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ABSTRACT 
In the framework of damage mechanics, we discuss a new mathematical 
model that describes the kinetics of the stress–strain state and damage 
accumulation during material degradation by the mechanism of long-term 
strength under complex multiaxial stress state. An experimental and theor
etical technique is proposed for determination of material parameters and 
scalar constitutive functions for damaged media based on specially set 
experiments on laboratory specimens. The results of experimental studies 
and numerical simulations of short-term high-temperature creep of VT6 
titanium alloy under uniaxial and multiaxial loading are presented. 
Numerical results are compared with the data obtained through experi
ments. Particular attention is paid to simulating the process of unsteady 
creep for complex deformation modes, accompanied by rotation of main 
areas of stress, strain and creep strain tensors. It is shown that the devel
oped version of the constitutive relations of the damaged media enables 
us to describe the processes of unsteady creep and long-term strength of 
structural alloys under multiaxial stress with the accuracy sufficient for 
engineering calculations.

1. Introduction

The key feature of structural elements undergoing failure under high-temperature creep is non- 
stationary nature of thermal and force actions that determine the nature of material deformation 
in the zones of stress concentration at different time duration, stress levels and tempera
tures [1–6].

Numerous experimental results indicate that the nature of failure under thermo cyclic loading 
at various cycle times differs due to the difference in combinations of two main types of damage: 
the damage caused by the creep that develops mainly along the grain boundaries (inter granular 
fracture) and the damage caused by plastic deformation along the slip planes of dislocations 
(transcrystalline fracture).

Since the processes of damage accumulation depend on the kinetics of the stress–strain state 
(SSS), the accuracy of strength and service life assessment of structural elements will depend on 
reliability of a mathematical model of the mechanics of damaged media (MDM) in describing 
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deformation processes in hazardous zones of structural elements under specified operating condi
tions and on the accuracy in determining material parameters within mathematical model.

The service life of structural elements subjected to elevated temperatures and to cyclic mechan
ical loads is mainly determined by the physical processes of low cycle fatigue (LCF) and damage 
accumulation due to creep, which lead to one of the most dangerous types of failure - brittle frac
ture of structures originally made from plastic materials.

Many simplified one-dimensional constitutive equations have been proposed to describe the 
standard creep curves. However, they are suitable only for the case of constant stresses and repre
sent an attempt to mathematically formalize the first and second stages of creep process [7–14].

The models of temporary and strain hardening under alternating stresses were developed 
[7, 10]. However, the constitutive creep relations presented in the form of temporary and strain 
hardening models are intended only to describe the first and second stages of creep process. They 
neither cover all stages of creep process nor describe the important phenomenon of reverse creep 
during material unloading. Therefore, in a number of cases it is necessary to formulate more 
complex constitutive relations for creep and long-term strength [15–21]. A large number of vari
ous formulations of creep models have been proposed by domestic and foreign researchers 
[2, 10]. However, there is an opinion shared by many researchers that relations based on the gen
eralization of hardening models by applying the concept of “hidden” or “internal” state parame
ters may agree satisfactory for engineering calculations with experimental data under multiaxial 
stress states. Such relations have two important advantages: they cover a wide range of material 
behavior including determination of scleronomous plastic deformation and rheonomious creep, 
and at the same time they are very convenient for analyzing effective stresses.

Particular attention should be paid to experimental studies of high-temperature creep under 
multiaxial loading, since these experimental data are the basis for constructing a reliable mathem
atical model, which allows to take into account the effects arising from complex disproportionate 
loads and significantly affecting the accuracy of calculations of long-term structural strength.

This paper presents experimental studies of short-term high-temperature creep of VT6 titan
ium alloy under uniaxial and multiaxial stress states. A mathematical model of MDM is devel
oped to describe the processes of unsteady creep and long-term strength of polycrystalline 
structural alloys based of the works of domestic and foreign researchers [6, 15–21].

The reliability of the developed constitutive relations of MDM was assessed by comparing the 
experimental results with calculated data on the short-term high-temperature unsteady creep of 
the VT6 titanium alloy under uniaxial and multiaxial stresses.

2. Experimental equipment and test program

The capabilities of the testing equipment [4, 22–24] with integrated software allow you to create 
various programs for testing laboratory samples of the corresponding geometry. The results of 
experimental studies of laboratory specimens of VT6 titanium alloy for short-term high-tempera
ture creep under uniaxial and multiaxial stress state are given below. Laboratory specimens con
sisted of a hollow tube with an outer diameter of d¼ 16 ± 0.05 mm and a wall thickness of 
h¼ 1 ± 0.05 mm made of VT6 titanium alloy with a working part length of 80 mm (Figure 1). 
The shape and size of the specimen under tension and torsion ensured a uniform distribution of 
the stress and strain fields in the working part of the specimen. The tests were carried out on a 
universal test complex Z100 ZWICK-ROEL (Germany), which allows you to conduct experiments 
on complex multiaxial loading in a quasistatic range of strain rates with a simultaneous, time- 
synchronized setting of the following parameters: rate of change in the longitudinal force (or dis
placement); rate of change in torque (or twist angle); rate of change in the internal pressure. The 
limiting values of the parameters are ± 100 kN by force, ± 1000 Nm by torque, and − 0 to 
48 MPa by pressure. The measuring equipment of the complex includes a transverse strain meter 
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based on a ME46 video extensometer with a resolution of 0.4–2 lm, a LaserXtens laser extensom
eter that can simultaneously measure both longitudinal deformations (measuring base 20– 
100 mm) with a resolution of � 1 lm and deformations at torsion, ISO 9513 accuracy class1, 
force transducer 0–250 kN, ISO 7500-1 accuracy class1.

The unit is equipped with an EC 2181 heat chamber with a controller which allows to test 
various types of specimens in the temperature range from minus 150 to plus 600 �C. A general 
view of the setup is shown in Figure 2. To conduct tests, the experimental setup was configured 
to conduct high-temperature creep experiments taking into account the main required test condi
tions—rigid, clearance-free fixing of specimens in the grips of the loading device and test control 
by shock-free transitions from one loading mode to another. A uniform temperature distribution 
on the working part of the specimen was ensured by using a heat chamber with forced convec
tion and temperature control directly on the laboratory specimen.

The creep of VT6 titanium alloy was experimentally studied according to the soft loading 
scheme at a temperature of 600 �C under uniaxial loading (torsion (Figure 3a,b) with stress inten
sities ru¼ 50 and 66 MPa, extension (Figure 3c–f), with stress intensities ru¼ 30, 66, 78 and 
90 MPa and multiaxial loading with two levels of stress intensity ru¼ 50 and 78 MPa at angles 
between the components of the stress tensor r11 and 

ffiffiffi
3
p

r12 equal to 30� and 60�, respectively 

Figure 1. View of laboratory specimen.

Figure 2. A General view of the testing setup Z100 ZWICK-ROEL.
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Figure 3. The loading program for laboratory specimens in the stress space.
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(Figure 3g). Figure 3 shows the loading program, where the red arrow indicates the vector of 
the effective stress in experimental studies of the creep process and the indicated circle radii are 
equal to the following values ruð1Þ ¼ 30 MPa, ruð2Þ¼ 50 MPa, ruð3Þ ¼ 66 MPa, ruð4Þ¼78 MPa, 
ruð5Þ¼90 MPa.

Based on the results of experimental studies, creep curves were constructed—creep strains as a 
function of time ec

11ðtÞ, ec
12ðtÞ for the above loading laws (Figures 7–14).

3. Constitutive relations of non-stationary creep

The model of damaged medium for describing the degradation of initial strength properties by 
the long-term strength mechanism, consists of three interrelated parts:

� Relations defining viscoplastic behavior of the material with account for its dependence on 
failure process;

� Evolutionary equations describing the kinetics of damage accumulation;
� Strength criterion for damaged material.

3.1. Constitutive relations of thermal creep

To estimate the creep process, a mathematical model is used in which the variation laws of 
internal parameters of the material are assumed to be determined by two physical mechanisms: 
hardening and softening of materials. This approach has an analogue in the mathematical theory 
of plasticity (flow theory).

The main provisions of the used version of non-stationary creep relations proposed by 
Korotkikh and developed in the works of his students are as follows [6, 21, 25,26]:

1. Initially isotropic media are considered.
2. The strain and strain rate tensors are the sum of the “instantaneous” and “temporary” com

ponents. The “instant” component consists of elastic components that are independent of the 
history of deformation and determine the final state of the process, and plastic components 
that depend on the history of the deformation process. The time component (creep strain) 
describes time-dependent deformation processes under low loading rates.

3. The evolution of the equipotential creep surface is described by a change in its radius �c and 
by displacement of it is center qc

ij:

4. The change in the volume of the body element is elastic, i.e. ep
ij ¼ ec

ij ¼ 0:
5. The processes of deformation characterized by small deformations are considered.

It is assumed that the components of the strain tensor eij and their rates _eij are the sums of 
elastic components ee

ij, _ee
ij , plastic components ep

ij, _ep
ij, creep deformations ec

ij, _ec
ij, i.e.,:

eij ¼ eij
e þ eij

p þ eij
c, _eij ¼ _eij

e þ _eij
p þ _eij

c, i, j ¼ 1, 2, 3: (1) 

The relationship between the stress tensor and elastic strain tensor is determined as in the case 
of thermoelasticity:

r ¼ 3K e − aT½ �, _r ¼ 3K _e − _aT − a _T½ � þ
_K
K

r: (2) 

r0ij ¼ 2Ge0ije, _rij ¼ 2G_eij
e þ

_G
G

r0ij, e0ije ¼ e0ij − eij
c − eij

p (3) 

where r, e are spherical and r0ij, e0ij are deviator components of the corresponding stress rij and 
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strain eij, respectively; G(T) is the shear modulus; K(T) is the volumetric compression modulus; 
a(T) is the coefficient of temperature expansion.

To describe the creep processes, we introduce in the stress space the equipotential creep surfa
ces Fc, which have the common center qc

ij and different radii CC, defined by the current stress 
state:

FðiÞc ¼ Sc
ijS

c
ij − C2

c ¼ 0, Sc
ij ¼ r0ij − qc

ij, i ¼ 0, 1, 2, ::: (4) 

In accordance with the associativity law

_ec
ij ¼ kc

@FðiÞc

@Sc
ij
¼ kcSc

ij (5) 

where kc corresponds to the current surface FðiÞc , defining the current stress state Sij
c: The sur

face with radius �Cc may be outlined among these equipotential surfaces as corresponding to zero 
creep rate:

Fð0Þc ¼
�Sc

ij
�Sc

ij − �C2
c ¼ 0, �Sc

ij ¼ r0 ij − qc
ij (6) 

where �Sij
c and r0 ij are the set of stress states corresponding (to a certain tolerance) to the zero 

creep rate, Cc is experimentally determined function of temperature T and vc:

_vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2
3

_ec
ij _e

c
ij

r

, vc ¼

ðy

0
_vcdt (7) 

The evolution equation for the change in the coordinates of the creep surface center has the 
form [15, 27]:

_qc
ij ¼ gc

1 _ec
ij − gc

2q
c
ij _vc þ gc

3ðTÞ (8) 

where g1
c and g2

c> 0 are experimentally determined material parameters.
By specifying (3), the law of gradientality can be represented in the following form:

_ec
ij ¼ kcðwc, TÞSc

ij ¼ kcwcS
c
ij ¼ kc

ffiffiffiffiffiffiffiffiffi
Sc

ijSc
ij

q
− Cc

Cc
(9) 

wc ¼

ffiffiffiffiffiffiffiffiffi
Sc

ijSc
ij

q
− �Cc

Cc
(10) 

In expression (9), kc is experimentally determined function equal to zero at wc � 0: The length 
of the creep strain path will take the form:

_vc ¼

ffiffiffi
2
3

r

kc

ffiffiffiffiffiffiffiffiffi
Sc

ijSc
ij

q
− �Cc

� �

(11) 

The dependence vc on timetat Sc
u ¼ const in the case of multi-axial deformation over the ray 

trajectory has the form presented in Figure 4.
The curve vcðtÞ can be conventionally divided into three segments:

I. The segment of unsteady creep from 0 to vð1Þc, where the creep strain rate _vc decreases;
II. The segment of steady creep from vð1Þc to vð2Þc, where the creep strain rate _vc is approxi

mately constant, ( _vc ffi const);
III. The segment of unsteady creep vc > vð2Þc, where the creeps trains grow quickly (the seg

ment to failure), _vc drastically increases.
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The lengths of these segments depend on the value Sc
u:

In the case of multiaxial loading we have:

kc ¼

0, w � 0 [ vc ¼ 0,

kI
c, 0 � vc � vð1Þc,

kII
c , vð1Þc � vc � vð2Þc,

kIII
c , vð2Þc � vc � vð3Þc:

8
>>>>><

>>>>>:

(12) 

The equation for kc
I on the first segment of creep curve can be represented in the form:

kI
c ¼ kð0Þc 1 −

vc

v
ð1Þ
c

� �

þ kðIIÞc
vc

v
ð1Þ
c

(13) 

At the stage of active development and merging of defects scattered over the volume of the 
material, the effect of the damage degree on the physical–mechanical characteristics is observed. 
In a first approximation, this effect can be described based on the concept of a degrading con
tinuum by introducing effective stresses [6, 14]:

~r0i j ¼ F1ðxÞr
0
i j ¼

G
~G

r0i j ~r ¼ F2ðxÞr ¼
R

~R
r: (14) 

are effective module of elasticity determined by McKenzie formulas [6]:

~G ¼ G 1 − xð Þ 1 −
6K þ 12Gð Þ

ð9K þ 8GÞ
x

" #

, ~K ¼ 4GKð1 − xÞ=ð4Gþ 3KxÞ (15) 

Effective micro stress tensor ~qc
ij is determined in a similar way:

~qc
ij ¼ F1ðxÞq

c
ij ¼

G
~G

qc
ij: (16) 

3.2. Evolutionary equation of damage accumulation

We postulate that the evolutionary equation of damage accumulation under creep can be repre
sented in the following form [14, 28]:

_x ¼ f1ðbÞf2ðxÞf3 Wcð Þf4 _W c

� �
: (17) 

Figure 4. Generalized creep curve.
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where f1ðbÞ is dominant function of volumetric stress strain state; f2ðxÞ is dominant function of 
the level of accumulated damage; f3ðWcÞ is accumulated relative energy of damage spent on 
microdefect nucleation; f3ð _W cÞ is the function of the rate of change of the energy spent on 
microdefect formation introduced as follows

f1ðbÞ ¼ exp ðkbÞ (18) 

f2ðxÞ ¼

0, Wc �Wa
c

x
1
3ð1 − xÞ

2
3, Wc > Wa

cÙx �
1
3

ffiffiffiffiffi
163
p

9
x−1

3ð1 − xÞ
−2

3, Wc > Wa
c Ùx >

1
3

8
>>><

>>>:

f3ðWcÞ ¼
Wc − Wa

c

Wf
c 

f4 _W c
� �

¼ _W c=Wf
c 

_W c ¼ qc
ij _e

c
ij, Wc ¼

ðt

0

_W cdt 

Here b ¼ r=ru is volumetric parameter of stress strain state, Wa
c is the value of damage energy 

at the end of the nucleation stage of micro defects scattered over the volume of the material, Wf
c 

is the value of the energy corresponding to a macro crack nucleation and k is material parameter. 
The evolutionary equation of damage accumulation (17) includes two-stage kinetics of damage 
accumulation scattered over the volume: the first stage is nucleation and growth of micro defects, 
the second stage is merging and further growth of micro defects with a significant damage effect 
on physical–mechanical properties of the material.

3.3. Strength criterion for damaged material

The condition when damage reaches its critical value is taken as a criterion of the end of the 
development phase of scattered micro defects:

x ¼ xf � 1: (19) 

4. Determination of thermal creep parameters

For practical application of thermal creep equations (1)–(9), it is necessary to have the following 
data:

� Dependencies G(T), R(T), a(T) on temperature T;
� Dependence of the current radius of zero level creep surface (zero creep rate) �Cc ¼ �Ccðvc, TÞ

on T
� Dependences of parameters kð0Þc ¼ kð0Þc ðTÞ and kðIIÞc ¼ kðIIÞc ðTÞ for various segments of the 

creep curve on T;
� Dependences of the kinematic hardening module gc

1ðTÞ, gc
2ðTÞ on T.

The material parameters of the thermal creep equations are determined in basic experiments 
[15, 27, 29].

Tests on uniaxial tension–compression of cylindrical laboratory specimens are considered as 
basic experiments the main types of which are isothermal experiments at constant base 
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temperatures T (j¼ 1.2 … ). Using two types of specimens - continuous cylindrical and cylin
drical tubular ensure a uniform distribution of stress strain fields and temperatures within the 
working part, excluding the possibility of loss of stability and shape change of the specimen under 
alternating loading as well as the effect of concentrators on SSS when moving from the working 
part of the specimen to thickened areas [27].

To determine the kinematic (anisotropic) hardening module gc
1ðTÞ and gc

2ðTÞ and the depend
ence for the creep surface radius corresponding to the zero creep rate, the specimen is heated to 
the temperature of the “basic” experiment T ¼ Tj ¼ const and tests are carried out for short-term 
creep under uniaxial stress state according to the “soft” loading scheme.

First, the specimen is loaded up to the stress value rð1Þ11 at the point 1 (Figure 5). This stress 
level is selected as a result of the analysis of the existing creep curve fan obtained at the “base” 
temperature T ¼ Tj, (creep curve corresponds to zero creep rate). Due to relaxation the process 
end at point 2 (stress rð2Þ11 where the creep strain rate tends to zero.

Further, the specimen is loaded up to the stress of reverse sign rð3Þ11 (point 3 in Figure 5) and 
as a result of relaxation it appears in the point 4. Thus, stresses �rð0Þþ11 (point 2) and �rð0Þ−11 (point 4) 
characterize (with a certain tolerance for permanent strain) the initial upper and lower bounda
ries of the creep surface, corresponding to a zero creep rate.

To determine the transformation of creep surface on the same specimen at a specified stress 
r�11 ¼ consta series of similar actions are carried out after reaching the assigned levels of creep 
deformations ecð1Þ

11 , ecð2Þ
11 , :::, ecðmÞ

11 : Thus obtained as set of points 2, 7, 12, 17, … characterizes the 
change in the upper (in tension) boundary of the creep surface as a function of accumulated 
creep strain. Points 4, 8, 13, 19, … characterize the change in the lower (under compression) 
boundary of the creep surface.

Thus, according to the results of the experiment at constant base temperatures T ¼ Tj we 
determine:

� Geometric location of the tensile creep strength with a specified tolerance for permanent 
deformation;

� Geometric location of the inverse creep strength under compression (Figure 6).

Figure 5. Basic experiment as per scheme of soft loading.
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The dependence of the creep surface radius corresponding to zero creep strain rate is deter
mined by the formula:

�Cc ¼

ffiffiffi
2
3

r
r
ðmÞþ
11 þ r

ðmÞ−
11

2
(20) 

To determine the kinematic (anisotropic) hardening module gc
1ðTÞ b gc

2ðTÞ it is necessary to 
integrate the relation (8) at T ¼ Tj ¼ const

qc
11 ¼

gc
1

gc
2
ð1 − e−gc

2ec
11Þ (21) 

where e is natural logarithms base, gc
1 is the slope of the tangent to the curve q11

c � e11
c at the 

origin (Figure 3), qc
max ¼ gc

1=gc
2 is the asymptotic limit value qc

11 at a specified temperature T ¼
Tj: Hence, we determine anisotropic (kinematic) hardening module gc

1 and gc
2: For a uniaxial 

stress state of a laboratory specimen the ratios (1)–(18) take the form:
ffiffiffiffiffiffiffiffiffi
Sc

ijSc
ij

q
− �Cc ¼

ffiffiffi
2
3

r

r011 −
2
3
qc

11 − �rc

� �

(22) 

_ec
11 ¼

2
3
kc r011 −

3
2
qc

11 − �rc

� �

(23) 

where �rc ¼ �rcðec
11, TÞ the creep limit of the material corresponding to the zero creep rate

_vc ¼ _ec
11, vc ¼ ec

11 (24) 

�Cc ¼

ffiffiffi
2
3

r

�rc (25) 

Parameters kð0Þc and kðIIÞc are derived from relations (21) and (22), respectively

kð0Þc ¼
3
2

_ecðHÞ
11

r011 − �rc
(26) 

kðIIÞc ¼
3
2

_ecðYÞ
11

r011 − ð3=2Þqc
11 − �rc

(27) 

where _ecðHÞ
11 is initial creep strain rate at a point ec

11 ¼ 0 on the curve ec
11ðtÞ, _ecðYÞ

11 is creep strain 
rate in the region of steady-state creep (region II in Figure 4).

Figure 6. Geometric location of creep limits under tension and compression.
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The material parameters of the evolutionary equations of damage accumulation were experi
mentally determined at the second stage of damage accumulation process, from which the signifi
cant effect of damage on the physical mechanical properties of material begins. The experimental 
deformation processes have been simultaneously calculated at this stage using the thermo visco
plasticity relations. In fact, the technique involves all deviations in the results of numerical model
ing of deformation processes without accounting for the effect of damage from the experimental 
ones at the second stage of damage accumulation are attributed to the effect of damage x 

(decrease in the elastic modulus and stress amplitude at a constant strain amplitude, an increase 
in the strain amplitude at a constant stress amplitude and etc.).

The boundaries Wa
c and Wf

c can be approximately determined from creep tests at a specified 
stress amplitude by the time of material softening (Wa

c determined by the beginning of the 
second section of the creep curve, while Wf

c by the moment of macroscopic crack formation).
Tables 1 and 2 show the material parameters of the VT6 titanium alloy at a temperature of 

600 �C for the mathematical creep model given in this article.

5. Numerical results and their comparison with experimental data

Figures 7–12 present the results of tension and torsion tests for short-term creep as per the test 
program shown in Figure 3. Here, solid lines indicate the results of numerical modeling of experi
mental processes using the constitutive relations of MDM (1)–(19), and markers indicate the cor
responding experimental data.

Figures 13 and 14 present the results of short-term creep tests under multiaxial stress state 
(torsional tension) according to the test program shown in Figure 3. Solid lines indicate the 
results of numerical modeling, markers indicate the corresponding experimental data.

Comparing the obtained experimental data with the results of numerical modeling of experi
mental processes, we can note their qualitative and quantitative coincidence. Some differences 
between the calculated and experimental data can be explained by inaccuracy in setting material 
parameters and scalar functions due to the lack of statistic scattering of the experimental data.

6. Conclusion

A mathematical model of MDM is developed that describes the processes of unsteady creep and 
long-term strength of structural materials (metals and their alloys) under multiaxial stresses.

Table 1. Material parameters of the mathematical model of creep.

Bulk modulus K, MPa 62,855
Shear modulus G, MPa 29,010
Creep coefficient k0

c , 1/ MPa�h 0.00060
Steady-state creep coefficient kII

c , 1/ MPa�h 0.00031
Unsteady creep length vð1Þc 0.005
Kinematic hardening modulus gc1, MPa 1100
Kinematic hardening modulus gc2, MPa 49.55
The energy of the end of the first stage of damage accumulation Wa

c , MJ/m3 4.00
Creep failure energy Wf

c , MJ/m3 19.0
Zero-level creep surface radius Cc , MPa 15.0
Material parameter k 1

Table 2. The zero-level creep surface radius as a function of the path length of plastic deformation.

vc 0 0.03 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.20

Cc , MPa 15.0 15.0 14.9 14.7 14.5 13.0 8.50 3.75 2 2
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An experimental–theoretical technique is elaborated for determining material parameters and 
scalar functions of the proposed constitutive relations of MDM. The material parameters of con
stitutive relations for thermal creep for VT6 titanium alloy at a temperature of 600 �C are 
obtained.

Experimental studies of high-temperature creep of VT6 titanium alloy under uniaxial and 
multiaxial stresses are carried out. The results of numerical modeling of experimental processes 
are compared with experimental data. It is shown that the developed version of the constitutive 
relations of MDM allows us to describe the processes of unsteady creep and long-term strength 
of structural alloys under uniaxial and multiaxial stresses with accuracy sufficient for engineering 
calculations.

Figure 7. Torsion creep curve (loading scheme “a”).

Figure 8. Torsion creep curve (loading scheme “b”).
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Figure 9. Tensile creep curve (loading scheme “c”).

Figure 10. Tensile creep curve (loading scheme “d”).

Figure 11. Tensile creep curve (loading scheme “e”).
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Figure 12. Tensile creep curve (loading scheme “f”).

Figure 13. Axial deformation ec11 as a function of process time (loading scheme “g”).

Figure 14. Shear deformation ec12 as a function of process time (loading scheme “h”).
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