

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

__

Article history: received on Feb. 6, 2012; accepted on Apr. 27, 2012; available online on May 18, 2012; DOI: 10.2478/v10178-012-0016-9.

METROLOGY AND MEASUREMENT SYSTEMS

Index 330930, ISSN 0860-8229

www.metrology.pg.gda.pl

EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER-ORIENTED

ENVIRONMENT

Paweł Czarnul, Tomasz Dziubich, Henryk Krawczyk

Gdansk University of Technology, Faculty of Electronics Telecommunications and Informatics, Department of Computer Systems

Architecture, Narutowicza 12/11, 80-233 Gdansk, Poland (pczarnul@eti.pg.gda.pl, dziubich@eti.pg.gda.pl, hkrawk@eti.pg.gda.pl,
 +48 58 347 2863)

Abstract

In the age of Information and Communication Technology (ICT), Web and the Internet have changed

significantly the way applications are developed, deployed and used. One of recent trends is modern design of

web-applications based on SOA. This process is based on the composition of existing web services into a single

scenario from the point of view of a particular user or client. This allows IT companies to shorten the product-

time to market process. On the other hand, it raises questions about the quality of the application, trade-offs

between quality factors and attributes and measurements of these. Services are usually hosted and executed in an

environment managed by its provider that assures the quality attributes such as availability or throughput.

Therefore, in this paper an attempt has been made to perform quality measurements towards the creation of

efficient, dependable and user-oriented Web applications. First, the process of designing service-based

applications is described. Next, metrics for subsequent measurements of efficiency, dependability and usability

of distributed applications are presented. These metrics will assess the efforts and trade-offs in a Web-based

application development. As examples, we describe a pair of multimedia applications which we have developed

in our department and executed in a cluster-based environment. One of them runs in the BeesyCluster

middleware and the second one in the Kaskada platform. For these applications we present results of

measurements and conclude about relations between quality attributes in the presented application development

model. This knowledge can be used to reason about such relations for new similar applications and be used in

rapid and quality development of the latter.

Keywords: quality measurements, software quality, quality model and measures, parallel computing, distributed

middleware, multimedia applications.

© 2012 Polish Academy of Sciences. All rights reserved

1. Introduction

 Nowadays the growing complexity of computer systems is forcing new approaches to

software development. One of recent trends is modern design of web applications based on

SOA [1]. This allows IT companies to shorten the product-time to market process. But on the

other side, it also implies the need for increasing of computing power and high flexibility of

components. This is an especially important aspect in applications that process huge-volume

data, i.e. multimedia applications. The increase in the processing performance is obtained by

deploying computationally expensive application modules in a cluster–oriented environment,

while high flexibility is maintained by standardizing ways of communication between

modules/services and the introduction of components reuse.

 Traditionally, development of high-performance applications requires knowledge and

experience of low-level solutions such as parallel MPI-based programming for image

recognition, processing of multimedia streams (variant A in Fig. 1). A better solution is to use

a middleware such as e.g. IBM WebSphere MQ (Variant B). Instead, in our department we

have created two solutions Kaskada [2] and BeesyCluster [3] for easy and fast building of

mailto:pczarnul@eti.pg.gda.pl
mailto:dziubich@eti.pg.gda.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

complex applications from services and ready-to-use blocks (variant C in Fig. 1). The process

of developing applications in such an environment is thus reduced to the following steps:

 develop the required algorithms which have not yet been implemented or use known

algorithms from available libraries,

 transform algorithms into independent tasks/services according to SOA interfaces,

 preparation of service scenarios possibly using available patterns (e.g. for recognition of

detected objects or events) and construction of the user interface.

User applications

Hardware

infrastructure

MPI

User applications

Hardware

infrastructure

Middleware

User applications

Hardware

infrastructure

Middleware +

Services repository

 Variant A Variant B Variant C

Fig. 1. Alternatives to development of applications for cluster-oriented environment.

Among the components of these platforms, useful utilities for designing user applications

include: the library of algorithms, a repository of offered web services and a set of scenarios

defining the behaviour of the built user applications. The developed algorithms belong to the

following categories: object tracking, object detection, event recognition, estimating the

number of existing objects, identification and location of sound sources (general algorithms),

comprises monitoring changes in the space of process control processing, allocation of tasks,

management messages (system algorithms). Many of these algorithms operate on either static

input data or data streams provided to the algorithms at runtime.

For the full acceptance of such user applications, an evaluation of their quality level is also

important, including the study of interdependence of quality parameters [4]. For example, the

cost and effort of creation of services and the application results in corresponding service and

application reliability, cost and execution time.

The rest of the paper is organized as follows. Section 2 presents platforms BeesyCluster

and Kaskada that serve as environments for quality measurements of multimedia applications.

Section 3 presents a quality model along with attributes and metrics for the two platforms.

Section 4 shows results for real applications while Section 5 concludes the work.

2. Platforms supporting cluster-oriented computing

2.1. BeesyCluster and its model of a complex multimedia application

BeesyCluster
1
 [5, 6] is a middleware that allows many users to access, share and integrate

distributed resources and services. Users access resources such as commodity servers and

HPC clusters via single sign-on and individual accounts in BeesyCluster which can be bound

to one or more system accounts on the servers and clusters. The platform supports, among

others, an integrated environment that allows to:

 manage, develop and compile codes on multiple servers/clusters,

 apply versioning,

 launch and queue applications on servers/clusters with graphical interfaces through a Web

browser hiding details of queuing systems such as PBS, LSF, LoadLeveler, etc.,

1
 https://lab527.eti.pg.gda.pl:10030/ek/Main

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

 monitor states of distributed clusters graphically,

 develop applications in groups with task assignment, sharing files among users and

interactive shared white boards and chat,

 become a provider and instantly publish own or existing applications as services right

from the server/cluster on which these have been compiled,

 assign cost and privileges to published services on a per - user or per - group basis; the

provider can be associated with reputation or reliability of their services,

 create, manage, optimize and run complex workflow applications built out of either own

services or services published by others and made available to the given user. This allows

integration of highly distributed services, optimization of service selection using various

QoS parameters. One centralized Java EE engine [5] and one distributed agent-base

engine [6] were developed for efficient running of such workflow applications. Such

workflows can be treated as reusable templates, static and dynamic optimization of service

selection and determination of optimal data flows [7] to minimize QoS including

execution time, cost and as proposed in this work reliability.

A workflow is represented by an acyclic directed graph in which nodes correspond to tasks

and edges to time dependencies between tasks [5, 6]. A set of services Si is assigned to each

task ti. Si contains services sij, each of which is capable of executing task ti. The basic

parameters [5, 6] of the task are cost cij and execution time tij. For each task one service needs

to be selected to perform the task. Data size processed by task ti and the selected service sij is

denoted as dij. One of possible optimization goals is minimization of the workflow execution

time min tworkflow with a bound on the cost of selected services

 c
ij
d

ij
C

max

or minimization of a linear combination of cost and time
workflowijij atdc .

Optimization of scheduling workflow applications, especially in cluster and grid

environments has been studied widely in the literature [8-12]. It should be noted that

BeesyCluster allows to extend easily the description of a service with more quality metrics

easily and subsequent incorporation of those in optimization. This work proposes how to

extend the models presented by one of the authors in [5, 6] by introducing reliability of both

the infrastructure as well as the services.

2.2. Kaskada platform

Kaskada platform [2], developed within the Mayday 2012 project
2
, is a novel approach in

the field of application development for the cluster environment. Kaskada is a universal

runtime platform for algorithms processing multimedia streams, e.g. videos and sound

recordings. The platform operates in the Galera cluster system [13], using its enormous

computing power and making it available for executed algorithms. It is a perfect solution for

algorithms presenting high demand on computational power, examples of which are image

recognition algorithms supporting medical endoscopic examinations of the gastrointestinal

tract. At the time of rapid development of high power computers, performing computation at

low level, and many arising challenges associated with more abstract computer vision tasks,

such as analyzing videos from surveillance cameras or analysis of medical images, there

appears to be a need for a solution effectively connecting the two areas, enabling successful

construction and execution of stream-processing algorithms in the environment of a

supercomputer.

The platform supports an application on three levels of functionality:

2
 http://mayday2012.gda.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

 Stream level – the goal is to maintain a massive load of multimedia data. The functionality

includes playing, stopping, archiving, replaying, distributing, multiplying of multimedia

streams and load balance;

 Service level – the goal is processing user/application requests. The functionality includes

invoking, finishing, monitoring, killing, assigning of user tasks;

 Event level – the goal is to provide means to communicate the processing state to the

user/application. The basic functionality is generating, storing, distributing, filtering,

relaying of output messages.

Except being a powerful execution environment for time-consuming algorithms, Kaskada also

provides a universal external interface in the form of automatically created web services,

enabling launching algorithms from remote applications, e.g. from the doctor's office.

Kaskada is also a framework facilitating the construction of stream algorithms. The platform

performs all video decoding tasks, passing raw frames to the algorithm. Also, extensive

communication mechanisms are provided by the platform, enabling construction of highly

parallelized, distributed algorithms in the form of computational services engaging multiple

processors.

3. Application quality, metrics, measurement techniques

3.1. Quality attributes and metrics in BeesyCluster

Execution of complex workflow applications in BeesyCluster was designed to allow to

control and find desired balance among the following quality attributes according to the

quality model presented in [5]:

 performance – achieving high parallel efficiency and scalability of processing multimedia

data is possible by engaging several services installed on various clusters and nodes to

process data in parallel. Scalability and speed-up is determined by: the ratio of the

computational time of the services compared to the communication time of transferring

data between services and the overhead of the underlying execution engine [5, 6]. It can be

affected by granularity of processing and data streaming; the workflow execution engine

in BeesyCluster allows two processing modes of each workflow node: streaming and non-

streaming and allows mixing nodes of the two types in one workflow. Furthermore, to

optimize the workflow execution time, it can automatically pack a large number of small

files into an archive to be sent to following workflow nodes to minimize the

communication latency. Efficiency of service implementations should be assured at the

service level; for example, a service based on application convert -normalize from

ImageMagick referring to disk space often could use faster scratch space on the cluster on

which it was deployed. This can decrease its running time by a factor of 10. For long-

running workflows the overhead of the workflow execution engine is small [6].

 dependability – defined in particular by:

reliability: Reliability of executing a complex task is assured by running it in the Java EE

environment supporting transactions; let rij denote the reliability of the infrastructure on

which service sij runs and also the reliability of the connection to the service. Reliability

of services/providers is defined as follows. Let Rij denote how reliable and precise the

results of the service are; a higher Rij will most likely result in a higher execution time of

the service or a greater cost because of the need for more powerful computers.

error tolerance - the model allows to continue running complex workflow applications

even if failures of particular services have occurred [6]; the execution engine

automatically reselects services for the remaining part of the workflow considering

available services and previous selections;

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

security – made sure by secure links and authorization between the client and

BeesyCluster servers and from BeesyCluster to remote servers/clusters.

 user satisfaction/usability which can be defined by:

ease of use and learnability – possible through easy creation and running using WWW

and Web Service interfaces; it was possible to define and run workflow applications by

students of Architectures of Internet Services from one to a few hours of work including

learning the environment. Non-specialists could use basic BeesyCluster functions listed

in Section 2.1 after just 2 hours of training.

productivity – the system allows to define and reuse complex workflow applications. It

allows rapid development and definition of either performance- or reliability-oriented

applications once and running these many times with adaptable runs and runtime

optimization.

Regarding the previously proposed optimization model [5, 6], the reliability parameters can

be updated at runtime by the underlying workflow execution engine based on the history. It is

possible to:

1. estimate the effective service execution time based on the learnt reliability of service

infrastructure i.e.:

 freefailure

tjijij trt /1 .

where freefailure

tjt denotes the execution time of service sij. This is not a problem even in the

linear integer problem formulation since rij is updated at runtime but can be considered a

constant during optimization.

2. use the history and digital filters to estimate the effective running time of a service

(including potential failures) e.g.:

where x

ijt denotes the x-th last running time of service sij or

to assign higher weights to more recent measurements of execution time.

The end user may specify the minimum reliability of results returned by the service while

minimizing the execution time of the whole workflow, e.g.: min tworkflow with constraints on

the reliability of results and costs:

 selected ij
R

ij
R

min
, c

ij
d

ij
C

max .

All constraints can be incorporated into the genetic algorithm proposed in [6]. Namely, the

random selection of services for a particular solution (chromosome) has to consider only the

available services that have reliabilities higher than the given threshold Rmin.

3.2. Quality attributes and metrics in Kaskada

Quality assessment was performed for the application of the medical recommendations.

The most important problems of computer-aided diagnosis include: reducing the time of

diagnosis, expanding the range of algorithms for medical recommendations and increasing the

efficiency of endoscopic image recognition. In the paper we concentrate on the first problem.

To resolve it, we have constructed application ERS 2012 which consists of three major

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

components: medical examination station, frontend server and Kaskada platform [14]. The

physician can upload a movie from an endoscope or a wireless capsule endoscopy using

Media Streaming Server to Frontend Server (FES). FES calls the appropriate scenario that is

located on the Kaskada platform. In ERS 2012, it is possible to transmit a movie from an

endoscope in real-time using the Frame Grabber module. But the well-known sequential

algorithms are not enough to perform efficient online recommendation. Several ways of

paralleling stream algorithms are enabled by the Kaskada platform. The parallelization tech-

niques described later in the article were applied with presented algorithms. In the Kaskada

platform, stream processing can be simplistically illustrated as shown in Fig. 2.

Fig. 2. Stream processing in the Kaskada platform.

n – number of frames in the whole stream

T0 – time at which the first frame arrives to the system, fixed to 0

Ti – time at which i-th frame’s report is available

Tp – time of the whole video processing, Tp = Tn - T0

li – processing time of i-th frame

di – time interval between two succeeding reports, di = Ti+1 -Ti

For this application we propose the following evaluation metrics:

 performance – test of performance of a stream-processing application consisted of

throughput measurement. The throughput of the pipeline system is the maximum amount

of data that the system can process in a given time; videos were processed separately, with

maximal input frame rate (>100 fps). Every video was processed 100 times. Finally, the

average throughput H and σH (standard deviation) were calculated. While processing the

video, temporal throughput values hi have been calculated using the relationship:

ii dh /1 . After processing the whole video, the average throughput value H has been

computed as the mean value of the temporal values weighted by their time:

1

1

1
n

i id

n
H ,

which gives the ratio of the number of frames to the amount of time needed to process

them – the well-known FPS (frames per second) measure. Finally, to acquire the standard

deviation of the temporal throughput, its variance has been calculated using the weighted

formula

1

1

1

1

2

2

n

i i

n

i ii

H

d

dHh
 ,

 dependability – is defined as the number of lost frames to the number of all analyzed

frames. This corresponds to the latency measurement. The latency is the time between the

arrival of a video frame at the system input and the time at which the detection report is

available at the system output; videos were processed separately, with their original frame

rate (25 fps) for all the versions of the algorithm which proved to provide a sufficient

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

throughput. Other configurations were skipped as being not suitable for real life use.

Every video was processed 10 times. Finally, the average L and the standard deviation σL

of the latency were calculated using the simple formulas:

n

l
L

n

i i 1 and

n

Ll
n

i i

L

 1

2

2 .

For each case, required parameters were measured: the processing rate, represented by the

average number of frames processed per second, and the delay, being a single frame

processing time. Tests were performed on 5 video sequences of 720x576 resolution, twice

for each sequence, giving a total of 10 measurements for each case. Averaged results were

presented on charts in chapter 4.2. Standard deviations of each sample were marked in the

form of vertical bars at the average values.

 user satisfaction/usability which can be defined by an average measure of the diagnostic

time and matching abnormal regions. For usability testing, the examination data and

evaluation procedures were implemented with the assistance of medical doctors in the

Medical University of Gdansk, Poland. To ensure unbiased evaluations, the experiments

were set up under conditions of normal diagnostic procedures. MedEye – user interface of

the ERS2012 system – was installed on a medical examination station to present the

proposed method, which also supports common functions such as the capturing of

abnormal regions, the changing of display modes, the adjustment of skill levels, and

functions to navigate and scanning/browsing frame-by-frame.

Twenty sequences from patients were selected. The total length of these sequences was

307 minutes. The evaluations were carried out by two medical doctors. They were asked

to independently find and capture suspicious regions. The time codes of abnormal regions

as well as the events/activities of the medical doctors during the diagnostic procedures

were logged. For assessment of the capacity and performance, these data were then

analyzed and inspected as described below.

Average measure of the diagnostic time. To explore in detail the diagnostic time for each

evaluation section, the time code data at the moment of each start/stop action was

analyzed. In addition, frame-by-frame scanning to finding abnormal regions was also

inspected. The diagnostic time is the total of the following two components:

 Playing time: the total duration that each medical doctor played the sequences

continuously, without actions such as jumping, scanning, or frame navigation.

 Scanning/Browsing time: the total time for browsing or frame-by-frame scanning to

verify abnormal regions.

Thus, the main difference between this method and other methods [15] is that the reading

time details are inspected by two separate components, and this helps one to better

understand not only the time for viewing a sequence but also the time used for seeking

abnormal regions.

Matching abnormal regions captured. In the experiment, the medical doctors were asked

to capture abnormal regions independently. Then, knowing the degree to which the

abnormal region capture precised were accurate and complete would allow the

performance of the method to be evaluated, a routine for checking the relevant findings

was therefore implemented after the evaluations of the medical doctors. Previous studies

showed only the total diagnostic time without information regarding the verification of

abnormal regions detected. To check abnormal regions, we compared the results of two

medical doctors, and in cases of discrepancies a third gastroenterologist made the final

decision.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

4. Quality assessment for BeesyCluster and Kaskada applications

4.1. BC methods and results for performance evaluation

As an example, the workflow application presented in Fig. 3 was used. This allows parallel

processing of RAW camera images given as input. For input, 80 RAW images of around

15 MB each (Pentax's PEF format) were used. Eight paths, each of which can be performed in

parallel were defined. Each path consists of three steps represented by successive workflow

tasks: conversion of a RAW image to a 16-bit TIFF, normalization of the TIFF and

conversion to JPG, resizing and reduction of quality and file size. Finally, a web album is

created out of the images processed by the parallel paths.

Fig. 3. A workflow application for processing digital images by 8 parallel paths.

1 2 3 4 5 6 7 8 9 10

800

900

1000

1100

1200

1300

1400

1500

1600

1700

number of images in data packet

w
o

rk
fl
o

w
 e

xe
c
u

ti
o

n
 t
im

e
 [
s

]

Fig. 4. Impact of granularity on the workflow execution time.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

Fig. 4 presents the impact of granularity on the workflow execution time, assuming that

data packets of a certain size (in this case the number of images in a packet) are passed from

one node to the next one as soon as it is available. This in fact implements parallel pipelining

by services executing the pipelines in parallel. The maximum number of images allowed to be

stored in a node at a time is 10 and the experiment aimed at minimization of tworkflow.

Furthermore, Fig. 5 presents execution times for a processing images workflow in which

services for a particular path were installed on separate or the same cluster. In the latter case,

160 input images are processed in the non-streaming fashion (following [5]) while in the first

case processing of 320 images (with increased efficiency of using a scratch space for

processing) was performed in the streaming mode via each service on a separate cluster using

HyperThreading for the 16 path configuration. Using Hyperthreading along with increased

communication costs due to many more clusters communicating between each other limits

scalability. On the other hand it increases flexibility since it corresponds to a scenario with

services offered by various providers. The goal was to minimize tworkflow. Cluster nodes with

two dual-core Intel Xeon 2.8 GHz processors with Hyperthreading with 4 GB RAM were

used.

Fig. 5. Workflow execution times [s] vs number of parallel paths.

Concerning the reliability, a workflow similar to that shown in Fig. 3 was used for

minimization of

 workflowijij tdc 10 .

It consists of 9 paths with 3 groups of 3 paths each. Particular groups have services with

the following execution time/reliability/cost parameters: 2/3/5, 4/2/4, 8/1/3. Generally the cost

is higher for faster services. In this experiment it is also assumed that reliability of faster

services is higher because of using parallel machines to run them although it does not have to

be the case generally. Limiting the required reliability results in fewer parallel paths from

being selected and thus higher execution times. Table 1 shows the results, assuming minimum

reliability of any selected service to 1, 2 or 3. . Configuration X requires minimum reliability

of services selected at least equal to X. Correspondingly, configuration 1 results in more and

cheaper services available while configuration 3 in fewer and more expensive services

meeting this requirement.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

Table 1. The relationship between the minimum required service reliability and the cost and execution time of a

workflow application in BeesyCluster.

Configuration/minimum

reliability of services selected
1 2 3

Execution time [s] 1651 1751 2085

Cost 1215 1872 2025

4.2. Kaskada methods and results for performance and usability evaluation

4.2.1. Performance

The execution environment of the platform ensured that each separate thread in every

service performing computations had an exclusive use of one processing core. The Kaskada

platform enables distributing consecutive frames of a video stream to different processors. In

this way, multiple frames can be processed concurrently, which can be denoted as a frame-

level parallelization. Fig. 6 presents a sample service implementing this case. A single node is

designated for distributing the frames among computational tasks organized in a layer,

performing as separate instances of the algorithm. The last node in this scenario collects

computed results and generates the output of the service.

Fig. 6. Distributing a frame sequence to 4 computational tasks.

The advantages of this technique are high versatility and simplicity of implementation,

since the mechanism is independent of the parallelized algorithm, provided that dependencies

between frames are not considered. Moreover, this solution allows the processors power to

effectively utilize and significantly reduce the overall processing time. Extension to any

number of processors is possible providing high scalability. Unfortunately, the mechanism in

no way reduces the processing time of a single frame, so that the delay remains unchanged

comparing to the sequential processing. Fig. 7 presents results achieved accordingly to the

number of processors in the processing layer. The experiments were performed for the four

diagnostic algorithms: BaopuLi1 [16], Kodogiannis1 [17], Magoulas1 [18] and Magoulas2

[19]. Each of the algorithms achieved stable processing rate growth. As expected, the delay

remained unchanged, yielding only slight fluctuations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

Fig. 7. Processing rate (left) and delay (right) of frame-level parallelized algorithms.

Each computational task in the Kaskada platform is actually a process that can be executed

using multiple threads. Since Galera's nodes are 8-core systems, it is a reasonable choice to

split the execution into 8 threads, which could potentially result in 8 times speedup in ideal

case. In practice, however, the achieved speedup is usually much lower due to memory access

conflicts and data synchronization between threads. The advantage of this solution is a

possibility to shorten the single frame processing time, at the same time reducing the delay.

Multithreading was implemented using the OpenMP mechanism. To accomplish this it was

required to identify time-consuming loops in the algorithms, which should be parallelized.

Therefore, execution time measurements of particular stages of the algorithm were carried

out, which indicated code regions to be parallized. Fig. 8 presents the achieved results

according to the number of processors used for multithreading.

As expected, the method results in much lower speedups than the previous one. While

algorithms BaopuLi1 and Kodogiannis1 gained satisfactory speedup with high efficiency,

including shortenening the single frame time, algorithms Magoulas1 and Magoulas2 did not

show the significant performance improvement. The reason for this fact is the low capability

of these algorithms for parallelization implicated from large data dependencies. The method

therefore enables a slight increase of the processing rate and the reduction of introduced

delay. In the case of less complex algorithms this technique may be sufficient. It can be also

succesfully pulled together with other methods like the previous concurrent frame processing

or pipeline processing.

Fig. 8. Processing rate (left) and delay (right) of algorithms parallelized using multithreading.

The most interesting parallelization technique offered by the Kaskada platform is

algorithm-level pipeline processing. The algorithms are divided into functional blocks to be

executed by separate computational tasks in the form of a pipeline. Independent blocks can be

put in a layer for concurrent execution. This allows to construct a service arranged adequately

to a logic scheme of the algorithm. Therefore, each of the blocks can be distributed to

different Galera's node and executed using multithreading, which enables to utilize a large

number of processors. An exemplary service implementing such scenario for the algorithm

BaopuLi1 is shown in Fig. 9.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

Fig. 9. Conception of pipeline processing combined with multithreading for BaopuLi1 algorithm.

Pipeline processing assures an increase of the processing rate, while concurrent execution

of separate blocks, as well as multithreading, shortens the delay.

Fig. 10 shows the performance of algorithms measured for 8 variants utilising from 1 to 8

processors in each multithreaded node. Since the arrangement of the service is different for

each of the algorithms, also the ranges of possibly used numbers of processors differ between

them. Algorithm Magoulas1 was excluded from the test, since its structure prevents efficient

pipeline implementation.

The BaopuLi1 algorithm showed relatively stable performance growth with the increasing

number of processors. For 86 processors the processing rate exceeded 50, while the delay

dropped below 0.1 s. The Kodogiannis1 algorithm achieved best performance for 32

processors. A marginal performance gain was achieved for the algorithm Magoulas2. The

presented pipeline processing method therefore requires some sort of capability from the

parallelized algorithm. In return, very good performance can be achieved for highly modular

algorithms. This means that we can achieve a high level of dependability using an appropriate

number of processors for analysis (e.g. for the Kodogiannis1 algorithm we must use at least

12 processors).

Fig. 10. Processing rate (left) and delay (right) of algorithms parallelized using pipeline model with multithreading.

For usability assessment we proposed to determine the average measure of the diagnostic

time and the matching abnormal regions captured.

The results of the data analysis showed that the average viewing time was a 594 ± 93

s/sequence while the average scanning time was a 95 ± 25 s/sequence. The mean ratio of

viewing time/scanning time was 6.25, which implies that the variations between the viewing

and scanning time sequences were quite large. The average diagnostic time for each sequence,

with the mean value being approximately 689 ± 118 s/sequence. The resulting average

diagnostic time of the extracted sequence with a length of 307 minutes (18420 s) implies that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Metrol. Meas. Syst., Vol. XIX (2012), No. 2, pp. 177-190.

when using the proposed method the time consumed is around 27% of the length of the

sequence.

The total number of abnormal regions captured by doctor A was 74 regions. The numbers

of abnormalities present differed with each sequence. For some sequences, there were from

2 to 6 abnormal regions, and thus the rate of matching in these sequences was high. For two

sequences, however, it included 11 regions, and as it was the sequence with the maximum

number of abnormalities present, it had a lower rate of matching. Overall, the average

matching rate of the abnormal regions was 75% for one of the medical doctors, 70% for the

second one. These results imply that although finding suspicious regions depends on other

factors, such as one’s personal judgment and skills, the concentration of the physicians as well

as the number of abnormalities present on the video material. The proposed method produces

acceptable rates of capture of relevant findings.

5. Conclusions

The paper presented two platforms BeesyCluster and Kaskada allowing rapid and easy

composition of distributed applications out of ready-to-use services and components offering

high usability to the user. These are especially useful for multimedia applications through the

ability to quickly connect services and components, reuse already defined services and

patterns, engage ready-to-use algorithms for optimization of QoS when running the

application. For BeesyCluster, an application for parallel processing of digital images by

distributed services was shown. It was demonstrated how granularity and either local or

distributed environment influence the execution time and scalability and how to achieve

desired QoS requirements involving execution time, reliability and cost. For Kaskada, an

application for stream processing of endoscopic videos was presented. Parallelization

capabilities of the Kaskada platform enabled a considerable performance gain for the

investigated algorithms. The presented medical recognition algorithms suffered from high

computational complexity, resulting in long execution time. Utilizing the computational

power of the Galera supercomputer, Kaskada accelerated all the algorithms to perform fairly

well in the offline processing mode, providing high speedups with an increasing number of

processors. For sufficiently divisible algorithms, also online processing became possible by

utilizing pipeline processing supported by multithreading.

Furthermore, the two platforms are complementary in terms of types of applications and

QoS goals as indicated in Table 2.

Table 2. Preference of platforms for particular types of applications and QoS goals.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 P. Czarnul, T. Dziubich, H. Krawczyk: EVALUATION OF MULTIMEDIA APPLICATIONS IN A CLUSTER…

References

[1] Krafzig, D., Banke, K., Slama, D. (2004). Enterprise SOA: Service-Oriented Architecture Best Practices.

Prentice Hall PTR.

[2] Krawczyk, H., Proficz, J. (2010). Kaskada – multimedia processing platform architecture. In Proc.

International Conference on Signal Processing and Multimedia Applications (SIGMAP 2010), 26-31.

[3] Czarnul, P. (2006). Reaching and Maintaining High Quality of Distributed J2EE Applications –

BeesyCluster Case Study. Software Engineering Techniques SET 2006, Warsaw, Poland, in: Software

Engineering Techniques: Design for Quality, ed. K. Sacha, Springer, International Federation for

Information Processing, a Springer Series in Computer Science, 179-190.

[4] Krawczyk, H., Wiszniewski, B. (1998). Analysis and testing of distributed software applications.

Baldock: Res. Stud. Press.

[5] Czarnul, P. (2010). Modeling, run-time optimization and execution of distributed workflow applications

in the JEE-based BeesyCluster environment. Journal of Supercomputing. DOI:

10.1007/s11227-010-0499-7, Springer, 1-26.

[6] Czarnul, P., Matuszek, M., Wójcik, M., Zalewski, K. (2011). BeesyBees: A mobile agent-based

middleware for a reliable and secure execution of service-based workflow applications in BeesyCluster.

Multiagent and Grid Systems Journal, IOS Press, 7(6), 219-241.

[7] Czarnul, P. (2010). Modelling, Optimization and Execution of Workflow Applications with Data

Distribution, Service Selection and Budget Constraints in BeesyCluster. In Proceedings of 6th Workshop

on Large Scale Computations on Grids and 1st Workshop on Scalable Computing in Distributed Systems,

International Multiconference on Computer, 5, 629-636.

[8] Wieczorek, M., Hoheisel, A., Prodan R. (2009). Towards a general model of the multi-criteria workflow

scheduling on the grid. Future Generation Computer Systems, 25, 237-256.

[9] Yu, J., Buyya, R. (2005). A taxonomy of workflow management systems for grid computing. Journal of

Grid Computing, 3, 171-200.

[10] Yu, J., Buyya, R., Ramamohanarao, K. (2008). Workflow Scheduling Algorithms for Grid Computing.

Springer. In Metaheuristics for Scheduling in Distributed Computing Environments, Berlin, Germany,

146, 173-214.

[11] Chin, S.H., Suh, T., Yu, H.C. (2010). Adaptive service scheduling for workflow applications in service-

oriented grid. Journal of Supercomputing, 52, 253-283.

[12] Garg, S.K., Buyya, R., Siegel, J. (2010). Time and cost trade-off management for scheduling parallel

applications on utility grids. Future Generation Computer Systems, 26, 1344-1355.

[13] http://i.top500.org/system/9260 (January 2012).

[14] Blokus, A., Jedrzejewski, M., (2011). The design of an intelligent medical space supporting automated

patient interviewing. In Proceedings of the 5th International Conference of Young Scientists: Computer

Science & Engineering, Lviv, Ukraine, 16-19.

[15] Iakovidis, D.K., Tsevas, S., Polydorou, A. (2010). Reduction of capsule endoscopy reading times by

unsupervised image mining. In Computerized Medical Imaging and Graphics. Biomedical Image

Technologies and Methods - BIBE 2008, 34(6), 471-478.

[16] Li, B., Meng, M. (October 2009). Small bowel tumor detection for wireless capsule endoscopy images

using textural features and support vector machine. In Proceedings IEEE/RSJ International Conference

on Intelligent Robots and Systems, 498 - 503.

[17] Kodogiannis, V.S., Boulougoura, M. (2007). An adaptive neurofuzzy approach for the diagnosis in

wireless capsule endoscopy imaging. International Journal of Information Technology, 13(1), 46-56.

[18] Magoulas, G.D., Plagianakos, V.P., Vrahatis, M.N. (2004). Neural network-based colonoscopic diagnosis

using on-line learning and differential evolution. Applied Soft Computing, 4(4), 369-379.

[19] Magoulas, G.D. (2006). Neuronal networks and textural descriptors for automated tissue classification in

endoscopy. Oncology Reports, 15, 997-1000.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

