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Abstract—To make decisions, cognitive radar must rely on
predictions of its own performance. In the literature, these
predictions are usually based on some form of Cramér-Rao lower
bound. This approach is scientifically sound, but it also brings a
possibility of the cognitive controller overestimating radar perfor-
mance. It therefore makes sense to back theoretical predictions
with careful experiments which will verify their applicability.
Using a simple direction of arrival estimator as an example
we discuss how an experimental performance curve can be
obtained. We also propose an extended approach, which employs
experimental data to estimate parameters of a performance curve
which includes floor and threshold effects.

Index Terms—cognitive radar, performance bounds, direction
of arrival estimation

I. INTRODUCTION

Cognitive radar, introduced by Guerci [1] and Haykin [2],

is a novel approach to radar management which emphasizes

information flow from the receiver to the transmitter via

feedback. The concept was refined and formalized by Bell

and coworkers in [3]. The feedback information, in the form

of posterior probability density function of target location,

is employed to make decisions about future radar actions

(Fig. 1). To make these decisions, rather than relying on

a set of heuristic rules, the cognitive controller addresses a

certain optimization problem, where the cost function is set

so as to reflect goals specific to radar mission and mode of

operation and the optimization is carried out subject to a set

of constraints.

Thus, at the very heart of cognitive radar lies the issue

of predicting system performance accurately and reliably. If

Figure 1. Block diagram of cognitive radar system.

predictions are pessimistic, the radar will waste resources

unnecessarily. On the other hand, optimistic predictions are

equally, if not more, unwanted, because relying on them can

result in the radar failing to meet its goals.

The dominant approach to predicting cognitive radar perfor-

mance in tracking applications seems to be based on analyzing

Cramér-Rao lower bound and its relatives. For instance, both

Haykin and Bell employed Bayesian bounds [4] in their

solution of tracking problem [2], [3], while in [5] modified

Miller-Chang bound was used. Such an approach is both

elegant and scientifically sound, because analysis of many

estimators shows that they are able to reach these bounds in

medium and high signal to noise (SNR) range [4].

One must not forget however, that these bounds are ab-

solute, i.e. no system can exceed (reach below) performance

limitations set by these bounds. In fact, actual systems always

perform worse. In classical radar design this discrepancy is

well recognized and accounted for in terms of so-called SNR

loss [6].

It follows that during development of cognitive radar it

would make sense to evaluate its actual performance ex-

perimentally and employ realistic performance curves in the

predictor. Such a curve would also be of interest for traditional

radar design, because it could be used to assess quality of its

subcomponents, including both hardware and software.

The main contribution of this paper is a procedure for ob-

taining estimator mean square error curves using experimental

data. The basic variant of the method, drawn from analysis of

general behavior of Cramér-Rao lower bound, is introduced

in Section II. Extended version of the method, discussed

in Section III, allows one estimate parametric curves which

exhibit Cramér-Rao-like behavior but include realistic features,

such as threshold effect [4] and floor. Some illustrative results

are presented in Section IV. Section V concludes.

II. PERFORMANCE PREDICTION

A. Theory-based approach

To keep our discussion focused, we will restrict ourselves to

a specific application considered in [5]. The problem discussed

in [5] involves making predictions of accuracy of maximum

likelihood (ML) direction of arrival estimator.

The echo signal received by the radar can be modeled as

y = rejφa(α) + v , (1)

where r = σ denotes echo amplitude, φ is echo phase and

α is target angle. The symbol v denotes measurement noise,

assumed to be complex circular Gaussian distributed with



covariance matrix σ2
vI , where I denotes eye matrix with size

corresponding to size of v and y.

The maximum likelihood estimator is obtained by maximiz-

ing the log-likelihood function

α̂ = argmax
α,A

l(y, α, A)

l(y, α, A) = C −
[y −Aa(α)]H[y −Aa(α)]

σ2
v

,

where A = rejφ is a complex amplitude and C denotes

a constant term which is of no importance. The so-called

compressed likelihood is obtained by substituting the optimal

choice of amplitude

Ao(α) = a#(α)y ,

where a#(α) = [aH(α)a(α)]−1aH(α) is pseudoinverse of

a(α). This leads to the following formula for ML estimator

[4]

α̂ = argmin
α

yHQ(α)y , (2)

where

Q(α) = I −
a(α)aH(α)

aH(α)a(α)

is the noise subspace projection matrix.

The performance of ML angle estimator is well predicted

by Cramér-Rao lower bound, which takes the form

CRB = FIM(θ)−1 , (3)

where θ = [α r φ]T is the vector of parameters and

FIM(θ) = E

[

(

∂l

∂θ

)(

∂l

∂θ

)T
]

,

denotes Fisher information matrix.

Under adopted Gaussian assumptions the FIM can be found

using textbook approach [4]. Furthermore, the Schur com-

plement technique can be employed to get rid of nuisance

parameters r, φ. Doing so allows one to obtain a closed form

solution for the top left element of inverse FIM. It takes the

form [5]

[FIM(θ)−1]1,1 =

σ2
v

2r2

[

∥

∥

∥

∥

∂a(α)

∂α

∥

∥

∥

∥

2

−

(

∂a(α)

∂α

)H
a(α)aH(α)

‖a(α)‖
2

∂a(α)

∂α

]−1

,

(4)

where ‖x‖2 = xHx.

Remark: In practice it may occur that measurement noise

variance σ2
v is unknown. In such case it can be estimated using

the following formula

σ̂2
v =

2

2K − 3
yHQ(α)y , (5)

where K denotes the size of vectors y, v and the normalizing

factor 2/(2K−3) is intended to reduce estimator bias. Finally,

note that (4) stays valid when σ2
v is unknown and must be

estimated.

B. Performance curve estimation

The actual, rather than theoretical, system performance can

be established by observing a cooperating target equipped

with GPS receiver. Using such ‘ground truth’ one can com-

pute radar angle estimation errors easily. However, due to

fluctuations of target’s radar cross section, such data needs

additional processing before a realistic performance curve can

be obtained. In this section we line out such a procedure.

First, we assign an estimate of signal to noise ratio to each

measurement. Such an estimate may be formed as a ratio of

estimated signal and noise powers

ˆSNR =
|a#(α̂)y|2

σ̂2
v

. (6)

To obtain experimental performance curve we will exploit

the dominant feature of Cramér-Rao lower bound (4), i.e. its

dependence on inverse SNR. We therefore adopt the following

model of estimator variance

E[(α̂− α)2|SNR] =
k1

SNR
, (7)

where k1 is a model coefficient which will be estimated from

data.

To describe the distribution of estimation errors for a

particular value of signal to noise ratio we will use generalized

normal family [7]

p(x) =
β

2αΓ(1/β)
e−(|x|/α)β , (8)

where Γ(·) denotes the Gamma function.

The generalized normal family is parametrized by two

parameters: scale α > 0 and shape β > 0. It includes

standard Gaussian distribution (β = 2) as well as e.g. Laplace

distribution (β = 1). This ability to model heavy tailed

distributions is a desirable feature, because it will allow us

to cope with outliers without relying on heuristics. Another

interesting feature of the family is that, in the limiting case

β → ∞, the density p(x) converges to uniform distribution

on the interval (−α, α).

A variance of a random variable X with generalized Gaus-

sian density equals

E[X2] =
α2Γ(3/β)

Γ(1/β)
. (9)

Combining (7) with (9) leads to

α =

√

Γ(1/β)

Γ(3/β)

k1
SNR

which can be substituted into (8) to obtain SNR-dependent

distribution of errors. Replacing unknown value of SNR with

its estimate ˆSNR leads us to the following procedure for

estimating the performance curve: given N data points (values

of measurement error) ∆α1,∆α2, . . . ,∆αN with assigned
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estimates of signal to noise ratio ˆSNRn, n = 1, 2, . . . , N ,

maximize the following semi-loglikelihood function

J(e1, . . . , eN , ˆSNR1, . . . , ˆSNRN , k1, β) =
N
∑

n=1

log

[

β

2αnΓ(1/β)
e−(|en|/α̂n)

β

]

=

N
∑

n=1

[

log(β)− log(2α̂n)− log[Γ(1/β)]− (|∆αn|/α̂n)
β
]

,

(10)

where

α̂n =

√

Γ(1/β)

Γ(3/β)

k1
ˆSNRn

.

Optimization should be carried out with respect to variables

k1, β and subject to constraints k1 > 0, β > 0.

In the next section we will discuss some extensions of

the above proposed method. However, it would make sense

to gain trust in the basic variant first. To this end we will

employ simulation-based approach. This will allow us to have

full knowledge of system performance, i.e. we will be able to

compare estimated performance curve with actual one.

The simulation employs a 12-element linear array whose

elements are spaced at half wavelength. The array manifold

equals

a(α) =
[

1 ejαπ/2 ej2απ/2 . . . ej(K−1)απ/2
]T

where K = 12. Note that α ∈ [−1, 1] is defined as sine of

angle at which the signal impinges the array.

We generated N = 500 random realizations of mea-

surements yn. In each case the signal to noise ratio was

randomly generated with uniform distribution from the interval

[20 dB, 40 dB] (note that the term “uniform” applies to

logarithmic scale) and αn was drawn uniformly from the

interval [−0.5, 0.5]. We then estimated αn, noise variance σ2
v

and signal to noise ˆSNRn using (2), (5) and (6), respectively.

Optimization was carried out using Nedler-Mead simplex

search algorithm [8] which was found to be superior to e.g.

Broyden–Fletcher–Goldfarb–Shanno (commonly abbreviated

BFGS) algorithm [9] in the sense that it exhibited better

capability to avoid being trapped in local minimums.

Under the adopted range of signal to noise ratio the accuracy

of ML estimator reaches the Cramér-Rao lower bound (4).

Therefore we have a very clear point of reference for the

experimental curve obtained via (10). Fig. 2 overlays the

data, i.e. the pairs (∆α2
n, ˆSNRn), Cramér-Rao lower bound

and the estimated curve. Observe that, due to the fact that

signal to noise ratio is unknown and estimated, the range of
ˆSNR exceeds the actual interval [20 dB, 40 dB]. Despite this

obvious discrepancy of true and estimated SNRs the estimated

mean square error curve overlaps with the true one, which

confirms that the basic method (10) works.

III. EXTENSIONS

We now shift focus to extensions of our basic scheme (10).

Specifically, we will discuss modeling floor and threshold

effects. The floor effect occurs at high signal to noise ratio,

when system performance is dominated by array calibration

errors, rather than noise. This causes the accuracy of the

estimator to saturate at some value, rather than continue to

decrease with increasing SNR, as (4) would suggest. Threshold
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Figure 2. Comparison of data points (blue dots), Cramér-Rao lower bound
(dashed line) and estimated mean square error curves (solid line). The solid
line overlaps the dashed one.

effect, on the other hand, takes place at low signal to noise

ratio, when the signal is buried in noise so deeply that accuracy

of the estimator collapses and the mean square errors deviate

from Cramér-Rao lower bound sharply.

These effects restrict applicability of Cramér-Rao bound

and the model (7) to a certain range of signal to noise ratio.

It is therefore important to be able to recognize when these

effects take place. In the following two sections we discuss

appropriate extensions of (10).

A. Floor effect

In order to include floor effect it is sufficient to extend our

basic model (7) with constant term k2

E[(α̂− α)2|SNR] =
k1

SNR
+ k2 . (11)

It leads to a straghtforward modification of (10), where the

original formula for α̂n should be replaced with the following

one

α̂n =

√

Γ(1/β)

Γ(3/β)

[

k1
ˆSNRn

+ k2

]

. (12)

Note however, that when dealing with floor, caution is nec-

essary when estimating noise level. The effect of calibration

errors can be modeled by modifying (1) as follows

y = rejφ [a(α) + ∆a] + v , (13)

where ∆a is a vector of random calibration errors. Note

that the quantity rejφ∆a can be interpreted as additional

noise, whose power is in linear relationship with power of

the useful signal rejφa(α). For this reason formula (5) may

lead to erroneous estimation of noise variance when the signal

level is high. To avoid this problem σ2
v should be estimated

under small signal conditions, e.g. in a separate experiment

or by discarding portion of data where the estimated signal

amplitude is high.

Validation of the formula (12) can be performed using a

modified version of simulation experiment described in section

II. Calibration errors were introduced using (13), where ∆a

was zero mean circular complex Gaussian vector with covari-

ance matrix 0.01I . Additionally, in order to better expose the
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Figure 3. Comparison of data points (blue dots), Cramér-Rao lower bound
(dashed line), actual (dotted line) and estimated (solid line) mean square error
curves in presence of array calibration errors without accounting for apparent
increase of noise power for high SNR.
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Figure 4. Comparison of data points (blue dots), Cramér-Rao lower bound
(dashed line), actual (dotted line) and estimated (solid line) mean square error
curves in presence of array calibration errors when noise level is estimated
properly.

floor effect, the upper range of signal to noise was increased

to 50 dB.

Introduction of calibration errors into the simulation means

that Cramér-Rao lower bound should be supplemented with

actual performance curve of the estimator. Such curve was

obtained by running 200000 number of Monte-Carlo simula-

tions for 100 values of SNR (2000 runs per SNR value). The

values of SNR were distributed uniformly on the log scale in

the interval [20 dB, 50 dB].

Fig. 3 shows simulation results obtained using (12) when

the noise level was estimated using a faulty procedure, which

did not account for influence of calibration errors on (5). Note

that the estimated values of SNR saturate at about 40 dB.

The outcome is optimistic performance curve, which barely

exhibits any floor. Fig. 4, on the other hand, shows results

obtained using (12) with properly estimated noise level. This

time the experimental curve almost coincides with the actual

one.
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Figure 5. Comparison of data points (blue dots), Cramér-Rao lower bound
(dashed line), actual (dotted line) and estimated (solid line) mean square error
curves with threshold effect in place.

B. Threshold effect

Modeling threshold effect is more difficult than modeling

the floor. The following formula is proposed for this purpose

E[(α̂− α)2|SNR] =
k1

SNR
+ k2S(SNR) , (14)

where

S(SNR) =
1− tanh

[

k3 log
SNR
k4

]

2

is a sigmoid-type term which will increase mean square error

curve for signal to noise smaller than, approximately, k4. The

coefficient k3 governs the “steepness” of S(SNR) and, finally,

k2 is intended to correspond to estimator mean square error

when the threshold effect is fully developed.

The resulting algorithm is another straightforward modifi-

cation of (10), i.e. with αn replaced by

α̂n =

√

Γ(1/β)

Γ(3/β)

[

k1
ˆSNRn

+ k2S( ˆSNRn)

]

. (15)

Once again the method will be verified using simulations.

The overall scenario is the same as in the preceding subsection,

but this time the SNR was lowered to range between 5 dB and

30 dB. Fig. 5 depicts the results. Observe that some bias has

developed in k1, as the experimental curve does not overlap

with Cramér-Rao lower bound for medium SNR. However, the

threshold is modeled reasonably well and the model certainly

provides a good hint about the range of SNR when Cramér-

Rao lower bound can no longer be trusted.

Although the cause of bias of k1 is not fully understood,

there is a very simple way to reduce it. Recall that the model

(14) is an extension of (7). In particular, the role of coefficient

k1 is the same in both models. The curve obtained using (15)

can be treated as preliminary, and the coefficient k1 can be

reestimated using (10) and a truncated data set, which excludes

all points with ˆSNR such that S( ˆSNR) deviates from zero

farther than some tolerance level ε. Typical result of such two

stage procedure, with tolerance level set to ε = 0.001, is shown

in Fig. 6.
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Figure 6. Comparison of data points (blue dots), Cramér-Rao lower bound
(dashed line), actual (dotted line) and estimated (solid line) mean square error
curves with threshold effect in place. The estimated mean square error curve
was obtained using the two-step estimation procedure.
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Figure 7. Comparison of data points (blue dots) and estimated (solid line)
mean square error curve obtained for a real-world system. All values are
normalized with respect to squared beamwidth.

IV. REAL-WORLD EXAMPLE

To illustrate the proposed method with some real world

results we perform a case study of an experimental radar

system. The radar employs rotating array with a rather wide

illumination/receive beam. While this has an adverse effect of

lowering antenna gain, it aids detection and classification by

enabling very long coherent processing.

We study accuracy of DOA estimates of the system. The

data consists of 768 measurements of raw signals in the

coherent processing interval, as well as estimated and true

DOA. The signals were used to establish noise level of the

system and the model (11) was fitted to results. The resulting

estimate of mean square error behavior is shown in Fig. 7.

We see that the system performance saturates at rather low

SNR, which stems from mediocre array calibration. On the

other hand, overall system performance is quite satisfactory

as it reaches accuracy better than one tenth of a beamwidth at

SNR as low as 5 dB.

V. CONCLUSIONS

It was shown how mean square error curves can be

estimated using results of real world trials. The proposed

procedure is based on fitting a generalized normal model,

constructed in such a way so that its variance depends on

signal to noise ratio. The extensions of the basic procedure

allow the model to include floor and threshold effects.

In case of current generation of radar systems the primary

role for experimental curves is system evaluation: they can be

compared with Cramér-Rao lower bound to judge the overall

quality, and room for improvement, of the radar system. How-

ever, it can be expected that their importance will grow in the

future, due to anticipated proliferation of cognition-inspired

radars, where they will be a key component enabling accurate

prediction and optimization of radar resource management.
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