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Abstract. The Internet of Things (IoT) has gained significant attention from industry as well as 

academia during the past decade. The main reason behind this interest is the capabilities of the IoT for 

seamlessly integrating classical networks and networked objects, and hence allows people to create an 

intelligent environment based on this powerful integration. However, how to extract useful 

information from data produced by IoT and facilitate standard knowledge sharing amongst different 

IoT systems, are still open issues to be addressed. In this paper, we propose a novel approach, the 

Experience-Oriented Smart Things (EOST), that utilizes deep learning and knowledge representation 

concept called Decisional DNA to help IoT systems acquire, represent, and store knowledge, as well 

as share it amid various domains where it can be required to support decisions. We demonstrate our 

approach in a set of experiments, in which the IoT systems use knowledge gained from past 

experience to make decisions and predictions. The presented initial results show that the EOST is a 

very promising approach for knowledge capture, representation, sharing, and reusing in IoT systems.  

Key words: Knowledge representation, Decisional DNA, deep learning, Internet of Things. 

INTRODUCTION 

During the past decade, the Internet of Things (IoT) [1][2][3] has received significant attention from 

industry as well as academia. The capabilities of the IoT for seamlessly integrating classical networks and 

networked objects [4] are the main reasons behind this interest [1][5]. The basic idea of IoT is to connect 

all things in our surrounding world to the Internet, and the ultimate goal of IoT is to build an intelligent 

environment around us, where things can communicate with each other in a manner similar to 

communication between humans, make decisions by themselves, and act accordingly without explicit 

instructions, and even know what we need, what we want, and what we like [3][5]. Furthermore, the latest 

great progresses on computer networks and relevant technologies make a number of new smart 

conceptual applications possible. Therefore, increasingly more governments, academics, researchers, and 

practitioners are taking part in constructing such an intelligent environment that is composed of various 

computing systems, such as intelligent transportation, smart health care, global supply chain logistics, 

smart home, or smart cities [6][7][8]. Consequently, how to extract knowledge from the data captured or 

generated by IoT becomes these days one of the most important emerging challenges.  

This is an Accepted Manuscript version of the following article, accepted for publication in CYBERNETICS AND SYSTEMS. 
Postprint of: Zhang H., Li F., Wang J., Sanín C., Szczerbicki E., Experience-Oriented Intelligence for Internet of Things, CYBERNETICS AND 
SYSTEMS, Vol. 48, Iss. 3 (2017), pp. 162-181, DOI: 10.1080/01969722.2016.1276771
It is deposited under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), 
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1080/01969722.2016.1276771


The ideas presented in this paper are also relevant for the role the IoT would play in the incoming 

fourth industrial revolution termed Industry 4.0. Efforts are being made around the world to improve the 

productivity and efficiency of industries which can be achieved by integrating engineering technologies 

with information and communication domains. The main objective behind this integration is to reap the 

benefits of the unprecedented advancement in the field of information and communication technologies 

one of which is the concept of IoT [3] [9] [10]. 

This idea leads to the emergence of the new concept of Industry 4.0. It is a powerful concept which 

promotes the computerization of traditional plants and factories and their eco-systems towards a 

connected and 24/7 available resources handling scheme. The goal is the intelligent factory, which is 

characterized by adaptability, resource efficiency and ergonomics as well as the integration of customers 

and business partners in business and value processes. Industry 4.0 promotes vision of smart factories 

being part of a broad perception of smart cities, and is based on the technological concepts of 

Cyber-Physical Systems (CPS) and Internet of Things (IoT) [10][11][12]. 

CPSs refer to the next generation of engineering systems that require tight integration of computing, 

communication and control technologies to achieve stability, performance, reliability, robustness and 

efficiency in dealing with physical systems of many application domains [10] [13] [14] 

Knowledge engineering based IoT plays an important role in the Cyber-physical systems as there is a 

need for a unified framework to represent the myriad types of data and application contexts in different 

domains and interpret them under the appropriate context [15][16]. These issues are becoming 

increasingly important not only to physical domains but also to a countless challenges related to social 

systems and services [17][18][19].   

To address some of the above mentioned issues and challenges, we propose in this paper a novel 

concept supporting sustainable IoT growth and development, the Experience-Oriented Smart Things 

(EOST). It combines knowledge and experience representation thorough Decisional DNA with deep 

learning in order to help IoT systems acquire, represent, and share knowledge in a standard way, so that 

the acquired knowledge can be distributed and reused amongst different IoT systems. 

 

KNOWLEDGE, EXPERIENCE, AND MACHINE LEARNING 

 

Then, what is knowledge? This is a question that has been discussed by philosophers since the ancient 

Greeks, and it is still not totally demystified. The Oxford Dictionary defines Knowledge as “facts, 
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information, and skills acquired through experience or education; the theoretical or practical 

understanding of a subject”[20]. While Drucker P. F. defines it as “information that changes something or 

somebody - either by becoming grounds for actions, or by making an individual (or an institution) capable 

of different or more effective action”[21]. Knowledge is not a real knowledge until the information inside 

itself has been engaged and used by people [22].  

 If knowledge is to be used in IoT it must be represented. Consequently, knowledge representation is 

a fundamental field dedicated to representing information about the world in a form that computer 

systems can utilize to solve complex tasks [3] [23]. It is the study of thinking as a computational process. 

Knowledge representation and reasoning, therefore, is the field of Artificial Intelligence (AI) that is 

mainly focused on how an agent makes decisions based on what it knows.  

 

Experience, its acquisition, and experience modelling techniques 

Knowledge is most often based on experience. Experience, as a general concept, comprises previous 

knowledge or a skill obtained through daily life [24][25]. Usually experience is understood as a type of 

knowledge that one has gained from practice rather than books, research, and studies [26]. In this way, 

experience or experiential knowledge can be regarded as a specialization of knowledge that includes 

information and strategies obtained from performing previous tasks. When these tasks involve making 

decisions, the specific experience that is gained is called decisional experience. 

The importance of decisional experience in knowledge engineering, and especially in knowledge 

sharing, has been recognised for at least last ten years. Studies reported in [27] have established that the 

primary research aim of knowledge management (KM) should be to use the vast experience that is 

accumulating each day within organisations and systems, as true knowledge is developed through 

learning from current and past experiences [25][28][29]. Experience management (EM), its formalization, 

representation, and experience based systems development is capturing increasingly growing attention of 

researchers and practitioners. However, the related problems and their solutions do not appear to have 

progressed too far. The fundamental limitation of current research in this area is that none of the proposed 

approaches uses experience as ongoing, real time reference during the decisional process in a way similar 

to what happens naturally when humans make decisions if confronted with a new situation. We challenge 

the existing techniques used to model experience such as case base reasoning [30][31], decision trees 

[32], petri nets [33][34] and many others with the proposition that all of them lack the same critical 
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element in assuring progress and useful real life implementations – they don’t store and reuse experience 

in an ongoing, real-time representation system that can provide the following, crucial for useful decision 

support end user applications, features [25]: 

 Adaptability and cross-platform portability, 

 Compactness and efficiency, 

 Configurability and shareability,  

 Security and trust, and  

 Being exclusively experience dedicated and oriented. 

Artificial bio-inspired intelligent techniques and systems supporting smart, knowledge-based 

solutions of real world problems which are currently researched very extensively by research teams 

around the world, have enormous potential to enhance automation of decision making and problem 

solving for a number of diverse areas, including clinical diagnosis. Bio-inspired ideas and 

implementations have a long history starting with Chinese effort to develop artificial silk some 3000 years 

ago, later inspiring Leonardo da Vinci’s flying machines, and recently enhancing our everyday lives with 

Velcro and Gecko tapes, improving drag and friction on Airbus airplane wings by following design 

principles based on humpback whales flipper and skin of the shark, applying lotus effect to develop 

self-cleaning surfaces, pine cone effect to manufacture smart fabrics, and amoeba based network design 

[25][35][36][37]. All these popular real life implementations represent successful biomimetic 

applications. Nature is full of excellent examples of design and smart organizational/management 

approaches that produce outstanding results in highly complex situations. The main problem is that most 

often we simply do not understand how this happens.  

The proposed experience acquisition and modelling inspiration stands in the role of 

deoxyribonucleic acid (DNA) in storing and sharing information and knowledge. In nature DNA contains 

“...the genetic instructions used in the development and functioning of all known living organisms. The 

main role of DNA molecules is the long-term storage of information. DNA is often compared to a set of 

blueprints and the DNA segments that carry this genetic information are called genes.” [38]. The idea 

behind our approach is an artificial system, an architecture that would support discovering, adding, 

storing, improving and sharing information and knowledge among agents, machines, and organisations 

through experience. We introduce a novel Knowledge Representation (KR) approach in which 
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experiential knowledge is represented by Set of Experience (SOE), and is carried into the future by 

Decisional DNA (DDNA) [25][39][40] (see Figure 1). 

 

Figure 1. SOE is combination of four components that characterize decision making actions (variables, 

functions, constraints, and rules) and it comprises a series of mathematical concepts (a logical component), together 

with a set of rules (a ruled based component), and it is built upon a specific event of decision-making (a frame 

component); Sets of Experience (Decisional Genes) are grouped according to their phenotype creating Decisional 

Chromosomes and groups of chromosomes create the Decisional DNA 

 

We initially developed the concept and coined the expressions of “Set of Experience - SOE” and 

“Decisional DNA - DDNA” in 2006-2007 [41-44], Since then our research efforts resulted in widespread 

recognition of this innovative KR concept based on DNA metaphor that lately was presented as 

multi-technology shareable knowledge structure for decisional experience with proven portability, 

adaptability, shareability, security, and trust in [25] [45]. 

In our proposed EOST, we use SOEKS to formalize experience. SOEKS, as a flexible, independent, 

and standard knowledge structure, not only captures and stores formal decision events as experience, but 

can also be easily applied to various domains to support decision-making and standard knowledge sharing 

[46]. SOEKS components that are used in EOST most often (variables and rules) are presented next. 

Variables formally describe experience-based knowledge structure using an attribute-value language 

[25][42][46]. This is a well-established measure from the foundation of knowledge representation and is 

the starting point for SOEKS development and composition. Variables are the center root of the SOE 

structure and they are the major composition source of the other SOE components.  

Rules are used to express logical relationships among variables. They are suitable for representing 
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inferences or for associating actions with conditions under which actions should be performed [46]. Each 

single rule describes a relationship between a condition and a consequence linked by the statements 

IF-THEN-ELSE [25][47]. Figure 2 illustrates rules as the compound of multiple classes [25]. A rule is 

composed of four elements: joints, consequences, confidence, and weight. Joint could be presented more 

than once and it contains jnt (i.e., AND/OR) and conditions. Each condition comprises factors, sym (≥, ≤, 

>, =, <), value, and variable. A factor is a composition of parenthesis (lpar, rpar), operator (oper), 

coefficient (coef), potency (poten) and variables. Figure 3 depicts the structure of a factor with an 

illustrative and simple example [25]. Consequence (one or many) are comprised by two variables, 

symbol, and value. If all conditions are satisfied, the first variable of a consequence equals the value; 

otherwise it is the second variable. The weight provides the level of importance related to the given rule. 

 

Figure 2. Structure of Rule SOEKS Classes 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


( 3 X1+2 X2
2 )

lpar poten rpar

variable

coef oper

 

Figure 3. Structure of each factor with example 

 

Functions and constraints are another two elements of standard SOEKS structure that  provide 

further enhancement options of the proposed EOST system. Functions represent relationships between a 

set of input variables and a dependent variable; besides, functions can be applied for reasoning about 

optimal states of a studied system. Constraints are another way of associations among the variables. They 

are restrictions of the feasible solutions, limitations of possibilities in a decision event, and factors that 

restrict the performance of a system. 

 

Artificial Neural Networks and Deep Learning 

Machine learning, as the core of artificial intelligence, addresses the question of how to build computer 

systems that can automatically improve themselves through experience [48]. It is one of today’s most 

rapidly growing technical fields. Recent progress in machine learning has been driven by the development 

of new theories and learning algorithms, such as the Artificial Neural Networks (ANN). 

 ANN is a biologically-inspired programming paradigm which enables a computer to learn from 

observational data [49]. It consists of a network where the information can be passed from one node to 

another, and these nodes in the network are called artificial neurons. The network typically is structured 

hierarchically, and its neurons are usually organized into layers such that each neuron in layer l connects 

to every neuron in layer l+1. Any layers in between the input layer and output layer are called hidden 

layers. The forward pass of an ANN is where information flows from the input layer, through any hidden 

layers, to the output. ANN learns during the backwards pass, which updates the connection’s weights of 

the network [48]. 

Deep learning is a powerful set of techniques for learning in ANN [49]. It allows computational 
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models that are composed of multiple processing layers to learn representations of data with multiple 

levels of abstraction [50]. Deep learning learns sophisticated structure in large data sets by using the 

backpropagation algorithm [51] to reveal how a neural network should change its internal parameters that 

are used to compute the representation in each layer from the representation in the previous layer 

[48][49][50][52]. The essential aspect of deep learning is that these layers of features are not 

human-designed: they are learned from data using a general-purpose learning procedure [50]. Deep 

learning has dramatically improved the state-of-the-art in image recognition, natural language process, 

object detection and many other domains such as drug discovery and genomics [48] [53]. 

 

KNOWLEDGE DISCOVERY ON IoT 

 

Data from IoT 

Basically, every single thing of IoT might produce data containing various kinds of information. 

According to [54], data produced by IoT can be divided into two classes: the data about things and the 

data generated by things. The data about things usually contain information that can be used to improve 

the performance of IoT. The data generated by things carry information on operations and interaction with 

humans. In recent years, the total amount of data produced worldwide every year has exceeded one 

zettabyte [3], and the data generated by IoT per day has increased fast beyond the limits of available data 

processing tools today. Hence the term “big data” was introduced to describe this data-deluge situation 

[55]. Although a range of traditional tools [56] can be used to solve or ease the issues of handling the big 

data problem, such as data condensation [57], divide and conquer [58], incremental learning, and random 

sampling [59], these tools are generally not powerful enough to deal with such amounts of data as 

produced by IoT [48][60][61].  

Consequently, a number of research proposals and attempts to address the big data problem have been 

made. Among them, a new approach to solve the big data problem is to reduce the complexity of input 

data [62][63][64]. Distributed computing, feature selection, and cloud computing are some other 

promising directions for dealing with this issue [6][65][66].  

 

Knowledge-based IoT Systems 

Using the powerful features of the IoT, classical networks and networked objects can be integrated. The 

new challenge related to this integration can be formulated as follows: how do we extract knowledge and 

valuable information from the data captured and generated by IoT to enhance the intelligence of the fully 
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interconnected world of things? Some attempts to progress in this direction are known from the literature 

[48]. López et al. [67] proposed an architecture that integrates fundamental technologies for realizing the 

IoT into a single platform and examined them. The architecture introduces the use of the Smart Object 

framework [68][69] to encapsulate sensor technologies, radio-frequency identification (RFID), object 

ad-hoc networking, embedded object logic, and Internet-based information infrastructure. They evaluated 

the architecture against a number of energy-based performance measures, and showed that their work 

outperforms existing industry standards in metrics such as delivery ratio, network throughput, or routing 

distance. Finally, a prototype implementation for the real-time monitoring of goods flowing through a 

supply chain was presented in detail to demonstrate the feasibility and flexibility of the architecture. Key 

observations showed that the proposed architecture had good performance in terms of scalability, network 

lifetime, and overhead, as well as producing low latencies in the various processes of the network 

operation. Li et al. [70] introduced the Smart Community as a new Internet of Things application, which 

used wireless communications and networking technologies to enable networked smart homes and 

various useful and promising services in a local community environment. The Smart Community 

Architecture (SCA) was defined in their paper, then solutions for robust and secure networking among 

different homes were presented with two smart community applications, Neighborhood Watch and 

Pervasive Healthcare. In [71], a cognitive management framework that empowers the Internet of Things 

to better support sustainable Smart City development was presented. The framework introduced the 

virtual object (VO) concept as a dynamic virtual representation of objects and proposed the Composite 

VO (CVO) concept as a means to automatically aggregate VOs in order to meet users’ requirements in a 

resilient way. In addition, it illustrated the envisaged role of service-level functionality needed to achieve 

the necessary compliance between applications and VOs/CVOs, while hiding complexity from end users. 

The envisioned cognition at each level and the use of proximity were described in detail, while some of 

these aspects are instantiated by the means of building blocks. A case study, which presented how the 

framework could be useful in a Smart City scenario that horizontally spans several application domains, 

was also described. In [72], Lee et al. applied human learning principles to user-centered IoT systems. 

This work showed that IoT systems could benefit from a process model based on principles derived from 

the psychology and neuroscience of human behavior that emulates how humans acquire task knowledge 

and learn to adapt to changing context. 

According to the survey presented in [3][48], after a comprehensive comparison of different data 
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mining technologies and their applications for IoT related data mining, a promising direction was 

formulated that recommends using knowledge discovery technologies to make  IoT smarter and more 

intelligent. In our approach, we propose to combine deep learning and the Decisional DNA to enhance the 

intelligence of IoT systems [48][66]. 

 

THE EXPERIENCE ORIENTED SMART THINGS (EOST) 

By utilizing deep learning and the Decisional DNA, experiential knowledge can be extracted from practical 

processes such as problem solving and decision-making, and represented in an explicit and standard way 

enabling knowledge sharing and reusing for different IoT systems. The Experience-Oriented Smart Things 

(EOST) approach is proposed as the intelligence engine for IoT systems [66]. This section presents the 

main features, architecture, and initial experiments of this approach. 

 

Main Features of the EOST 

The EOST is proposed and designed to allow experience-oriented knowledge acquisition, representation, 

reusing, and sharing for IoT systems [48][66]. In order to achieve these aims, the EOST embraces the 

following features: 

a) Experience-oriented: one of the ways to deal with the big data issue is to capture only the relevant 

data instead of all data. Experience, as one kind of knowledge learned from practice, is the ideal source 

for improving the efficiency of knowledge acquisition. By mimicking natural learning from experience, 

the EOST abstracts experiences from past data capture and uses this experience to select relevant data.  

b) Cloud-based: the EOST is designed as an open platform for all things. To allow that, cloud 

computing and open Application Program Interface (API) are important characteristics of this approach. 

Besides, cloud computing can also allow universal knowledge sharing and exchange amongst various IoT 

systems. 

c) Self-learning: the EOST is designed to learn automatically from data of things so that it can help 

IoT systems achieve better performance, smarter behavior, and operational efficiency. Early AI systems 

are based on expert knowledge, which is not universal [73]. Therefore, the EOST uses deep learning to 

address this matter due to its universality for all learning tasks [50]. 

d) Compatible: the EOST is expected to work with different domains, and process data from various 

IoT systems. Since most IoT are customized, the hardware and software for each of them could be 

distinctly different; thus, compatibility is essential for the EOST. 
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System Architecture 

The proposed EOST consists of Prognoser, Knowledge Repository, and Deep Learning Engine [48] [66]. 

The Prognoser is the control center of the EOST. It is in charge of experience capturing, knowledge 

abstraction, knowledge creating, knowledge retrieval, and knowledge reusing. For experience capturing, 

the Prognoser catches the scenario information when a decisional event occurres, and sends it to the 

Knowledge Repository for store. The Prognoser abstracts knowledge based on captured experience by 

utilizing the Deep Learning Engine. Finally, it creates experience-based knowledge and sends this 

knowledge to Knowledge Repository for storing. To support decision-making, it retrieves and reuses the 

knowledge that is stored [48][66]. 

The Deep Learning Engine runs deep learning algorithms, abstracts knowledge from experience, and 

reuses abstracted knowledge. Deep learning allows computational models that are composed of multiple 

processing layers to learn representations of data with multiple levels of abstraction, and it can 

automatically discover the representations of input data for detection or classification. By using deep 

learning, knowledge can be abstracted from sets of experience, and stored as Decisional DNA [48][66]. 

For knowledge reuse, the Deep Learning Engine loads the Decisional DNA, re-construct the deep 

learning network, and gives predictions according to learnt knowledge. 

The Knowledge Repository stores and manages the EOST’s experience and knowledge. In the EOST, 

a single decision event is captured and represented as an experience, stored as one Set of Experience 

(SOE), and a set of SOE are organized as the Decisional DNA carrying the decisional fingerprint of the 

EOST. The Knowledge Repository provides functionality of query, store, insertion, editing and deletion 

of experience and knowledge [48][66]. 

 

Initial Experiments 

In order to initially examine our concept, we tested various elements of the proposed EOST approach 

in a set of experiments by using different data and different problems. These experiments are presented 

next. 

 

The IoT Bike Scenario 

In the first experiment, we designed an application which was a sensor-equipped IoT bicycle [48][66]. 

By using the Bluetooth wireless communication technology, the bicycle sends sensor data to the smart 

phone APP; afterwards, these data is sent to the EOST via the Internet for knowledge discovery. Finally, 
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the EOST sends suggestions back to assist the bicycle user in their decision making.  

The main hardware components of the bicycle consist of a NXP LPC1769 board, a HC-06 Bluetooth 

module, and two MD-PS002 pressure sensors. The NXP LPC1769 is an ARM 32-bit Cortex-M3 

Microcontroller with MPU, CPU clock up to 120MHz, 64kB RAM, 512kB on-chip Flash ROM with 

enhanced Flash Memory Accelerator. It supports In-Application Programming (IAP) and In-System 

Programming (ISP), has eight channel general purpose DMA controller, nested vectored interrupt 

controller, AHB Matrix, APB, Ethernet 10/100 MAC with RMII interface and dedicated DMA, USB 2.0 

full-speed Device controller and Host/OTG controller with DMA, CAN 2.0B with two channels, four 

UARTs, one with full modem interface, three I2C serial interfaces, three SPI/SSP serial interfaces, I2S 

interface, General purpose I/O pins, 12-bit ADC with 8 channels, 10-bit DAC, and four 32-bit timers with 

capture/compare. The NXP LPC1769 board is easy to use, uses low power, and easily handles different 

peripherals and sensors working together. Through the HC-06 Bluetooth module, the board is able to 

communicate with other devices, such as a smart phone, so that the captured data can be sent for further 

processing [48][66]. 

In terms of the adaptability examination of Decisional DNA in this experiment, we converted the file 

format of SOEKS from XML to plain text so that the captured data can be organized and stored on the 

NXP LPC1769 board. Whenever bicycle was in use, pressure sensors collected the two tires’ real-time 

tire pressure. Besides the pressure, date and time are captured as well and they are collected for future use, 

such as learning the riding routine of a given user [48][66]. 

By organizing and sending captured data to the APP running on an Android phone via Bluetooth 

connection, tire pressure information was collected. Then, the APP sends the information to the EOST, 

and the EOST stores it as experience base on the principals of Decisional DNA. Finally, the EOST 

analyzes experiences and extracts knowledge from them. In this initial experiment, we introduced the 

FarthestFirst [74] algorithm to help learn the user’s normal weight distribution based on tire pressure 

information, and eventually to use it to distinguish its current user from other riders (i.e. user clustering). 

We collected tire pressures when the user was riding in order to train the system. After training we 

changed the rider, and the bicycle was able to detect the change from the tire pressure differences. Figure 

4 shows the result of the user clustering in Weka [75] by using real-time data of tire pressures.  The 

system clusters the riders correctly; the Cluster 1 (marked as cross) stands for the current user, and the 

other riders are clustered as the Cluster 2 (marked as solid dot) [48][66]. 
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Figure 4. The result of the user clustering on EOST  

As we can see from this initial experiment, by using the Decisional DNA and some machine learning 

algorithms, for example, the FarthestFirst algorithm in this case, we created The EOST knowledge-based 

platform for IoT. Through its open API, this IoT application connects to EOST platform, and illustrates 

how smart services of EOST can be accessed.   

 

Testing Deep Learning ability to predict in various IoT data scenarios  

Data from IoT systems may be isolated from each other and come from different devices, for example, 

we usually connect body temperature, pulse, daily walking steps, and so on to someone’s health condition, 

but these health-related data might be taken from a thermometer, a smart watch, or a smart phone 

respectively. So, the question is how can we get the big picture of a set of data that consist of data 

produced by different things dedicated to a particular purpose? The ideal algorithms should be able to 

learn the features of problems, find out hidden connections and patterns, and extract knowledge from data 

automatically. In order to test whether the deep learning meets this requirement, a prediction problem is 

picked for illustration [48][66].  

The prediction is about whether a horse with colic would live or die giving 28 attributes describing the 

health-related information of the horse, such as rectal temperature, pulse, age, etc. There are 368 instances 

in this experimental dataset [76]. Apart from deep learning, other two machine learning algorithms, 

namely logistic regression and AdaBoost [77], are chosen to perform the examination. First, 300 instances 

were used for training, and the rest 68 instances are used for testing. The results showed that the deep 
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learning outperformes logistic regression and AdaBoost in the experimental settings. In the next step of 

our test, we changed the sizes of the training dataset and test dataset respectively. After this change the 

deep learning always predicts better than other techniques, even when the training dataset is small and the 

test dataset is large. It confirms the adaptability and applicability of deep learning algorithm to work with 

various data sets as required for IoT. The  above experiments are mentioned here for the sake of 

completeness, for more detailed discussion please refer to [48][66])  

 

Self-evolving with Experience 

Another important feature of this approach is that the EOST collects previous decisional experience 

and reuses such experience to expand intelligence and improve future decision making. In this experiment, 

an agent is asked to learn from its experience of exploring a maze, extract knowledge of the maze solving 

process, and finally reuse extracted knowledge to make proper decisions to move in the maze. There are 

eight blocks in the maze as shown in Figure 5. At the beginning, the agent knows nothing about the maze, 

and it is trying to explore and lean the maze by taking four possible actions: going up, going down, going 

left, and going right. At each block, the agent can take one of the four possible actions. In the end, the 

agent is expected to know the maze, and able to show us the shortest way to get to the block 8. 

 

Figure 5. The maze used in the experiment 

During the exploration, the agent transitions from one state to another and it makes decisions/actions 

(i.e. going up/down/left/right) in each state and receives feedback from its operations. These states, 

actions, feedbacks, and transition make the agent’s ‘experience’. Inspired by the Markov Processes [78], 

the experience of an agent is stored as et = (st, at, rt, st+1) at each time-step t: where st is the current state at 

the time-step, at is the action the agent chooses at that time-step, rt is the reward (feedback) for 
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undertaking the action, and st+1 is the next state after the chosen action. The agent starts always from 

block 1, repeats random taking of possible actions until it reaches the block 8. Meanwhile, the agent stores 

every single action taken with feedback from the maze as an SOE during its exploring of the maze. In this 

experiment, we let the agent randomly take 1000 possible actions for exploration. 

The training starts after the exploration. To solve the maze learning problem, i.e. finding shortest way 

to get to the block 8, the agent needs to remember how blocks are connected to each other so that it can 

make better decisions to reach the final block. In other words, the goal of the agent is to select actions in a 

fashion that maximizes cumulative future reward. In our case, the deep reinforcement learning [79] is 

applied to help the agent to learn the maze. More formally, we use a neural network to approximate the 

optimal action-value function [80]: 

 

Q*(s, a)=maxE[rt + γ rt+1 + γ2rt+2 + … | st =s, at =a, π],                           (1)           

         π 

 

which is the maximum sum of rewards rt discounted by γ at each time-step t, achievable by a behaviour 

policy π(a|s), after making an observation (s) and taking an action (a). 

Finally, we examined the agent by sending seven possible states one by one to the agent’s neural 

network, and checked the outputs representing the actions what the agent should choose in certain states 

respectively. Figure 6 shows the screenshot of the examination results. 

   

 

Figure 6.  Screenshot of examination results (left) and the experimental maze (right).  

As we can see from Figure 6, the experimental agent can not only tell us what is the shortest way to 

get to block 8 from block 1 (go right at block 1 to get block 4, and then go right again at block 4 to get 

block 7, then go up to get block 8) but it also knows how to get to block 8 from different blocks, for 

example, if it is at ‘block 2’, it knows that it shall ‘go up’ first. 
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CONCLUSIONS AND FUTURE WORK  

In this paper, we propose the Experience-Oriented Smart Things (EOST) that utilizes deep learning 

and Decisional DNA to help IoT systems acquire, represent, store, and share knowledge. We demonstrate 

our approach in a set of experiments, in which various IoT systems use knowledge gained from past 

experiences to make decisions and predictions. The results show that the EOST is a very promising 

approach for knowledge and experience management and engineering within a variety of IoT systems. By 

seizing advantages of neural networks, reinforcement learning, and the Decisional DNA, the EOST can 

store knowledge absorbed through its domain’s daily operation, and provides an easy way for future 

knowledge sharing and reusing. .  

The future work includes: 

1) refinement and further development of the deep learning neural networks engine, 

2) further design and development of the EOST framework, especially for supporting a range of 

third-party deep learning contexts;  

3) design and development of the cloud platform dedicated for EOST knowledge management. 
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