem 3.3 it admits an equvariantcontinuous selection h.
Corollary 3.5.
If X is a paracompact space and E is a Banach representation of G, then any continuous G-map f : A → E admits a
continuous G-equivariant extension over X , i.e., there is a G-map F : X → E such that F�A = f .

Proof. It is sufficient to take a continuous G-equivariant selection F of the lower semicontinuous G-equivariantset-valued map φ : X ( E with closed convex values defined for x ∈ X by
φ(x) = {f(x) if x ∈ A,

E if x /∈ A.

Let X, Y be two metric spaces.
Definition 3.6.We say that a continuous map f : X → Y is a graph ε-approximation of φ : X ( Y if f(x) ∈ B(φ(B(x, ε)), ε) for every
x ∈ X .
The following approximation results are proved in a greater generality in [6]; we give a proof for the sake of completness.
Theorem 3.7.
Let φ : X ( E be usc with convex compact values, where X is a metric G-space and E is a Banach representation of G.
Then, for every ε > 0, there exists a G-equivariant graph ε-approximation f of φ such that f(x) ∈ convφ(X ) for every
x ∈ X .

Proof. Let ε > 0. From upper semicontinuity of φ, it follows that for every x ∈ X there exists 0 < δ(x) < ε suchthat φ(B(x, δ(x)) ⊂ B(φ(x), ε/2). Let B = {Bj}j∈J be a G-covering which is a star-refinement of the open covering
Ux = {B(x, δ(x))}x∈X , which exists by Proposition 2.3. That is, for every j ∈ J there exists xj such that st(Bj , B ) ⊂ Uxj .We can find a continuous partition of unity {ps}s∈S subordinate to a locally finite refinement of the G-covering B , i.e.,for each s ∈ S, there exists js ∈ J such that suppps ⊂ Bjs . For every s ∈ S we choose a point ys ∈ φ(Bjs ). Define

f(x) =∑
s∈S

ps(x)ys.
Let us fix x ∈ X and define S(x) = {s ∈ S : ps(x) 6= 0}. Let s ∈ S(x). Then we have js such that x ∈ Bjs andsuppps ⊂ Bjs . Therefore, there exists x ∈ X with d(x, x) < ε and such that for all s ∈ S(x) we have st(Bjs , B ) ⊂ Ux . Forevery g ∈ G we have fε(gx) = ∑

s∈S(gx)ps(gx)ys.
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Equivariant degree of convex-valued maps applied to set-valued BVP

Let now s ∈ S(gx). Then gx ∈ suppps ⊂ Bjs . Thus x ∈ g−1(Bjs ) = Bg−1js . However, Bg−1js ⊂ st(Bjs , B ) ⊂ Ux . Since
ys ∈ φ(Bjs ), then

g−1ys ∈ g−1(φ(Bjs )) = φ(g−1(Bjs )) = φ(Bg−1js ) ⊂ φ(Ux ) ⊂ B(φ(x), ε2
)
,

where x has been chosen as above (with d(x, x) < ε).Now, put
Fε(x) = ∫

G
g−1fε(gx)dg,

where dg denotes the unique normalized Haar measure and the integral is the vector-valued Haar integral from Propo-sition 2.5. Given x ∈ X , for every g ∈ G we have
g−1fε(gx) = g−1 ∑

s∈S(gx)ps(gx)ys = ∑
s∈S(gx)ps(gx)g−1ys ∈ B

(
φ(x), ε2

)
.

Therefore, ∫
G
g−1fε(gx)dg ∈ convB(φ(x), ε2

)
⊂ B(φ(x), ε)

by the properties of the integral. Thus we have verified that Fε is an ε-approximation of φ. It is G-equivariant bydefinition, cf. (2). of Proposition 2.5.
The following is an immediate consequence of [6, Theorem 5.1].
Proposition 3.8.
Let X be a compact metric G-space, A ⊂ X closed and G-invariant, E a Banach representation of G and φ : X ( E an
upper semicontinuous compact convex valued and G-equivariant map. Then for every ε > 0 there exists δ > 0 such that
any G-equivariant continuous δ-approximation f : A → E of φ�A has a G-equivariant continuous extension F : X → E
which is an ε-approximation of φ.

Corollary 3.9.
Given a compact metric G-space X , E a Banach G-representation, φ : X ( E an upper semicontinuous compact convex
valued and G-equivariant map, and ε > 0, there exists δ > 0 such that any two equivariant δ-approximations of φ
are joined by a homotopy h : X× [0, 1] → E such that for each t ∈ [0, 1] the map ht : X → E is a G-equivariant
ε-approximation of φ.

Proof. The space X× [0, 1] is a G-space with an action g(x, t) = (gx, t). We apply Proposition 3.8 to the map
φ′ : X× [0, 1]( E, φ′(x, t) = φ(x) and A = X×{0, 1}.
4. G-degree

Let V be a finite-dimensional orthogonal representation of the compact Lie group G. Let Ω ⊂ V be a G-invariant opensubset. A G-equivariant map f : (Ω)→ V is admissible provided f(x) 6= 0 for all x ∈ ∂Ω. In fact, one can always assumethat f is defined on the whole V because of the equivariant Dugundji theorem, Corollary 3.5.Then one can define a G-equivariant degree degG(f,Ω) ∈ A(G) of the form
degG(f,Ω) = ∑

(Hi)∈Φ0(G)nHi (Hi), (1)
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Z. Dzedzej

where nHi are integer coefficients, which satisfy the following recurrence formula:
nH = 1

|W (H)|
deg(fH ,ΩH ) − ∑

(K )>(H)nK · n(H,K ) · |W (K )|. (2)
Here |X | denotes the number of elements in X and deg(fH ,ΩH ) is the Brouwer degree.This G-degree is uniquely determined by the above formulae (1)–(2) and the following properties, see [2, Theorem 3.4].
Theorem 4.1.(a, Existence) If some coefficient nH is different from 0 in the above formula, then there exists x ∈ Ω such that f(x) = 0
and (Gx ) > (H).(b, Additivity) Let Ω1,Ω2 be two disjoint, open, G-invariant subsets of Ω and f−1(0) ∩ (Ω) ⊂ Ω1 ∪Ω2. Then

degG(f,Ω) = degG(f,Ω1) + degG(f,Ω2).
(c, Homotopy) If h : [0, 1]×Ω→ V is an admissible G-equivariant homotopy (i.e., ht is equivariant and admissible for
each t ∈ [0, 1]), then degG(h0,Ω) = degG(h1,Ω).
(d, Normalization) If Ω is a G-invariant, open, bounded neighborhood of 0 in V , then

degG(Id,Ω) = 1 · (G).
(e, Multiplicativity) Given two representations V1, V2, let fi : Ωi → Vi, i = 1, 2, be admissible. Then

degG(f1× f2,Ω1×Ω2) = degG(f1,Ω1) · degG(f2,Ω2),
where the multiplication is in the Burnside ring A(G).(f, Suspension) If f : Ω→ V is admissible and B ∈ W is an open G-invariant bounded neighborhood of 0 in W , then

degG(f× IdW ,Ω×B) = degG(f,Ω).
(g, Hopf property) Let B(V ) be the unit ball of the representation V and for two admissible maps f1, f2 : B(V ) → V
one has degG(f1, B(V )) = degG(f2, B(V )). Then f1 and f2 are homotopic by admissible G-equivariant homotopy.

Example 4.2.Consider the dihedral group D4 = {1, i,−1, i, κ, κi,−κ,−κi}, where the first four elements represent rotations of thecomplex plane C and κ(z) = z. Denote the subgroups of D4 as Z1 = {1}, Z2 = {1,−1}, Z4 = {1, i,−1,−i}, D1 = {1, κ},
D̃1 = {1, κi}, D2 = {1,−1, κ,−κ}, D̃2 = {1,−1, κi,−κi}, D4. There are five irreducible representations of D4: V0 = R the trivial one, V1 = C – the natural one, V2 = V3 = V4 = R  given by the homomorphisms h : D4 → O(1)with the kernels Z4, D2, D̃2, respectively. Then the “basic” degrees degVi = degG(−Id, Bi) can be calculated by use ofmultiplication table of generators in A(D4), see [3] or [2]; here Bi ⊂ Vi are the unit balls. The degrees are as follows:

degV0 = (D4), degV1 = (D4)− (D1)− (D̃1) + (Z1), degV2 = (D4)− (Z4),degV3 = (D4)− (D2), degV4 = (D4)− (D̃2).
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Equivariant degree of convex-valued maps applied to set-valued BVP

It follows, in particular, that in V = V1 the maps Id and −Id are not D4-homotopic since their D4-degrees are different.These maps have their Brouwer degrees equal to 1. Thus, they are homotopic by virtue of Hopf theorem. The extensionof this degree theory to multivalued mappings is now quite standard (similar to the non-equivariant case).Let Ω ⊂ V be an open bounded G-invariant subset.
Definition 4.3.An upper semicontinuous compact convex valued mapping φ : Ω( V is admissible, if 0 /∈ φ(x) for all x ∈ ∂Ω.
Observe that if φ : Ω( V is an equivariant admissible map, then by compactness of the domain there exists ε > 0 suchthat 0 6∈ φ(x) for all x ∈ B(∂Ω, ε). Therefore every ε-approximation of φ is admissible. Moreover, we can choose a
δ < ε from Corollary 3.9.
Definition 4.4.For an admissible G-equivariant upper semicontinuos map φ : Ω( V with compact convex values we choose δ > 0 asabove and define degG(φ,Ω) = degG(fδ ,Ω),where fδ is any continuous G-equivariant δ-approximation of φ.
Our choice of δ assures the existence of fδ by Theorem 3.7 and independence of the approximation follows from Corol-lary 3.9 and Theorem 4.1 (c). We can formulate an obvious consequence of Theorem 4.1.
Theorem 4.5.
The equivariant degree defined for convex-valued upper semicontinuous maps satisfies all the properties from Theorem 4.1
with a natural modification in Existence: If some coefficient nH in the formula of the degree (1) is different from 0, then
there exists x ∈ Ω such that 0 ∈ φ(x) and (Gx ) > (H).
Proof. All the properties are straightforward consequences of the single-valued case. We prove the existence. Sup-pose that some coefficient nH is non-zero in formula (1). Then taking n and δ < 1/n in Definition 4.4 we obtain byTheorem 4.1 an infinite sequence of points xn ∈ Ω such that (Gxn ) > (H) and fn(xn) = 0, where fn : Ω → V is acontinuous G-equivariant (1/n)-approximation of φ. Taking a subsequence we may assume that xn is convergent tosome x0 ∈ Ω. One easily verifies that (Gx0 ) > (H). Moreover, we have (xn, 0) ∈ B(Gr(φ), 1/k) for n > k . Hence(x0, 0) ∈ ⋂n∈N B(Gr(φ), 1/n) = Gr(φ). This means that 0 ∈ φ(x0).
5. Leray–Schauder equivariant degree

Let E be a real isometric Banach representation of a compact Lie group G. Denote by {Vk : k = 0, 1, 2, . . . } thesequence of all orthogonal irreducible representations of G and χk : G → R the corresponding characters. Define the
intrinsic dimension of Vk to be the number

n(Vk ) =


dimRVk if Vk is of real type,
dimRVk2 if Vk is of complex type,
dimRVk4 if Vk is of quaternionic type.

The linear mappings
Pkx = n(Vk ) ·∫

G
χk (g)g(x)dg
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are then G-equivariant and bounded projections onto G-invariant subspaces Vk = Pk (V ) of E, called isotypical compo-
nents of E. Then one proves that for every G-equivariant linear operator A : E→ E and each k = 0, 1, 2, . . . the subspace
Vk is A-invariant: A(Vk ) ⊆ Vk . We also have a decomposition E = ⊕

k Vk . Therefore, for any finite subset X ⊂⊕k Vkthe subspace span(G(X )) spanned by the orbits from X is finite-dimensional and G-invariant, see [3, Corollary 2.17].Hence, we can produce equivariant Schauder projections.
Proposition 5.1.
Let Y ⊂ E be a compact G-invariant subset of an isometric Banach representation E of G. Then for every ε > 0 there
exists a finite set N = {v1, v2, . . . , vn} and a continuous G-equivariant projection Pε : E → convG(N) ⊂ E such that
Pε(K ) is in a finite-dimensional subrepresentation of E and for all x ∈ Y we have ‖Pε(x)− x‖ 6 ε.
Proof. There exists a finite set N = {v1, v2, . . . , vn} ⊂⊕k Vk such that Y ⊂ ⋃n

j=1 B(vj , ε). Define functions νk : E→ Rby
νk (v) = max {0, ε − ‖v−vk‖},and define the (non-equivariant) Schauder projection

P̃ε(v) = 1∑n
j=1 νj (v)

n∑
j=1 νj (v)vj ∈ conv{v1, . . . , vn}.

Since νk are G-invariant, we obtain that for every g ∈ G,
gP̃ε(g−1v) ∈ span{G(v1), G(v2), . . . , G(vn)} = A.

Thus, averaging our projection,
Pε(v) = ∫

G
gP̃ε(g−1v)dg

we obtain the desired equivariant one.
Corollary 5.2.
Let X ⊂ E be a G-invariant bounded subset and φ : X ( E a G-equivariant upper semicontinuous compact closed valued
and compact map (i.e., Φ(X ) is compact in E). Then for every ε > 0 there exists a G-equivariant upper semicontinuous
compact closed valued map Φε : X → E such that Gr(Φε) ⊂ B(Gr(Φ), ε) and Φε(X ) is contained in a finite-dimensional
subrepresentation of E.

Proof. It is enough to define Φε(x) = (Pε ◦φ)(x), where Pε is the equivariant Schauder projection for Y = Φ(X ). Infact, we have Φε(x) ⊂ B(Φ(x), ε) for every x ∈ X .
Now, we are ready to define a Leray–Schauder equivariant degree. Let Ω ⊂ E be an open bounded G-invariant subsetand φ : Ω ( E a compact equivariant vector field, i.e., map of the form φ(x) = x − Φ(x), where Φ is compact convexvalued, upper semicontinuous G-equivariant and compact.Assume that φ is admissible, i.e., 0 6∈ φ(x) for x ∈ ∂Ω. Then ε0 = dist(Φ(∂Ω), ∂Ω) > 0 and for ε < ε0 we find a
G-equivariant Schauder projection Pε into a finite-dimensional subrepresentation W ⊂ E (with Y = φ(Ω)). It followsthat the vector field φε(x) = x−Pε(Φ(x)) is admissible on Ω, as well as its restriction φW : Ω∩W ( W . Thus we define

degG(φ,Ω) = degG(φW ,Ω ∩W ),
where the latter map is defined as above. This definition does not depend on the choice of the projection and a finite-dimensional subrepresentation. It also has properties similar to the finite-dimensional degree. We formulate them withthe notation as above. The proofs are standard and we omit the details.
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Equivariant degree of convex-valued maps applied to set-valued BVP

Proposition 5.3.
The Leray–Schauder equivariant degree satisfies all the properties of Theorem 4.1, when restricted to the class of
admissible compact vector fields with compact convex values:(a, Existence) If some coefficient nH is different from 0 in the degree formula (1), then there exists x ∈ Ω(H) such that0 ∈ φ(x), i.e., (Gx ) > (H).(b, Additivity) Let Ω1,Ω2 ⊂ Ω be two disjoint, open, G-invariant subsets of Ω and φ−1(0) ∩ (Ω) ⊂ Ω1 ∪Ω2. Then

degG(φ,Ω) = degG(φ,Ω1) + degG(φ,Ω2).
(c, Homotopy) If φ : [0, 1]×Ω( E is an admissible G-equivariant homotopy (i.e., φt is equviariant and admissible for
each t ∈ [0, 1]), then degG(φ0,Ω) = degG(φ1,Ω).
(d, Normalization) If Ω is a G-invariant, open, bounded neighborhood of 0 in E, then

degG(Id,Ω) = 1 · (G).
(e, Suspension) If φ : Ω( E is admissible and B ⊂ W is an open G-invariant bounded neighborhood of 0 in another
isometric Banach representation W of G, then

degG(φ× IdW ,Ω×B) = degG(φ,Ω).
(f, Hopf property) Let B(E) be the unit ball of the representation E and for two admissible vector fields φ1, φ2 :
B(E) ( V one has degG(φ1, B(E)) = degG(φ2, B(E)). Then φ1 and φ2 are homotopic by an admissible G-equivariant
homotopy.

6. Second order differential inclusions

In this section, we describe an application of the G-degree to a second-order differential boundary value problem of theform {
y′′ ∈ F (t, y, y′) for a.e. t ∈ [0, 1],
y(0) = 0 = y(1), (3)

where F : [0, 1]×Rn×Rn( Rn is a compact convex valued map satisfying (upper) Carathéodory conditions:1. the map t 7→ F (t, u) is Lebesgue measurable for each u ∈ R2n;2. the map u 7→ F (t, u) is upper semicontinuous for each t ∈ [0, 1];3. for any r > 0 there is a function ψr ∈ L2[0, 1] such that for all t ∈ [0, 1], u ∈ R2n with ‖u‖ 6 r and y ∈ F (t, u) wehave ‖y‖ 6 ψr(t).
In order to apply a degree theory, we transform the problem (3) into a fixed point problem in some function spaces.We use the following standard notation: C = C ([0, 1],R2n) = {u : [0, 1] → R2n : u is continuous} with the norm
‖u‖∞ = supt∈[0,1] ‖u(t)‖, L2 = L2([0, 1],Rn) = {u : [0, 1]→ Rn : ‖u(·)‖ is L2-integrable} with the norm

‖u‖2 = (∫ 1
0 ‖u(t)‖2dt)1/2

,

H2 = H2([0, 1],Rn) = {u : [0, 1] → Rn : u has weak derivatives u(i) ∈ L2 for i 6 2} with the norm ‖u‖2,2 =max {‖u(i)‖2 : 0 6 i 6 2}.
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Z. Dzedzej

Recall that under the above Carathéodory conditions the associated Nemytskii (superposition) operator NF : C ( L2,given by
NF (u) = {w ∈ L2 : w(t) ∈ F (t, u(t)) for a.e. t ∈ [0, 1]},

is well defined with nonempty closed convex values and is such that the composed map (J◦NF )(u) = J(NF (u)) is completelycontinuous for any completely continuous linear operator J : L2 → C , see e.g. [14, Proposition 1.7] or [15, Proposition 3.6].In particular, we know by the Ascoli theorem that j : H2([0, 1],Rn)→ C ([0, 1],R2n), j(u) = (u, u′) is a completely continuouslinear operator (it sends bounded sets into relatively compact ones). Denote by H20 the subspace H20 = {y ∈ H2 : y(0) =
y(1) = 0}. Then the linear operator L : H20 → L2, L(y) = y′′ is invertible. Define Φ: C ( C as a composition j ◦L−1 ◦NF ,which is upper semicontinuous with compact convex values and is compact on bounded sets (i.e, completely continuous).One easily sees, cf. [7], that the problem of finding solutions to (3) in H2 is equivalent to the fixed point problem

w ∈ Φ(w), W = (u, v) ∈ C,
or in other words 0 ∈ φ(w), where φ(w) = w −Φ(w). Indeed, if w ∈ Φ(w) = j ◦ L−1 ◦NF (w), then w being in the imageof j is of the form (y, y′), where y ∈ H20 and L(y) ∈ NF (y, y′). This means exactly that y is a solution to the problem (3).One needs some a priori bounds in order to apply a degree theory. The following conditions proposed in [7] are relatedto Bernstein–Nagumo growth conditions and reduce to them in the single-valued case, cf. [7] and also [9].
(H1) There exists a constant R > 0 such that if ‖y0‖ > R and y0 · y′0 = 0 then there is δ > 0 such that

ess inf
t∈[0,1]

(inf {y ·w + ‖y′‖2 : w ∈ F (t, y, y′), (y, y′) ∈ Dδ}
)
> 0,

where Dδ = {(y, y′) ∈ R2n : ‖y−y0‖+ ‖y′−y′0‖ < δ}.
(H2) There is a function β : [0,∞) → [0,∞) such that s/β(s) ∈ L∞loc[0,∞), ∫∞0 s/β(s)ds = ∞, and ‖F (t, y, y′)‖ 6

β(‖y′‖) for a.e. t ∈ [0, 1] and all (y, y′) ∈ R2n with ‖y‖ 6 R (R is the same as in (H1)).
(H3) There exist constants k, α > 0 such that

‖F (t, y, y′)‖ 6 α (y ·w + ‖y′‖2) + k

for a.e. t ∈ [0, 1], all (y, y′) ∈ R2n with ‖y‖ 6 R and w ∈ F (t, y, y′). Here ‖F (t, y, y′)‖ = sup{‖w‖ : w ∈
F (t, y, y′)}.

Together with the problem (3) one can consider a family of BVP
{
y′′ ∈ λF (t, y, y′) for a.e. t ∈ [0, 1],
y(0) = 0 = y(1), (4)

where λ ∈ [0, 1].Using the above assumptions, the idea of proof of main results in [7] may be read as follows.
Proposition 6.1.
Let F satisfy (H1)–(H3). Then there exists sufficiently large R > 0 such that the map φλ : C ( C , φλ(w) = w− j ◦ L−1 ◦
NλF (w) is admissible with Ω = B(0, R) for each λ ∈ [0, 1]. Therefore the Leray–Schauder degree deg(φ1, B(0, R)) = 1,
and thus the problem (3) has a solution in H2.
Remark 6.2.In fact, in [7] much more general boundary value problems were treated and the method used there was topologicaltransversality instead of degree theory.
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Equivariant degree of convex-valued maps applied to set-valued BVP

Let us consider the space V = R4 as a linear representation of the dihedral group D4 = {1, i,−1, i, κ, κi,−κ,−κi}, whichpermutes the coordinates, i.e., on generators i(y1, y2, y3, y4) = (y2, y3, y4, y1) and κ (y1, y2, y3, y4) = (y3, y2, y1, y4).It gives a natural action on function spaces C k ([0, 1], V ), H2([0, 1], V ), etc. by ((gu)(t) = gu(t) for t ∈ [0, 1]).Given a positive constant a > 0 we define a symmetric matrix
C =


−2a a 0 a
a −2a a 00 a −2a a
a 0 a −2a


with the eigenvalues λ0 = 0, λ1 = −2a, λ3 = −4a. Their eigenspaces are V0, V1,V3, respectively, where the notationcomes from Example 4.2. This implies that H20 = H2([0, 1],V0)⊕H2([0, 1],V1)⊕H2([0, 1],V3). The linear BVP

y′′ = Cy, y(0) = 0 = y(1), (5)
can be translated as above to an operator form in a function space. The resulting linear operator A : H20 → H20 is givenby the formula A(y) = y− L−1(Cy). The operator A is D4-equivariant and its spectrum is of the form

σ (A) = {1, 1− 2a
π2k2 , 1− 4a

π2k2 : k ∈ N
}
.

Let us make additional simplifying assumptions on the constant a in the language of σ (A):
(A1) 0 6∈ σ (A);
(A2) σ−(A) = {λ ∈ σ (A) : λ < 0} = {1− 2a/π2, 1− 4a/π2}.
Remark 6.3.If (A1)–(A2) are satisfied, then degD4 (A, B(0, r)) = (D4)− (D2) + (D1)− (D̃1), as it is calculated in [2, p. 34]. In our case,we consider Ã : C ([0, 1],R8) → C ([0, 1],R8), Ã(u, v) = (u, v) − (j ◦L−1)(Cu). It is also D4-equivariant, if we define theaction g(u, v) = (gu, gv) in C ([0, 1],R8). Note that σ (Ã) = σ (A) and, since Ã(0, v) = (0, v), the degree is the same asfor A.
Now, we consider a symmetric set-valued perturbation of (5)

{
y′′ ∈ Cy+ F (t, y, y′) for a.e. t ∈ [0, 1],
y(0) = 0 = y(1), (6)

where F : [0, 1]×V ×V ( V is a compact convex valued map satisfying (upper) Carathéodory conditions, which is also
D4-equivariant (V = R4 with the action described above).
Theorem 6.4.
Let F̃ (t, y, y′) = Cy+ F (t, y, y′) satisfy conditions (H1)–(H3) and also (A1)–(A2). Assume further that

lim(y,y′)→0 ‖F (t, y, y′)‖
‖(y, y′)‖2 = 0. (7)

Then the problem (6) has at least one nontrivial solution in addition to the trivial one y = 0. More precisely, we have
the following alternative:
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Z. Dzedzej

• either there exists a nonzero solution with D4-symmetry, i.e., y ∈ (H2)D4 = H2([0, 1],V0) (in other words
y1 = y2 = y3 = y4);

• or there are at least two different nonzero solutions: one with D2-symmetry, and the other one with D̃1-symmetry.

Proof. Rewrite (6) as an operator inclusion 0 ∈ φ(y), (8)
where φ : C ([0, 1],R8)( C ([0, 1],R8), given by φ(w) = w − j ◦ L−1 ◦NF̃ (w), is a completely continuous vector field withcompact convex values, which is D4-equivariant. Then conditions (H1)–(H3) assure that there exists sufficiently large
R > 0 such that the family of operators φλ(w) = w− j ◦L−1 ◦NλF̃ (w) for λ ∈ [0, 1] define a homotopy which is admissibleon B(0, R) ⊂ C ([0, 1],R8). It is obviously D4-equivariant. We will not repeat the proof of a priori bounds from [7], whichgive the admissibility. Therefore, we have degD4 (φ,B(0, R)) = (D4).On the other hand, for sufficiently small r > 0 the formula φµ(w) = w − j ◦ L−1 ◦ NC+λF (w) gives a D4-equivarianthomotopy, which is admissible on B(0, r). This is assured by the condition (7), as one easily verifies. Therefore,

degD4 (φ,B(0, r)) = degD4 (Ã, B(0, r)) = (D4)− (D2) + (D1)− (D̃1),
because of our assumptions (A1)–(A2). Now, using the additivity property of the equivariant degree, Proposition 5.3, weobtain degD4

((φ,B(0, R)) \ B(0, r)) = (D2)− (D1) + (D̃1).
Notice that we have the following hierarchy of the orbit types in our representation:

(Z1) 6 (D1) 6 (D2) 6 (D4), (Z1) 6 (D̃1) 6 (D4).
Since the coefficients nD2 and nD̃1 are nonzero, there exists w 6= 0 such that 0 ∈ φ(w) and (Gw ) > (D2). This gives
y ∈ (H20 )D2 such that L(y) ∈ F̃ (y, y′), i.e., it is a solution to (6). Similarly, we find a solution z ∈ (H20 )D̃1 . Since bothorbit types are submaximal, one possibility is that y, z ∈ (H20 )D4 and they may be the same functions. If there are nosolutions in the fixed point subspace (H20 )D4 , then y, z are forced to be different and they have different symmetries:

y1 = y3 6= y2 = y4, z1 = z4 6= z2 = z3.
Note that in the latter case we obtain in fact two orbits of solutions (two and four solutions, respectively).
Our application was strongly influenced by the following single-valued example from [2]:
Example 6.5. 

y′′1 = −2ay1 + ay2 + ay4 + y′1ey1y2y3y4 + y31 + y1y22y24,
y′′2 = −2ay2 + ay1 + ay3 + y′2ey1y2y3y4 + y32 + y2y21y23,
y′′3 = −2ay3 + ay2 + ay4 + y′3ey1y2y3y4 + y32 + y3y22y24,
y′′4 = −2ay4 + ay1 + ay3 + y′4ey1y2y3y4 + y34 + y4y21y23,
yk (0) = 0 = yk (1), k = 1, 2, 3, 4.

When you consider a bounded upper-semicontinuous D4-equivariant convex-valued perturbation of the system inExample 6.5, which vanishes in a neighborhood of 0 and in the fixed point subspace {(y1, y1, y1, y1) ∈ R4}, thenthe assumptions of Theorem 6.4 are fulfilled.
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