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Abstract. With the rapid progress of information technologies, cars have been 

made increasingly intelligent. This allows cars to act as cognitive agents, i.e. to 

acquire knowledge and understanding of the driving habits and behavioral 

characteristics of drivers (i.e. driving behavioral fingerprint) through experience. 

Such knowledge can be then reused to facilitate the interaction between a car and 

its driver, and to develop better and safer car controls. In this paper, we propose a 

novel approach to extract the driver’s driving behavioral fingerprints based on our 
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conceptual framework Experience-Oriented Intelligent Things (EOIT). EOIT is a 

learning system that has the potential to enable Internet of Cognitive Things  
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(IoCT) where knowledge can be extracted from experience, stored, 

evolved, shared, and reused aiming for cognition and thus intelligent 

functionality of things. By catching driving data, this approach helps cars to 

collect the driver’s pedal and steering operations and store them as 

experience; eventually, it uses obtained experience for the driver’s driving 

behavioral fingerprint extraction. The initial experimental implementation 

is presented in the paper to demonstrate our idea, and the test results show 

that it outperforms the Deep Learning approaches (i.e. deep fully connected 

neural networks and recurrent neural networks/Long Short-Term Memory 

networks). 

Keywords: Vehicle Intrusion Detection, Neural Knowledge DNA, Set of 

Experience Knowledge Structure, Knowledge Representation, Deep 

Learning. 
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Introduction 

Recently, together with the rapid progress of information technologies and the 

advances in vehicle active control and advanced driver assistance systems, there have 

been significant research efforts in assisting the human driver in vehicle control actions. 

These advances allow artificial intelligence software to be embedded in cars and to 

learn the driving habits and behavioral characteristics of drivers (i.e. driving behavioral 

fingerprint) through their operational data of driving process. More importantly, 

knowledge of the driver’s driving behavioral fingerprint can facilitate the interaction 

between automobiles and human drivers so that better and safer car controls can be 

made, for example: predicting a driver's intended actions early and accurately can help 

mitigate the effects of potentially unsafe driving behaviors and avoid possible accidents 

(Liu 2008; Olabiyi et al. 2017). 

In this paper, we present an experience-based approach to extract driver’s driving 

behavioral fingerprint based on our conceptual framework called Experience-Oriented 

Intelligent Things (EOIT) that enables Internet of Things (IoT) to extract knowledge 

from their past experiences. This knowledge can then be stored, shared, and reused 

enhancing smartness of car's functionality. By catching car driving data, this approach 

helps to collect experience of drivers’ car control operations, to analyse this experience, 

and eventually to use the obtained experience for the driver’s driving behavioral 

fingerprint extraction. We demonstrate that using the available dataset our proposed 

approach outperforms in speed and accuracy methodologies based on deep learning 
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models (i.e. LSTM), even though LSTM based results are regarded as very good. 

The rest of this paper is organized as follows: section two describes related works; 

section three introduces the overview, features, and architecture of the 

Experience-Oriented Intelligent Things; section four presents the experimental 

implementation of our approach. Finally, in section five, concluding remarks are 

drawn. 

Related Work 

The driver behavior modeling is a broad as well as challenging research topic. Largely 

it involves longitudinal (pedal) and lateral (steering) control modeling. In this 

modelling pedal positions and steering angles are the output of a sophisticated virtual 

system, which involves human sensing, inference, decision making, and body 

movement processes, making driver behavior modeling a very difficult task to 

accomplish. 

In study (Zeng & Wang 2017), an input–output hidden Markov model is used to 

describe the pedal behavior. The state transition and output distribution functions are 

designed, and the relation between the input and the key variables of the output 

distributions is analyzed and modeled using statistical approaches. This model can 

incorporate the road information, capture individual driver’s driving style, and predict 

the output action probability distribution. Similarly, some other approaches (Berndt et al. 

2008; Kuge et al. 2000; Wang 2018) using the hidden Markov model and its modified 
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structures are shown performing well in various real life driving applications. In study 

(Schnelle et al. 2016), a combined driver model that is demonstrated to be able to not 

only identify different individual driver behaviors, but also predict a driver’s behavior 

in rare vehicle maneuvers such as collision avoidance (CA) based on his/her daily 

driving data. The proposed driver model can replicate each driver’s steering wheel 

angle signal for a variety of highway and in-city maneuvers. The advantage of the 

proposed driver model is its ability to predict a driver’s steering wheel angle signal for 

a CA maneuver just from daily nonemergency driving data. By employing the virtual 

driver to conduct the speed following task as defined by the standard driving cycle test, 

a personalized driver model is established in another study (Hu et al. 2017). For speed 

control purposes this model uses the locally designed neural network and the real-world 

vehicle test data. The proposed model is able to detect three typical abnormal driving 

behaviors that are pre-characterized and simulated, namely, the fatigue/drunk, the 

reckless, and the phone use while driving. In studies (Oliver & Pentland 2000; Liu 2008; 

Meyer-Delius et al. 2009), Bayesian methods were used to recognize driver intention with 

complex input feature dimension. Moreover, in studies (Hess et al. 1990; Macadam 2007; 

McRuer 1980; Donges 1978), driving models were built using optimal control theory for 

tracking the driving path, estimating the route, or analyzing steering behavior.  

Because the driver behavioral modeling is generally a time-series anomaly 

prediction problem, hand engineered features might not return the best result. Therefore, 

deep learning (Lecun et al. 2015) based methods, more specifically, the Long 
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Short-Term Memory networks (LSTM) (Hochreiter & Schmidhuber 1997) models are 

becoming popular in solving this problem (Olabiyi et al. 2017; Jain et al. 2016; Saleh et 

al. 2018; Morton et al. 2017; Carvalho et al. 2017). LSTM is capable of connecting 

previous information to the present task, which allows it to exhibit temporal dynamic 

behavior for a time sequence and make it well-suited to processing and making 

predictions based on time series data (Sak et al. 2014). 

In comparison, we propose a novel approach that explores the driver behavior 

modeling from a different perspective: experience-based cognition. We employ the 

Experience-Oriented Intelligent Things (introduced in Section 3) to collect and manage 

driving experience, and use the Triangle Mean Algorithm (introduced in Section 4) to 

reuse experience. Our model can learn both steering and pedal (i.e. braking and 

acceleration) actions unlike some of the works we mentioned above that focused only 

on either steering or pedal actions. More importantly, using experience not only enables 

much faster inference and prediction, which is fundamental for time critical tasks like 

driving, but also allows our model to evolve in time through adding new experience 

and up-to-date in real time with high accuracy, which cannot be done in deep learning 

based models without retraining. 

Experience-Oriented Intelligent Things 

The Experience-Oriented Intelligent Things (EOIT) framework is proposed to help IoT 

extract knowledge from their past experiences, as well as store, evolve, share, and reuse 
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such knowledge aiming for cognition and intelligent functions. This section presents 

the overview, main features, and architecture of the EOIT. 

A. Overview 

Due to the diversity of IoT applications, the hardware and software 

implementations could be various. Moreover, different companies, applications, 

systems could use different devices to perform even exactly the same task. The EOIT 

concept is designed to handle these issues, providing the means for organizations and 

individuals to have a common systematic framework within diverse IoT. 

Figure 1 shows the overview of the EOIT framework. As illustrated in Figure 1, 

the framework integrates IoT and different tasks at two major levels: local level, and 

global level. 

 

Fig. 1. Overview of the EOIT. 
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At the bottom of the framework, i.e. local level, there are different IoT hardware 

and devices computing and generating data for the tasks they are involved in. Each one 

of IoT at the local level may be assigned to a single or multiple task. In other words, to 

gain the knowledge of one thing (part of IoT), it may be needed to involve data from 

one or more tasks. By integrating data captured from tasks, experience of that given 

thing keeps forming and growing, so that experiential knowledge can be extracted and 

evolves via its learning engine introduced in (Zhang et al. 2017a; Zhang et al. 2017b). 

At the top, the global level, technologies Cloud and Fog Computing are applied in 

order to extract, store, evolve, and share knowledge among IoT at a global scale (Sanin 

et al. 2018). 

B. EOIT Main Features 

1) Experience-oriented 

Experience, as one kind of knowledge gained from practice, is the ideal source for 

improving performance of processes, in which a number of practical activities are 

involved. By reusing experiential knowledge, decision makers can make decisions 

faster, and more efficiently due to supporting their current decisions on experiences 

obtained from previous similar situations. Therefore, capturing the experience instead 

of all available data produced by IoT is the EOIT preference. 

2) Adaptable 

Currently, most IoT applications are customized; the hardware and software for each of 

them could be distinctly different. In order to work with customized devices and 
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software, knowledge-related tools are usually specifically designed only for given IoT 

or even for a particular stage of a product lifecycle. However, adaptability is rarely 

considered during the design and development of these tools. For solving this problem, 

EOIT is designed to work with specific designed devices and applications without 

re-designing or re-building them. 

3) Compact and Efficient 

Another important element concerning the application of EOIT is that many IoTs are 

resource-limited, which means our applications have to be designed in a compact but 

efficient form. As it has been shown in previous case studies (Zhang et al. 2010) using 

experience as the basic knowledge source is an efficient knowledge representation 

approach, which can indeed enhance knowledge retrieval and experience reusing 

applications. 

4) Configurable 

It is common for IoT applications to run under different scenarios. For example, the 

same application may work under different power supply conditions: connected to a 

power line or by using batteries. If the application performs always in the same way 

regardless of its power supply, it will soon run out of power and shut down when using 

batteries. Also, an application may work in different modes. For example it can be 

trained in a training mode, and work in an automatic self-control mode. For developers, 

it may have debugging mode. Therefore, configurability is a very desirable feature as it 

allows applications to perform properly in various scenarios according to different 
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settings. 

5) Secure and Trustable 

It is clear that a secure environment is a key requirement for any distributed system 

these days, especially when the Internet is used as the primary communication channel. 

Also, knowledge and knowledge sources must be reliable to make right decisions. 

Therefore, the concept of decisional trust presented by Sanin and Szczerbicki (2006) is 

adopted for EOIT and extended to include more features that reflect human-like 

behaviour. 

C. Architecture 

For carrying these five main features introduced above, the conceptual four-layer 

architecture is designed for EOIT. These four layers are: Application Layer, Interface 

Layer, Processing Layer, and Knowledge Repository Layer. The platform is 

conceptualized on the top of IoT, to extend the intelligence-related capabilities of the 

latter by using experience. Figure 2 illustrates the conceptual architecture proposed for 

the EOIT. 
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Fig. 2. Conceptual architecture of the EOIT. 

Each one of the layers in the conceptual architecture can be briefly characterized 

as follows:   

1) Application Layer 

IoT applications run on this layer having access to the framework’s whole 

functionalities. Data flow on this layer through EOIT’s APIs (application program 

interface) to facilitate IoT solving problems, making decisions, and feeding back the 

EOIT with information based on their daily activities. Additionally, the feedback 

information can be either knowledge extracted already on the IoT, or raw data from IoT; 

which depends on the computing capability of certain IoT. 

2) Interface Layer 

The Interface Layer connects the framework with its outer environment which provides  
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full functionalities of EOIT through a set of APIs. 

3) Processing Layer 

This layer is the central control of EOIT. In order to achieve knowledge extracting, 

storing, reusing, evolving, and sharing, a range of functionalities and mechanisms are 

attached to this layer, such as diagnosis, prognosis, inference, and knowledge 

management. 

4) Knowledge Repository Layer 

Experiential knowledge, as the most valuable resource, is stored and managed at this 

layer. In EOIT, a single decision event is captured and represented as a set of 

experience, and the knowledge carrying the decisional fingerprint of a particular thing 

is extracted from a number of  such decisional sets of experience, and is organized as 

Neural Knowledge DNA (NK-DNA). This layer provides the functionalities of access, 

storage, and administration of knowledge. The central to the Knowledge Repository 

Layer concept of NKDNA is comprehensively introduced and tested in the study 

presented in (Zhang et al. 2017b). The NKDNA’s four-element combination is able to 

carry detailed information of reinforcement learning and Markov Decision Processes 

(Zhang et al. 2017b). 

Experimental Implementation  

In this initial experimental implementation, we developed a smart phone application 

that reads the phone’s three-axis accelerometer every 5 seconds to collect data that map 
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driver’s pedal and steering operations. We collected 560 sets of data for the experiment. 

To predict the driver’s actions, we used fully connected neural networks, recurrent 

neural networks (LSTM networks, more specifically), and the EOIT application 

respectively for comparison. The task is sample: by giving one set of data (i.e. three 

float numbers from three axes respectively of the accelerometer at time t), to predict the 

next set of data (i.e. the next three three-axis accelerometer numbers collected at time 

t+1). As it is a time series forecasting problem, the fully connect neural networks fail to 

perform. The LSTM networks are trained by 500 samples of the dataset after 30000 

epochs with 256 units. Figure 3 shows its cost convergence during the training.  

 

Fig. 3. Cost convergence of training the LSTM. 

For our experience-based approach, we introduced a k-Nearest Neighbour 

(Altman 1992) like algorithm (we call it Triangle Mean Algorithm) to predict the next 

set of data. The Triangle Mean Algorithm measures the distance dE(Xi, Xj) between 

query points Xi and a set of training samples (i.e. the experience) Xj to predict the 

output points Yi based on the mean of three nearest points (triangle-points Ti ) of 
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training samples. Algorithm 1 describes the details of the developed algorithm. 

 

Algorithm 1 Triangle Mean Algorithm 

 

Input:  

 (1) training samples { Xj, j = 1,…,M} 

 (2) query points {Xi, i = 1,…, N} 

Output: 

 prediction points {Yi, i = 1,…, N} 

1: for each Xi  i   1 .. N  do 

2: for each Xj  j   1 .. M  do 

3:  dE (Xi, Xj) = √∑           )          ) )  
 
    

4: Ti = {                 dE (Xi, Xj) | Ti   Xj  } 

5: prediction = 
 

 
 ∑          )

 
    

6: end for 

7: end for 

 

To examine our experience based concept, 500 sets of data are used as the training 

samples and the rest 60 sets of data are used as testing queries for all three approaches 

(i.e. fully connected neural networks, LSTM networks, and our EOIT approach). 

However, as the fully connected neural networks failed in the examination (training 

cannot converge), the results illustrated below involve only the latter two approaches 

(see Figure 4). 
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Fig. 4. Comparison of the predictions of LSTM networks (left) and the EOIT 

approach (right). 

The upper row illustrates grand truth (green triangle) and predictions (blue dots) of 

the x and y axes data, while the bottom row presents the results for y and z axes. The 

results demonstrate that the predictions of EIOT approach (right) are closer to the grand 

truth than the ones of LSTM networks (left) are. 

Figure 5 shows the sum of errors at three axes respectively. As it can be seen from 

the figure, the EOIT approach outperforms the LSTM networks, which further 

reinforces the results presented above in Figure 4. 

At the end of this experiment, we measured the efficiency of our EOIT approach 

and LSTM networks. The results (Figure 6) demonstrate that the EOIT is about three 
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times faster (30ms) than the LSTM networks (151ms) on our test computer for the 

same test dataset, providing more than two times closer predictions. The total error is 

measured as the sum of distances for each prediction of the 60 queries of the test 

dataset. 

 

Fig. 5. The prediction errors at three axes. 

 

 

Fig. 6. The total time and total errors comparison. 
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Conclusions and Future Work 

In this paper, we present the concept of an experience-based cognition framework 

EOIT, which acquires knowledge and understanding of the driving habits and 

behavioral characteristics of car drivers. 

By catching car driving data, this approach helps to collect experience of drivers’ 

car control operations, and eventually, it uses obtained experience for the driver’s 

driving behavioral fingerprint extraction via the Triangle Mean algorithm. Our 

approach learns both steering and pedal (i.e. braking and acceleration) actions, and is 

demonstrated to perform faster and more accurately than deep learning based models 

(i.e. LSTM) on our dataset. In addition, using experience also allows our model to 

evolve in real time and be up-to-dated with high accuracy, which cannot be done in 

deep learning based models without time consuming retraining. 

In the next step of the EIOT research refinement we will adopt it for mobile 

applications, expand data access interfaces to manage car control data from the vehicle 

electronic control unit (ECU), and develop inferential ability to be able to further 

manipulate the acquired knowledge. 
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