# Estimation of the minimal number of periodic points for smooth self-maps of odd dimensional real projective spaces ${ }^{\text {* }}$ 

Grzegorz Graff ${ }^{\mathrm{a}, *}$, Jerzy Jezierski ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland<br>${ }^{\mathrm{b}}$ Faculty of Applied Informatics and Mathematics, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 00-757 Warsaw, Poland

## ARTICLE INFO

## MSC:

primary 37C25, 55M20
secondary 37C05

## Keywords:

Nielsen number
Indices of iterates
Smooth maps
Minimal number of periodic points


#### Abstract

Let $f$ be a smooth self-map of a closed connected manifold of dimension $m \geqslant 3$. The authors introduced in [G. Graff, J. Jezierski, Minimizing the number of periodic points for smooth maps. Non-simply connected case, Topology Appl. 158 (3) (2011) 276-290] the topological invariant $N J D_{r}[f]$, where $r$ is a fixed natural number, which is equal to the minimal number of $r$-periodic points in the smooth homotopy class of $f$. In this paper smooth self-maps of real projective space $\mathbb{R} P^{m}$, where $m>3$ is odd, are considered and the estimations from below and above for $N J D_{r}[f]$ are given.


© 2012 Elsevier B.V. All rights reserved.

## 1. Introduction

Let $f$ be a smooth self-map of a compact manifold $M$. The central question in the smooth branch of Nielsen periodic point theory is the following: what is the minimal number of $r$-periodic points in the smooth homotopy class of $f$ ? In other words, one seeks for the invariant that determines the number

$$
\begin{equation*}
M F_{r}^{\text {diff }}(f)=\min \left\{\# \operatorname{Fix}\left(g^{r}\right): g \stackrel{s}{\sim} f\right\}, \tag{1.1}
\end{equation*}
$$

where $\stackrel{s}{\sim}$ means that the maps $g$ and $f$ are $C^{1}$-homotopic.
We will consider a smooth closed connected manifold of dimension at least 3 . It is remarkable that for $r=1$, i.e. for fixed points, the classical (continuous) and smooth Nielsen theories coincide [21]. However, for $r>1$ these theories are much different. Namely, if the minimum in (1.1) is taken over continuous homotopies, then the respective number, $M F_{r}(f)$, is given by Jiang invariant $N F_{r}(f)$ (cf. [17,20]). In the smooth case $M F_{r}^{\text {diff }}(f)=N J D_{r}[f]$, the invariant introduced by the authors in [8]. For smooth $f, N J D_{r}[f] \geqslant N F_{r}(f)$ and the equality holds only in some exceptional situations [16].

In the definition of $N J D_{r}[f]$ in addition to Reidemeister relations fixed points indices of iterations are involved. There are strong restrictions for local indices of iterations of smooth maps [1], in contrast to continuous maps, which result in the inequality $N J D_{r}[f] \geqslant N F_{r}(f)$. For example, for self-maps of simply-connected manifolds $N F_{r}(f) \in\{0,1\}$, while $N J D_{r}[f]$ is usually greater than 1 . In the simply-connected case $N J D_{r}[f]$ (denoted then by $D_{r}[f]$ ) has been found by the authors for some special kinds of manifolds [3-7].

The computations of the invariants $N F_{r}(f)$ and $N J D_{r}[f]$ are in general very challenging tasks, nevertheless $N F_{r}(f)$ was found in many particular cases [11-15,18,22-25]. The determination of the invariants simplifies a little for self-maps of manifolds with simple Reidemeister relations. In [9] we found $N J D_{r}[f]$ for all self-maps of 3-dimensional real projective

[^0]space $\mathbb{R} P^{3}$. The recent finding of all forms of local indices of iterations in arbitrary dimension [10], make it possible to try to calculate $N J D_{r}[f]$ also for $\mathbb{R} P^{m}$, where $m>3$. However, the precise determination of the invariant for higher-dimensional manifolds is a very complicated combinatorial task. In this paper we give an estimate for $N J D_{r}[f]$ from below and from above for self-maps of $\mathbb{R} P^{m}$, where $m$ is odd (the case of even $m$ is more difficult, see Remark 5.7). The obtained estimates provide some valuable information concerning periodic points. Namely, if $a \leqslant N J D_{r}[f] \leqslant b$, then
(1) every smooth map $g$ smoothly homotopic to $f$ has at least ar-periodic points,
(2) there exists a smooth map $g$ smoothly homotopic to $f$ having at most $b r$-periodic points.

## 2. Invariant $D_{r}^{m}[f]$

The topological invariant $D_{r}^{m}[f]$ was introduced in [5] and is equal to the minimal number of $r$-periodic points in smooth homotopy class of $f$, a self-map of a simply-connected manifold:

Theorem 2.1. ([5]) Let $M$ be a closed smooth connected and simply-connected manifold of dimension $m \geqslant 3$ and $r \in \mathbb{N}$ be a fixed number. Then, for a smooth map $f: M \rightarrow M$ we have

$$
D_{r}^{m}[f]=M F_{r}^{\text {diff }}(f)
$$

In the final sections we will make use of this invariant to estimate $N J D_{r}[f]$ for $f$ being a self-map of $\mathbb{R} P^{m}$. Now, we give the definition of $D_{r}^{m}[f]$ and describe its basic properties.

Definition 2.2. A sequence of integers $\left\{c_{n}\right\}_{n=1}^{\infty}$ is called $D D^{m}(p)$ sequence if there are: a $C^{1}$ map $\phi: U \rightarrow \mathbb{R}^{m}$, where $U \subset \mathbb{R}^{m}$ is open; and $P$, an isolated $p$-orbit of $\phi$, such that $c_{n}=\operatorname{ind}\left(\phi^{n}, P\right)$ (notice that $c_{n}=0$ if $n$ is not a multiple of $p$ ). The finite sequence $\left\{c_{n}\right\}_{n \mid r}$ will be called $D D^{m}(p \mid r)$ sequence if this equality holds for $n \mid r$, where $r$ is fixed.

For a fixed integer $r \geqslant 1$ the invariant $D_{r}^{m}[f]$ is defined as the minimal number of $D D^{m}(p \mid r)$ sequences which in sum give the sequence of Lefschetz numbers of iterations.

Definition 2.3. Let $\left\{L\left(f^{n}\right)\right\}_{n \mid r}$ be a finite sequence of Lefschetz numbers. We decompose $\left\{L\left(f^{n}\right)\right\}_{n \mid r}$ into the sum:

$$
\begin{equation*}
L\left(f^{n}\right)=c_{1}(n)+\cdots+c_{s}(n) \tag{2.1}
\end{equation*}
$$

where $c_{i}$ is a $D D^{m}\left(l_{i} \mid r\right)$ sequence for $i=1, \ldots, s$. Each such decomposition determines the number $l=l_{1}+\cdots+l_{s}$. We define the number $D_{r}^{m}[f]$ as the smallest $l$ which can be obtained in this way.

Remark 2.4. The combinatorial procedure described in Definition 2.3 has a clear geometrical interpretation. Namely, let $f$ be a smooth self-map of a manifold $M$ of dimension at least 3 and $r$ be a fixed natural number. By the strong result (so-called Canceling and Creating Procedures proved in [17]) one can create any periodic orbit in the smooth homotopy class of $f$ (and thus its sequence of indices of iterations is $D D^{m}(p \mid r)$ sequence). What is more, one can also remove in the smooth homotopy class any set of periodic points provided their indices of iterations are equal in total to 0 . As a consequence, every decomposition of $\left\{L\left(f^{n}\right)\right\}_{n \mid r}$ into $D D^{m}(p \mid r)$ sequences gives the associated orbit structure for some map in the smooth homotopy class.

Thus, $M F_{r}^{\text {diff }}(f)$ i.e. the minimal number of $r$-periodic points in the smooth homotopy class of $f$ is given by $D_{r}^{m}[f]$.
Any sequence of indices of iterations can be written down in the convenient form of integral combination of some basic periodic sequences $\left\{\operatorname{reg}_{k}(n)\right\}_{n}$.

Definition 2.5. For a given $k$ we define the basic sequence:

$$
\operatorname{reg}_{k}(n)= \begin{cases}k & \text { if } k \mid n \\ 0 & \text { if } k \nmid n\end{cases}
$$

It turns out that any sequence of indices of iterations (as well as Lefschetz numbers of iterations) can be uniquely represented in the form of periodic expansion (cf. [19]) i.e.

$$
\begin{equation*}
\operatorname{ind}\left(f^{n}, x_{0}\right)=\sum_{k=1}^{\infty} a_{k} \operatorname{reg}_{k}(n) \tag{2.2}
\end{equation*}
$$

where $a_{n}=\frac{1}{n} \sum_{k \mid n} \mu(k) \operatorname{ind}\left(f^{(n / k)}, x_{0}\right), \mu$ is the Möbius function, i.e. $\mu: \mathbb{N} \rightarrow \mathbb{Z}$ is defined by the following three properties: $\mu(1)=1, \mu(k)=(-1)^{s}$ if $k$ is a product of $s$ different primes, $\mu(k)=0$ if $p^{2} \mid k$ for some prime $p$.

Remark 2.6. The coefficients $a_{n}$ in the formula (2.2) must be integers, which was proved by Dold [2].
For manifolds of dimension $m \geqslant 4$, the computations of $D_{r}^{m}[f]$ become easier due to the following:
Theorem 2.7. ([4]) For $m \geqslant 4$, in Definition 2.3 of $D_{r}^{m}[f]$, one may equivalently use only $D D^{m}(1 \mid r)$ sequences.
Both sides of the equality (2.1) can be represented in the form of periodic expansions, as a consequence for the effective computation of $D_{r}^{m}[f]$ for $m \geqslant 4$ one needs:
(1) periodic expansion of $L\left(f^{n}\right)=\sum_{k \mid r} b_{k} \operatorname{reg}_{k}(n)$,
(2) all possible forms of periodic expansions of local fixed point indices of iterations of a smooth map $\left\{\operatorname{ind}\left(g^{n}, x\right)\right\}_{n=1}^{\infty}$ at a fixed point.

The information necessary in item (2), i.e. the complete list of all $D D^{m}(1)$ sequences, has been recently provided in [10]. Before we give that list (Theorem 2.9 below), we first introduce some notation. By $\operatorname{LCM}(H)$ we mean the least common multiple of all elements in $H$ with the convention that $\operatorname{LCM}(\emptyset)=1$. We define the set $\bar{H}$ by: $\bar{H}=\{\operatorname{LCM}(Q): Q \subset H\}$.

Next, for natural $s$ we denote by $L(s)$ any set of natural numbers of the form $\bar{L}$, where $\# L=s$ and $1,2 \notin L$.
By $L_{2}(s)$ we denote any set of natural numbers of the form $\bar{L}$, where $\# L=s+1$ and $1 \notin L, 2 \in L$.
Example 2.8. Consider $L_{2}(1)$. This is any set of the form $\bar{L}$, where $L$ has 2 elements, with $1 \notin L$ and $2 \in L$. Assume that the second element in $L$ is equal to $w$. Then

$$
\begin{aligned}
\bar{L} & =\overline{\{2, w\}}=\{\operatorname{LCM}(Q): Q \subset\{2, w\}\} \\
& =\{\operatorname{LCM}(\emptyset), \operatorname{LCM}(\{2\}), \operatorname{LCM}(\{w\}), \operatorname{LCM}(\{2, w\})\} \\
& =\{1,2, w, \operatorname{LCM}(\{2, w\})\} .
\end{aligned}
$$

Theorem 2.9. ([10]) Let $g$ be a $C^{1}$ self-map of $\mathbb{R}^{m}$, where $m>1$ is odd, and $g\left(x_{0}\right)=x_{0}$. Then the sequence of local indices of iterations $\left\{\operatorname{ind}\left(g^{n}, x_{0}\right)\right\}_{n=1}^{\infty}$ has one of the following forms.
$\left(A^{0}\right): \quad \operatorname{ind}\left(g^{n}, x_{0}\right)=\sum_{k \in L_{2}\left(\frac{m-3}{2}\right)} a_{k} \operatorname{reg}_{k}(n)$.
$\left(B^{0}\right),\left(C^{0}\right),\left(D^{o}\right): \operatorname{ind}\left(g^{n}, x_{0}\right)=\sum_{k \in L\left(\frac{m-1}{2}\right)} a_{k} \operatorname{reg}_{k}(n)$, where

$$
a_{1}= \begin{cases}1 & \text { in the case }\left(B^{0}\right) \\ -1 & \text { in the case }\left(C^{0}\right) \\ 0 & \text { in the case }\left(D^{o}\right)\end{cases}
$$

$\left(E^{0}\right),\left(F^{o}\right): \operatorname{ind}\left(g^{n}, x_{0}\right)=\sum_{k \in L_{2}\left(\frac{m-1}{2}\right)} a_{k} \operatorname{reg}_{k}(n)$, where

$$
a_{1}=1 \quad \text { and } \quad a_{2}= \begin{cases}0 & \text { in the case }\left(E^{0}\right) \\ -1 & \text { in the case }\left(F^{o}\right)\end{cases}
$$

Let us mention here that there are similar formulas for the case of even $m$, see [10].

Remark 2.10. Theorem 2.9 could be interpreted in the following way: the geometrical condition of smoothness of $g$ leads to some algebraical restrictions for indices of iterations of $g$. Namely, the form of $\left\{\operatorname{ind}\left(g^{n}, x_{0}\right)\right\}_{n=1}^{\infty}$ depends on the derivative of $\operatorname{Dg}\left(x_{0}\right)$. More precisely, the possible indices $k$ that can appear in basic sequences $a_{k} \mathrm{reg}_{k}$ in the periodic expansion of $\left\{\operatorname{ind}\left(g^{n}, x_{0}\right)\right\}_{n=1}^{\infty}$ could be expressed in terms of degrees of primitive roots of unity which are contained in the spectrum of $\operatorname{Dg}\left(x_{0}\right)$ [1].

## 3. Reidemeister graph

In order to obtain the bounds for $\# \operatorname{Fix}\left(f^{r}\right)$ we will need the notion of the Reidemeister graph $\mathcal{G O} \mathcal{R}(f ; r)$. Now we recall the scheme of the construction of this graph in general case (see [19] for the details) and then describe the form of $\mathcal{G O R}(f ; r)$ for self-maps of $\mathbb{R} P^{m}$.

The set of vertices of $\mathcal{G O} \mathcal{R}(f ; r)$ is, by the definition, the disjoint sum of orbits of Reidemeister classes $\bigcup_{k \mid r} \mathcal{O R}\left(f^{k}\right)$. There are natural maps $i_{k, l}: \mathcal{O} \mathcal{R}\left(f^{l}\right) \rightarrow \mathcal{O} \mathcal{R}\left(f^{k}\right)$ (for $\left.l \mid k\right)$ which introduce the partial order in $\mathcal{G O} \mathcal{R}(f ; r)=\bigcup_{k \mid r} \mathcal{O R}\left(f^{k}\right)$ $\left(A \preccurlyeq B \Leftrightarrow i_{k, l}(A)=B\right)$.

The space $\mathbb{R} P^{m}$ for odd $m$ is oriented and thus one may associate with each its self-map $f$ its degree $\beta=\operatorname{deg}(f)$. Let us remind that the fundamental group $\pi_{1} \mathbb{R} P^{m}=\mathbb{Z}_{2}$. By $\mathcal{R}\left(f^{n}\right)$ we will denote the Reidemeister class of $f^{n}$. The orbits of Reidemeister classes depend on the parity of $\beta$ in the following way [15]:

For all $n \in \mathbb{N}$ :

- if $\beta$ is even then the homotopy group homomorphism $f_{\#}: \pi_{1} \mathbb{R} P^{m} \rightarrow \pi_{1} \mathbb{R} P^{m}$ is zero map and $\mathcal{R}\left(f^{n}\right)=\mathcal{O} \mathcal{R}\left(f^{n}\right)=\{*\}$, a singleton set,
- if $\beta$ is odd then $f_{\#}$ is the isomorphism, thus $\mathcal{R}\left(f^{n}\right)=\mathcal{O} \mathcal{R}\left(f^{n}\right)=\mathbb{Z}_{2}$.

Remark 3.1. In the further part of the paper we will consider only the case of odd $\beta$, because in the other case the computation of $N J D_{r}[f]$ reduces to the simply-connected case. Namely, if $\beta$ is even, each orbit of Reidemeister classes consists of only one element, and thus $N J D_{r}[f]=D_{r}[h]$, where $h$ is a self-map of $S^{m}$ of degree $\beta$.

The aim of the paper is to give an estimation of the invariant $N J D_{r}[f]$ in the case of self-maps of $m$-dimensional real projective space $\mathbb{R} P^{m}$, where $m>3$ is odd. However, the obtained results remain valid in more general situation described by the following

## Standing Assumptions 3.2.

(1) $f: M \rightarrow M$ is a self-map of a smooth closed connected manifold of dimension $\geqslant 4$ and $r$ is a given natural number,
(2) $\pi_{1} M=\mathbb{Z}_{2}, f_{\#}=$ id,
(3) all coefficients $a_{l^{*}}$ in the Reidemeister graph, standing at $\operatorname{Reg}_{l^{*}}$ with $l$ dividing $r$, are nonzero.

The above assumptions are satisfied for self-maps $f: \mathbb{R} P^{m} \rightarrow \mathbb{R} P^{m}$ where $m>3$ is odd and $|\beta|=|\operatorname{deg} f| \geqslant 3$ is also odd. In that case the items (1) and (2) follow from our previous considerations. The item (3) is proved in [9, Lemma 5.5 and Corollary 5.6 ] for $\mathbb{R} P^{3}$, but exactly the same arguments act also for higher odd dimensional projective spaces. The definition of the coefficients $a_{l^{*}}$ is given below by the formula (4.2).

Let us mention here, that the fulfillment of the condition (3) of our Standing Assumptions for self-maps of $\mathbb{R} P^{m}$ with $|\operatorname{deg} f| \geqslant 3$ results from the fact that $\left\{\left|L\left(f^{n}\right)\right|\right\}_{n=1}^{\infty}$ grow fast (exponentially) and thus the moduli of the coefficients $a_{l^{*}}$ also grow fast.

Now we continue the construction of the Reidemeister graph and the invariant $N J D_{r}[f]$ under our Standing Assumptions. In the set of orbits of the Reidemeister classes we define the natural map induced by inclusion of the respective Nielsen classes. If $N^{l} \subset \operatorname{Fix}\left(f^{l}\right), N^{k} \subset \operatorname{Fix}\left(f^{k}\right)$ are Nielsen classes representing the Reidemeister classes $A^{l} \in \mathcal{O} \mathcal{R}\left(f^{l}\right)$ and $A^{k} \in \mathcal{O} \mathcal{R}\left(f^{k}\right)$ respectively, then $N^{l} \subset N^{k}$ implies $i_{k, l}\left(A^{l}\right)=A^{k}$ (cf. [19]).

By Standing Assumptions, $\mathcal{O} \mathcal{R}\left(f^{l}\right)=\mathbb{Z}_{2}$. Let us denote $\mathcal{O} \mathcal{R}\left(f^{l}\right)=\left\{l^{\prime}, l^{\prime \prime}\right\}, \mathcal{O} \mathcal{R}\left(f^{k}\right)=\left\{k^{\prime}, k^{\prime \prime}\right\}$, where $l^{\prime}$ and $k^{\prime}$ correspond to the identity element in $\mathbb{Z}_{2}$.

The map $i_{k, l}: \mathcal{O} \mathcal{R}\left(f^{l}\right) \rightarrow \mathcal{O} \mathcal{R}\left(f^{k}\right)$ has the following form (cf. [8])

$$
\begin{align*}
& i_{k, l}\left(l^{\prime}\right)=k^{\prime},  \tag{3.1}\\
& i_{k, l}\left(l^{\prime \prime}\right)= \begin{cases}k^{\prime \prime} & \text { if } \frac{k}{l} \text { is odd, } \\
k^{\prime} & \text { if } \frac{k}{l} \text { is even. }\end{cases} \tag{3.2}
\end{align*}
$$

Definition 3.3. Let us consider the natural number $r$ and the set $\bigcup_{k \mid r} \mathcal{O} \mathcal{R}\left(f^{k}\right)=\bigcup_{k \mid r}\left\{k^{\prime}, k^{\prime \prime}\right\}$. In this set we introduce the partial order "ね" in the following way: $l^{*} \preccurlyeq k^{*}$, where $l^{*} \in\left\{l^{\prime}, l^{\prime \prime}\right\}, k^{*} \in\left\{k^{\prime}, k^{\prime \prime}\right\}$ if and only if

- $l \mid k$,
- $i_{k, l}:\left\{l^{\prime}, l^{\prime \prime}\right\} \rightarrow\left\{k^{\prime}, k^{\prime \prime}\right\}$ maps $l^{*}$ on $k^{*}$.

If $l^{*} \preccurlyeq k^{*}$ then we say that $l^{*}$ is preceding $k^{*}$. We use the notation $l^{*} \prec k^{*}$ if $l^{*} \preccurlyeq k^{*}$ but $l^{*} \neq k^{*}$.
Now we can give the definition of the Reidemeister graph for $f$, a self-map of a manifold $M$ which satisfies our Standing Assumptions.

Definition 3.4. Letting $r$ be fixed, the partially ordered set of Reidemeister orbits $\bigcup_{k \mid r}\left\{k^{\prime}, k^{\prime \prime}\right\}$ can be perceived as a directed graph (and denoted by $\mathcal{G O} \mathcal{R}(f ; r)$ ). There is an edge from vertex $l^{*}$ to $k^{*}$ if and only if $l^{*} \preccurlyeq k^{*}$, with the convention that if $l^{*} \prec k^{*} \prec s^{*}$ then we omit the edge from $l^{*}$ to $s^{*}$ (understanding that there is the connection between these two vertices through $k^{*}$ ).

## 4. NJD $_{r}[f]$ for a self-map $f$ of $M$ satisfying Standing Assumptions

In this section we give the definition of $N J D_{r}[f]$ for a self-map $f$ of $M$ satisfying our Standing Assumptions 3.2.

### 4.1. Index function

We define an index function by the formula: $I\left(n^{*}\right)=\operatorname{ind}\left(f^{n}, n^{*}\right)$. In this way we obtain a function $I$ defined on the set of the vertices of the graph $\mathcal{G O} \mathcal{R}(f ; r)$.

Let us recall that $\mathbb{R} P^{m}$ is a Jiang space for odd $m$, so both Nielsen classes of the given self-map of $\mathbb{R} P^{m}$ have equal indices [20]. As $L\left(f^{n}\right)=1-\beta^{n}=I\left(n^{\prime}\right)+I\left(n^{\prime \prime}\right)$ we get that

$$
\begin{equation*}
I\left(n^{\prime}\right)=I\left(n^{\prime \prime}\right)=\frac{1-\beta^{n}}{2} \tag{4.1}
\end{equation*}
$$

where $\beta$ is the degree of the map $f$.
Now we generalize the notion of periodic expansion onto the maps of $\mathcal{G O} \mathcal{R}(f ; r)$.

Definition 4.1. For each vertex $l^{*}$, where $l^{*} \in\left\{l^{\prime}, l^{\prime \prime}\right\}$, we define basic integer-valued function on the graph:

$$
\operatorname{Reg}_{l^{*}}\left(n^{*}\right)= \begin{cases}l & \text { if } l^{*} \preccurlyeq n^{*} \\ 0 & \text { otherwise }\end{cases}
$$

Example 4.2. $\operatorname{Reg}_{3^{\prime}}\left(6^{\prime}\right)=3, \operatorname{Reg}_{3^{\prime}}\left(6^{\prime \prime}\right)=0$.

Function I can be uniquely represented as an integral combination of basic functions $\operatorname{Reg}_{{ }^{*}}$ (so-called generalized periodic expansion) [8].

$$
\begin{equation*}
I\left(n^{*}\right)=\sum_{l^{*} \preccurlyeq n^{*}} a_{l^{*}} \operatorname{Reg}_{l^{*}}\left(n^{*}\right) \tag{4.2}
\end{equation*}
$$

### 4.2. Attaching sequences at vertices

Let $\Gamma$ be one of the sequences $(A)-(F)$ given in Theorem 2.9. It is represented as a combination of reg's: $\Gamma=$ $\sum_{d \in O} a_{d} \mathrm{reg}_{d}$. We will say that we attach $\Gamma$ at the vertex $l^{*}$ if we define the following function $\Gamma_{l^{*}}$ on the Reidemeister graph:

$$
\begin{equation*}
\Gamma_{l^{*}}\left(n^{*}\right)=\sum_{l^{*} \preccurlyeq(d l)^{*}, d \in O} a_{d} \operatorname{Reg}_{(d l)^{*}}\left(n^{*}\right) \tag{4.3}
\end{equation*}
$$

Definition 4.3. We will say that a sequence $\Gamma$, of one of the types $(A)-(F)$, attached at the vertex $l^{*}$ realizes $a_{k^{*}} \operatorname{Reg}_{k^{*}}$ (or $a_{k^{*}}$ for short) if this expression appears in the right-hand side of the formula (4.3).

### 4.3. Definition of $N J D_{r}[f]$

The index function I can be expressed as a sum of the sequences $(A)-(F)$ attached at some vertices:

$$
\begin{equation*}
I\left(n^{*}\right)=\sum_{l^{*} \preccurlyeq n^{*}} a_{l^{*}} \operatorname{Reg}_{l^{*}}\left(n^{*}\right)=\Gamma_{l_{1}^{*}}^{1}\left(n^{*}\right)+\cdots+\Gamma_{l_{s}^{*}}^{s}\left(n^{*}\right) . \tag{4.4}
\end{equation*}
$$

Each such decomposition determines the sum $l_{1}+\cdots+l_{s}$, which we call the decomposition number.

Definition 4.4. $N J D_{r}[f]$ is defined as the minimal decomposition number under all possible decompositions.

Remark 4.5. In [8] we described more general construction of the invariant $N J D_{r}[f]$ for any self-map of a closed smooth connected manifold of dimension at least 3. In general case one must take into account that:

- the sequences are attached at the vertices of the Reidemeister graph of $f$ but $\mathcal{G O} \mathcal{R}(f ; r)$ may be more complex than the one described by relations in Definition 3.3.
- Index function I may take much more complicated form than (4.1).

In any case, the following theorem holds:
Theorem 4.6. ([8]) For any self-map of a closed smooth connected manifold of dimension greater than 3 and a fixed integer $r \in \mathbb{N}$ there is:

$$
N J D_{r}^{m}[f]=M F_{r}^{d i f f}(f)
$$

The geometrical interpretation of $N J D_{r}^{m}[f]$ the reader may find in [9, Section 4.4].
Remark 4.7. The aim of the paper is to minimize the set $\operatorname{Fix}\left(f^{r}\right)$ in the smooth homotopy class (for a given $r \in \mathbb{N}$ ). This leads also to the question about the possible orbital structure of such minimal periodic sets. For example, we know that in dimension $m \geqslant 4$ and for $f$ being a self-map of a simply-connected manifold, Fix $\left(f^{r}\right)$ may consist only of fixed points ([4], cf. also Remark 2.7). When, in the simply-connected case, could Fix ( $f^{r}$ ) contain longer orbits? By Remark 2.4 the promising way to answer such a question is to analyze the decomposition of the sequence of Lefschetz numbers $\left\{L\left(f^{k}\right)\right\}_{k \mid r}$ into $D D^{m}(p \mid r)$ sequences. In general (non-simply-connected) case one needs to follow such an analysis on Reidemeister graph.

Remark 4.8. Let us recall that for connected simply-connected closed smooth manifold $M$ the invariants $D_{r}^{m}[f]$ and $N J D_{r}^{m}[f]$ coincide, since then for each iteration there is a single Nielsen class.

## 5. Estimation of $N J D_{r}^{m}[f]$ for maps satisfying Standing Assumptions

For the rest of the paper we assume that $f$ is a map satisfying our Standing Assumptions 3.2.
The computations of the invariant $D_{r}^{m}[f]$ in $[4,5]$ (and $N J D_{r}^{m}[f]$ in [9]) show that the most troublesome coefficient is the one standing at reg ${ }_{1}$. This is because in some forms of sequences of indices listed in Theorem 2.9 the coefficient at $\mathrm{reg}_{1}$ is not arbitrary, but belongs to the set $\{-1,0,1\}$. As a consequence, in some situations one can represent the term $a_{1}$ reg $_{1}$ (in the minimal realization, cf. Definition 2.3) as a sum of the other $D D^{m}(1 \mid r)$ sequences that appear in the minimal realization. However, it is not easy to describe all these situations. To avoid this difficulty we introduce the invariant $D_{r}^{m}[f]$ $\bmod \mathrm{reg}_{1}$. The computation of the last invariant is much simpler and gives the approximate value of $D_{r}^{m}[f][4]$, namely:

$$
D_{r}^{m}[f] \bmod \operatorname{reg}_{1}=D_{r}^{m}[f] \text { or } D_{r}^{m}[f]-1
$$

Definition 5.1. By ( $D_{r}^{m}[f] \bmod \mathrm{reg}_{1}$ ) we denote the number of sequences in the minimal decomposition of $L\left(f^{n}\right)=$ $\sum_{k \mid r} b_{k} \operatorname{reg}_{k}(n)$ into $D D^{m}(1 \mid r)$ sequences modulo reg ${ }_{1}$ i.e. we require only that the equality (2.1) holds for all divisors $n \mid r$ different than 1 (thus we ignore the coefficient at reg ${ }_{1}$ ).

Remark 5.2. In the simply-connected case $N J D_{r}[f]=D_{r}[f]$, and $D_{r}[f]$ may be expressed in the language of the Reidemeister graph in the following way. If $M$ is simply connected then $\mathcal{G O} \mathcal{R}(f ; r)$ constitutes the graph of all divisors of $r$ and the procedure of calculating $D_{r}[f]$ described in Definition 2.3 can be equivalently expressed as finding minimal number of $D D^{m}(1)$ sequences attached at 1 realizing in $\operatorname{sum}\left\{L\left(f^{n}\right)\right\}_{n \mid r}$.

Remark 5.3. Let us consider a self-map $f: M \rightarrow M$ of a connected simply-connected closed manifold $M$, satisfying the condition:
$(*)$ all coefficients $b_{k}$ for $k \neq 1$ in the periodic expansion of $L\left(f^{n}\right)=\sum_{k \mid r} b_{k} \operatorname{reg}_{k}(n)$ are nonzero.
We will denote the family of such maps by $\mathcal{B}$. It was proved in [4] that, for a given dimension $m, D_{r}^{m}[f] \bmod ^{\text {reg }}$, has the common value for all maps $f$ in $\mathcal{B}$. Let $P$ be an odd natural number, we will denote for short this common value of ( $D_{r}^{m}[f] \bmod \operatorname{reg}_{1}$ ) for $r=P$ by $h_{P}$, assuming that the dimension $m \geqslant 4$ is fixed.

Remark 5.4. Let us mention that the algorithm of determining $h_{P}$ was described in [4] and successfully applied for calculating $h_{P}$ in the case $P$ is a product of different odd primes. Namely, let the dimension of the manifold be equal to $m$ ( $m=2 s$ or $m=2 s+1$ ) and $P$ be a product of $v$ different odd primes, where $v \geqslant s$. We represent $v$ in the form $v=k \cdot s+R$ where $R=1, \ldots, s$ and $k \in \mathbb{Z}$. Then

$$
\begin{equation*}
h_{P}=\frac{2^{s k+R}-2^{R}}{2^{S}-1}+1 \tag{5.1}
\end{equation*}
$$

Our aim is to estimate $N J D_{r}[f]$, where $r=P \cdot 2^{R}$ with $P$ odd, by $h_{P}$. The main idea of finding the useful estimation is based on the decomposition of $\mathcal{G O} \mathcal{R}(f ; r)$ into parts, each of which is isomorphic to the graph of all divisors of the odd number $P$, and observing that each such part gives the contribution to $N J D_{r}[f]$ equal to $h_{P}$.


Fig. 1. $\mathcal{G O R}\left(2^{s} P\right)^{\prime \prime}$ for $P=p^{3} q ; p, q$ primes.


Fig. 2. $\mathcal{G O} \mathcal{R}(f ; r)$ for self-maps of $\mathbb{R} P^{m}$.
Now, let $f$ be a map satisfying Standing Assumptions and $\mathcal{G O} \mathcal{R}(f ; r)$ be the Reidemeister graph for $f, r=P \cdot 2^{R}, P$ is odd. For a fixed $0 \leqslant s \leqslant R$ we consider a part of this graph, defined as:

$$
\mathcal{G O R}\left(2^{s} P\right)^{\prime \prime}=\left\{\left(2^{s} k\right)^{\prime \prime}: k \mid P\right\} .
$$

Lemma 5.5. In order to realize all coefficients of $\mathcal{G O} \mathcal{R}\left(2^{s} P\right)^{\prime \prime}$, maybe except for the coefficient at the vertex $\left(2^{s}\right)^{\prime \prime}$, one needs $h_{P}$ $D D^{m}(1)$ sequences attached at $\left(2^{s}\right)^{\prime \prime}$. They give the contribution $h_{P} \cdot 2^{s}$ to $N J D_{r}[f]$.

Proof. The equality

$$
\begin{equation*}
\mathcal{G O R}\left(2^{s} P\right)^{\prime \prime}=\left\{\left(2^{s} k\right)^{\prime \prime}: k \mid P\right\} \tag{5.2}
\end{equation*}
$$

shows that $\mathcal{G O} \mathcal{R}\left(2^{s} P\right)^{\prime \prime}$ is isomorphic to the graph of all divisors of $P$. Thus, by Remark 5.2 , to realize (in the sense of Definition 4.3) all coefficients of $\mathcal{G O} \mathcal{O}\left(2^{s} P\right)^{\prime \prime}$ modulo $a_{\left(2^{s}\right)^{\prime \prime}}$ it is enough to attach ( $D_{P}^{m}[f] \bmod ^{\text {reg }}{ }_{1}$ ) $D D^{m}(1)$ sequences at $\left(2^{s}\right)^{\prime \prime}$. Furthermore, due to item (3) of our Standing Assumptions the condition (*) of Remark 5.3 is satisfied for the isomorphic graph of all divisors of $P$. As a consequence, ( $D_{P}^{m}[f] \bmod ^{\operatorname{reg}}{ }_{1}$ ) does not depend on $f$ and is equal $h_{P}$. This ends the proof.

The example of $\mathcal{G O} \mathcal{R}\left(2^{s} P\right)^{\prime \prime}$ for $P=p^{3} q$, where $p$ and $q$ are primes, is given in Fig. 1. We are now in a position to formulate the main result of the paper.

Theorem 5.6. Let $f$ be a map satisfying our Standing Assumptions i.e.
(1) $f: M \rightarrow M$ is a self-map of a smooth closed connected manifold of dimension $\geqslant 4$ and $r$ is a given natural number of the form $r=2^{P} \cdot R$, where $P$ is odd,
(2) $\pi_{1} M=\mathbb{Z}_{2}, f_{\#}=\mathrm{id}$,
(3) all coefficients $a_{l^{*}}$ in the general periodic expansion of index function (4.2) (i.e. the coefficients in the Reidemeister graph standing at $\operatorname{Reg}_{{ }^{*}}$ ) are nonzero.

Then:

$$
2^{R+1} \cdot h_{P} \leqslant N J D_{r}[f] \leqslant 2^{R+1} \cdot\left(h_{P}+1\right)
$$

Proof. In Fig. 2 a symbolic representation of $\mathcal{G O} \mathcal{R}(f ; r)$ is given. This graph can be interpreted literally in the case $P$ is a prime number. In the general case the aslope lines (in bold), joining $\left(2^{s}\right)^{*}$ and $\left(2^{s} P\right)^{*}$, represent a graph isomorphic to a graph of all divisors of an odd number $P$. This means that on the bold edges there are other vertices, which are not specified. For example, the line joining $\left(2^{s}\right)^{*}$ and $\left(2^{s} P\right)^{*}$ for $P=p^{3} q$, where $p, q$ are primes, is in fact the graph given in Fig. 1.

Now, we fix $0 \leqslant s \leqslant R$. Then, by Lemma 5.5 , to realize all the coefficients at vertices $\left\{\left(l \cdot 2^{s}\right)^{\prime \prime}: l \mid P, l \neq 1\right\}$ one needs $h_{P}$ sequences attached at $\left(2^{s}\right)^{\prime \prime}$, which gives the contribution to $N J D_{r}[f]$ equal to $2^{s} \cdot h_{P}$.

Similarly, to realize the coefficients at $\left\{l^{\prime}: l \mid P, l \neq 1\right\}$ one needs $h_{P}$ sequences attached at $1^{\prime}$. In sum this gives the following estimates of $N J D_{r}[f]$ from below:

$$
\begin{align*}
N J D_{r}[f] & \geqslant \sum_{s=0}^{R} h_{P} \cdot 2^{s}+h_{P} \\
& =h_{P}\left[1+\sum_{s=0}^{R} 2^{s}\right]=h_{P} \cdot 2^{R+1} \tag{5.3}
\end{align*}
$$

Now we give an upper estimate. Let us notice that realizing the graph $\mathcal{G O} \mathcal{R}\left(2^{s} P\right)^{\prime \prime}$ we can also realize the graph $\mathcal{G O} \mathcal{R}\left(2^{s+1} P\right)^{\prime}=\left\{\left(2^{s+1} \cdot l\right)^{\prime}: l \mid P\right\}$ for $s=0, \ldots, R-1$, modulo the coefficient at $\left(2^{s+1}\right)^{\prime}$. In fact, let $c(n)$ be a sequence attached at $\left(2^{s}\right)^{\prime \prime}$ realizing the coefficient at $\left(2^{s} l\right)^{\prime \prime}$, where $l \mid P$. Then, as $P$ is odd, $c(n)$ is of one of the types $\left(B^{o}\right)$, $\left(C^{o}\right)$ or $\left(D^{o}\right)$ of Theorem 2.9. We can change it for the sequence $c^{\prime}(n)$ of the type ( $E^{o}$ ) or $\left(F^{o}\right)$ of Theorem 2.9 realizing also $\left(2^{S+1} l\right)^{\prime}$ for $0 \leqslant s \leqslant R-1$. This is possible, since the dimension of the manifold $M$ is odd by the assumption.

As the result, the only coefficients which may still remain unrealized are $\left\{\left(2^{s}\right)^{*}: 0 \leqslant s \leqslant R\right\}$.
The vertices $1^{\prime \prime}, 2^{\prime \prime}, \ldots,\left(2^{R}\right)^{\prime \prime}$ are irreducible, so to realize the coefficients at these vertices it is necessary (and sufficient) to attach a single sequence at each of them, which gives the contribution to $N J D_{r}[f]$ equal to: $1+2+\cdots+2^{R}=2^{R+1}-1$. Furthermore, if we use for that purpose the sequences of the type $(A)$, then they realize also the coefficients at the vertices $2^{\prime}, \ldots,\left(2^{R}\right)^{\prime}$. The remaining coefficient at $1^{\prime}$ can be realized by one sequence of the type $(A)$ attached at this vertex. Finally, summing the contributions of the three parts of $\mathcal{G O \mathcal { R }}(f ; r)$ considered above, we obtain:

$$
\begin{equation*}
N J D_{r}[f] \leqslant h_{P} \cdot 2^{R+1}+\left(2^{R+1}-1\right)+1, \tag{5.4}
\end{equation*}
$$

which ends the proof.
Remark 5.7. For a self-map $f: \mathbb{R} P^{m} \rightarrow \mathbb{R} P^{m}$, where $m$ is even $\mathcal{G O} \mathcal{R}(f ; r)$ is the same as in the case of $m$ odd. However, the forms of local fixed point indices of iterations in even dimensions are much different (cf. [10]). This makes it impossible to apply the same trick which allowed us, in the proof of the inequality (5.3), to realize both $\mathcal{G O} \mathcal{R}\left(2^{s} P\right)^{\prime \prime}$ and $\mathcal{G O} \mathcal{R}\left(2^{s+1} P\right)^{\prime}$ by one sequence, and consequently it is much more difficult to find the reasonable estimate for $N J D_{r}[f]$ from above in the case of even $m$.

## References

[1] S.N. Chow, J. Mallet-Parret, J.A. Yorke, A periodic orbit index which is a bifurcation invariant, in: Geometric Dynamics, Rio de Janeiro, 1981, in: Lecture Notes in Math., vol. 1007, Springer, Berlin, 1983, pp. 109-131.
[2] A. Dold, Fixed point indices of iterated maps, Invent. Math. 74 (1983) 419-435.
[3] G. Graff, Minimal number of periodic points for smooth self-maps of two-holed 3-dimensional closed ball, Topol. Methods Nonlinear Anal. 33 (1) (2009) 121-130.
[4] G. Graff, J. Jezierski, Combinatorial scheme of finding minimal number of periodic points for smooth self-maps of simply-connected manifolds, J. Fixed Point Theory Appl. (2012), http://dx.doi.org/10.1007/s11784-012-0076-1, in press.
[5] G. Graff, J. Jezierski, Minimal number of periodic points for $C^{1}$ self-maps of compact simply-connected manifolds, Forum Math. 21 (3) (2009) 491-509.
[6] G. Graff, J. Jezierski, Minimal number of periodic points for self-maps of $S^{3}$, Fund. Math. 204 (2009) 127-144.
[7] G. Graff, J. Jezierski, Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds, Discrete Contin. Dyn. Syst. Suppl. (2011) 523-532.
[8] G. Graff, J. Jezierski, Minimizing the number of periodic points for smooth maps. Non-simply connected case, Topology Appl. 158 (3) (2011) $276-290$.
[9] G. Graff, J. Jezierski, M. Nowak-Przygodzki, Minimal number of periodic points for smooth self-maps of $\mathbb{R} P^{3}$, Topology Appl. 157 (2010) $1784-1803$.
[10] G. Graff, J. Jezierski, P. Nowak-Przygodzki, Fixed point indices of iterated smooth maps in arbitrary dimension, J. Differential Equations 251 (2011) 1526-1548.
[11] E. Hart, P. Heath, E. Keppelmann, Algorithms for Nielsen type periodic numbers of maps with remnant on surfaces with boundary and on bouquets of circles. I, Fund. Math. 200 (2) (2008) 101-132.
[12] P. Heath, E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds I, Topology Appl. 76 (1997) $217-247$.
[13] P. Heath, E. Keppelmann, Fibre techniques in Nielsen periodic point theory on nil and solvmanifolds II, Topology Appl. 106 (2000) 149-167.
[14] P. Heath, E. Keppelmann, Fibre techniques in Nielsen periodic point theory on solvmanifolds III. Calculations, Quaestiones Math. 25 (2002) 177-208.
[15] J. Jezierski, Homotopy periodic sets of selfmaps of real projective spaces, Bol. Soc. Mat. Mexicana (3) 11 (2) (2005) 294-302.
[16] J. Jezierski, The least number, of $n$-periodic points of a self-map of a solvmanifold, can be realised by a smooth map, Topology Appl. 158 (9) (2011) 1113-1120.
[17] J. Jezierski, Wecken's theorem for periodic points in dimension at least 3, Topology Appl. 153 (11) (2006) 1825-1837.
[18] J. Jezierski, E. Keppelmann, W. Marzantowicz, Wecken property for periodic points on the Klein bottle, Topol. Methods Nonlinear Anal. 33 (2009) 51-64.
[19] J. Jezierski, W. Marzantowicz, Homotopy Methods in Topological Fixed and Periodic Points Theory, Topol. Fixed Point Theory Appl., vol. 3, Springer, Dordrecht, 2006.
[20] B.J. Jiang, Lectures on the Nielsen Fixed Point Theory, Contemp. Math., vol. 14, Amer. Math. Soc., Providence, 1983.
[21] B.J. Jiang, Fixed point classes from a differential viewpoint, in: Lecture Notes in Math., vol. 886, Springer, 1981, pp. 163-170.
[22] H.J. Kim, J.B. Lee, W.S. Yoo, Computation of the Nielsen type numbers for maps on the Klein bottle, J. Korean Math. Soc. 45 (5) (2008) $1483-1503$.
[23] S.H. Lee, A note on Nielsen type numbers, Commun. Korean Math. Soc. 25 (2) (2010) 263-271.
[24] J.B. Lee, X. Zhao, Nielsen type numbers and homotopy minimal periods for maps on 3-solvmanifolds, Algebr. Geom. Topol. 8 (1) (2008) 563-580.
[25] J.B. Lee, X. Zhao, Nielsen type numbers and homotopy minimal periods for maps on the 3-nilmanifolds, Sci. China Ser. A 51 (3) (2008) 351-360.


[^0]:    4. The research supported by MSHE grant No. N N201 373236.

    * Corresponding author.

    E-mail addresses: graff@mif.pg.gda.pl (G. Graff), jezierski@acn.waw.pl (J. Jezierski).

