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A B S T R A C T   

This paper aims to study the effect of asynchronous axial-torsional strain-controlled loading 
histories on fracture surface behavior of thin-walled tubular X5CrNi18-10 (304/304L) austenitic 
steel specimens. Tests under pure axial loading and pure torsional loading are also conducted to 
better segregate the effect of multiaxiality. The fractures surface topographies were examined 
through the profiles over the entire surface with the support of an optical measurement system. 
Then, features of the post-failure fractures were related to the loading conditions and the fatigue 
life. The outcomes indicate that the multiaxial loading path significantly affects the surface 
topography. Overall, fracture surface parameters increase for higher fatigue lives. Based on the 
dialectic relationship, a fatigue damage model able to estimate the fatigue lifetime under asyn
chronous axial-torsional loading histories has been successfully developed. The fracture surface 
topology parameters collected from both sides of the same specimen lead to comparable results 
which reinforces the applicability of the proposed approach.   

1. Introduction 

Austenitic stainless steel is a material commonly used in engineering applications [1–5]. Thus, various austenitic steel grades are 
often mechanically tested, including fatigue and fracture tests. A few recent papers can be given as examples. Youn et al. studied the 
thermal aging effect on fracture toughness of gas-tungsten-arc-welded 316L steel [6]. Wu et al. [7] simulated crack extensions in 21-6- 
9 steel. Antunes et al. [8] used the plastic CTOD range parameter to investigate the crack propagation for the 304L steel. Nagaishi et al. 
performed fatigue tests on circumferentially-notched 304 steel specimens in air and in hydrogen atmosphere [9]. Jones et al. studied 
crack growth in specimens manufactured from 304L and 316L steel grades using two additive manufacturing techniques. 

Since engineering parts and structures are often subjected to multiaxial loadings [10–13], many researchers study their effect on 
fatigue and fracture behavior [14–18], as well as the methods of fatigue life prediction [19–24]. One of the multiaxial loadings’ 
features that gains particular interest is the non-proportionality of loading [25–28]. The reason is reduction of fatigue life compared to 
the proportional loadings [29] and other phenomena like additional hardening [30]. To study the effect of the non-proportional 
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loadings on the fatigue life, out-of-phase loadings are typically chosen [31–33]. However, non-proportional loadings may be more 
complicated. To investigate the influence of other non-proportional loading paths on fatigue behavior of metal alloys, Pejkowski et al. 
conducted experiments employing asynchronous loadings [34,35]. In case of these loadings, there is a difference in frequencies of 
strain components. Principal axes of stress and strain rotate, like in case of out-of-phase loadings, and the degree of non-proportionality 
differs. It was shown that the material response to asynchronous loadings is more complex, and fatigue life prediction is more chal
lenging. The idea of including the asynchronous loadings in multiaxial fatigue testing campaigns was also used by other authors 
[36–39]. 

The fracture surface of materials has a complicated morphology [40,41]. For brittle materials, such as ceramic microstructure, 
more deflections are reasoned by the poor grain boundaries and therefore, the roughness of these fracture surfaces is increased [42]. 
Falkowska et al. [43] showed that the monotonic crack growth in sintered metal typically has a mixed ductile-brittle nature, which of 
course also has a great deal to do with the fracture surface topography. The research on the morphology of fatigue fractures is carried 
out on various scales (from macro to nano) and the most common fractographic studies are observations using SEM [44–46]. This 
method gives very good possibilities of qualitative description of the fracture. However, in order to quantitatively compare the fracture 
surface topology parameters associated with different materials or loading characteristics, metrological tools should be used [47–49]. 

Extracting fracture profile gives additional information about the failure process but requires post-failure analysis. Similar analysis 
were carried out by Macek et al. [50] who demonstrated a relationship between the strain sequence with the surface topography 
behavior. These promising results motivate the analysis of other materials subjected to different loading histories. 

Nomenclature 

Symbol Description [Unit] 
Δ range of quantity [–] 
ε axial strain [mm/mm] 
γ shear strain [rad] 
r loading parameter [–] 
λ shear to normal strain ratio [–] 
fr shear to normal strain frequency ratio [–] 
Nf number of cycles to failure [cycles] 
λc Gaussian cut-off filter length, wavelength to determine the bound between surface roughness component and 

waviness component [mm] 
λs Gaussian cut-off filter length, wavelength to determine the bound between surface roughness component and other 

shorter components [µm] 
Rp Maximum peak height of the roughness profile [µm] 
Rv Maximum valley depth of the roughness profile [µm] 
Rz Maximum height of roughness profile [µm] 
Rc Mean height of the roughness profile elements [µm] 
Rt Total height of roughness profile [µm] 
Ra Arithmetic mean deviation of the roughness profile [µm] 
Rq Root-mean-square (RMS) deviation of the roughness profile [µm] 
Rsk Skewness of the roughness profile [–] 
Rku Kurtosis of the roughness profile [–] 
Rmr Relative material ratio of the roughness profile [%] 
Rdc Roughness profile section height difference [µm] 
R2 Proportion of the variance for a dependent variable [–] 
Abbreviation Description 
TC Tension-compression (axial loading) 
TOR Torsion 
IP in-phase proportional loading 
OP out-of-phase loading 
ASNx asynchronous loading, where x stands for a number denoting the number of loading path 
MON monotonic tension 
SEM scanning electron microscope 
ISO International Organization for Standardization 
L longer part of the broken specimen 
S shorter part of the broken specimen  

W. Macek et al.                                                                                                                                                                                                        

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Engineering Failure Analysis 138 (2022) 106354

3

Although somes studies have addressed the correlation between the multiaxial proportional fatigue damage on fracture surface 
topology parameters, cases dealing with multiaxial asynchronous loading histories have not been reported yet. Thus, this paper ad
dresses the effect of axial-torsional strain-controlled loading on fracture surface behavior in thin-walled tubular X5CrNi18-10 (304/ 
304L) austenitic steel specimens. Tests under pure axial loading and pure torsional loading are also conducted to better understand the 
effect of multiaxiality. The fractures topographies are examined by taking into account the entire surfaces using an optical mea
surement system, and the different fracture surface parameters are related to the loading history and the associated fatigue life. 

The present paper is organized as follows: Section 2 reports the materials and methods used for this investigation. Section 3 collects 
details on the experimental fatigue test and fractographic results. Section 4 presents the discussion and main results of the fatigue tests 
and the fracture profile parameters. The article finishes with a conclusion of the most relevant findings. In the end, Appendix A 
compiles the original area and profile for both sides of each specimen with a short table of results and the Abbott curve plots, 
respectively. 

2. Materials and methods 

2.1. Material and fatigue tests 

Fatigue tests were performed during the experimental campaign described in [34]. Thin-walled specimens (see Fig. 1) were CNC 
machined from precise seamless pipes made of X5CrNi18-10 steel. All fatigue tests were conducted on an Instron 8874 servo-hydraulic 

Fig. 1. Specimen shape and geometry (units: millimeters).  

Fig. 2. a) Monotonic stress-strain curve, b) axial strain hysteresis loops with master curve.  
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system, equipped with an Epsilon 3550 biaxial extensometer. The frequency of fatigue tests varied to keep the maximum value of the 
equivalent Huber-Mises strain rate below 0.001 s− 1. Nine different loading cases were applied. The parameters of loadings are pre
sented in Fig. 2, and some complementary information is provided in Table 2. Fully-reversed sine signals of axial ε(t) and shear γ(t)
strains were applied: 

ε(t) = εasin(2πfεt) (1)  

γ(t) = γasin
(
2πfγt+ δ

)
(2)  

where εa, γa, fε, fγ are amplitudes and frequencies of normal and shear strain, respectively, and δ is a phase shift angle. The ratios of 
component strains amplitudes and frequencies are described by the coefficients λ = γa/εa and fr = fγ/fε, respectively. 

The basic mechanical properties of the tested austenitic steel, i.e. Young modulus E, offset yield stress σy02, ultimate tensile stress σu, 
total strain at failure εu, elastic Poisson ratio νe, strength parameter of master curve [51,52] K*, and cyclic strain hardening exponent of 
Master curve n* are listed in Table 1 [34]. Fig. 2 presents the monotonic tension stress-strain curve and the master curve determined 
based on the axial strain hysteresis loop. 

Table 1 
Basic mechanical properties of X5CrNi18-10 steel.  

E, GPa σy02, MPa σu, MPa εu, mm/mm νe, – K*, MPa n*  

200.8  265.0  645.4  0.687  0.29  1110.8  0.1235  

Fig. 3. Strain paths of applied loadings.  

Table 2 
Summary of fatigue testing campaign.  

Specimen Δε/2 Δγ/2 λ fγ/fε 2Nf , axial 2Nf , torsional 2Nf , path 

029_TC 0.0055 0 0 1 3 758 0 3 758 
009_TOR 0 0.0087 ∞ 1 0 32 305 32 305 
037_PRO 0.0039 0.0067 ̅̅̅

3
√ 1 7 248 7 248 7 248 

024_OOP 0.005 0.0087 ̅̅̅
3

√ 1 1 244 1 244 1 244 
030_ASN1 0.0044 0.0076 ̅̅̅

3
√ 0.5 1 435 718 718 

045_ASN2 0.0047 0.0041 ̅̅̅
3

√
/2 4 2 465 9 860 2 465 

059_ASN3 0.0016 0.0054 2
̅̅̅
3

√ 0.2 107 312 21 462 21 462 
058_ASN4 0.0048 0.005 3

̅̅̅
3

√
/5 6 1 866 11 196 1 866 

066_ASN5 0.0039 0.0068 ̅̅̅
3

√ 0.7 3 011 2 108 301  
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2.2. Fracture surface metrology 

A Sensofar S neox 3D optical surface metrology system was adopted to measure the fracture surface topography. The Focus 
Variation Method (FVM) was employed to determine the surface geometry of fractures, in the area of 9.09 × 9.36 mm2 (3250 × 3391 
pixels), with a pixel size of 2.76 µm/pixel. The lens used for the measurements is a Nikon EPI 5×. 

In this study, a circular profile extraction was used (see Fig. 4). The profile of interest had a radius of 4.1 mm, generating profiles 
25.76 mm long and with 18,667 points. Moreover, for confrontation, a specimen subjected to monotonic loading was checked, for 
which the extracted profile radius was 2.8 mm. Fig. 3 shows the 3D view of the 024_00P fracture surface (at the top of Fig. 4) and its 
profile curve (at the bottom of Fig. 4). Additionally, palette cursors and histogram are marked on the 3D view scale. 

The extracted circle was selected at the middle of the fracture surface. In this specimen geometry the crack propagation is more 
stable in that region and therefore, it is simpler to capture the central part of the thin-walled tubular surface during the surface 
assessment which is likely to be more deformed. Thus, the center axis of the fracture surface is more representative of the studied 
specimen geometry. This arrangement of the measurement profiles also allows to avoid the non-measured points near the edges of 
measured surfaces. 

3. Results 

3.1. Fatigue campaign results 

The fatigue lives obtained in the tests are listed in Table 2. Since in the case of the asynchronous loadings there is a difference in 
frequencies of the normal and shear strain waveforms, the fatigue life was given in terms of the axial and torsional loading cycles. It 
was also given as the number of strain path repetitions [34]. 

3.2. Fracture surface topography analysis 

The fracture profile parameters are calculated and evaluated according to ISO 4287 [53–55] standard. The λs (Gaussian) filter, 
applied in the level 2.5 µm, removes scales smaller than the nesting index value of the filter. The λc filter (Gaussian) with a value of 0.8 
mm that separates waviness from roughness was also applied. Evaluation length for all λc was 32. Fig. 5 shows an example of the 
original fracture profile and the same profile after filtering that was used to calculate the roughness parameters. 

Based on the filtered profiles, the fracture surface profile measurement results are registered in Table 3 and are presented in 
Appendix A (see Fig. A1). 

Fig. 4. Example of extracted profile.  
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4. Discussion 

4.1. Comparison of both sides of the specimen 

Fig. 6 shows the surface profiles of fatigue fractures for the shorter and longer parts of the broken 0.29_TC specimen, for both the 
original and the filtered ones. The fact that one part is shorter and the other part is longer is a random phenomenon. The nomenclature 
“L” and “S” is adopted for easier identification of the samples. 

An interesting subject that is not completely clear at this point is the reciprocity of the measured values of the two profiles of the 
fracture surface. This is due to the fact that the immediate part of the fatigue fracture deforms plastically, and then the fracture surfaces 
rub against each other as a result of the torsion component. Fig. 7 plots the most compatible values of profile roughness parameters for 
the long (L) side (horizontal axis) versus those for the short (S) side (vertical axis). 

Fig. 8 compares the fracture surface parameters versus fatigue life expressed in reversals to failure. The results were further fitted 
with a power function: 

Rxx = A
(
2Nf

)b (3)  

where Rxx is a roughness parameter, and A and b are fitting coefficients. Robust fitting, based on the bisquare weight function, was used 
in order to reduce the influence of the outliers. Observing the charts, it was noted that some of the roughness parameters correlate quite 
well with the fatigue life (Ra, Rz, Rq), while others do not (Rqu, Rmr, Rsk). 

Fig. 5. Original and filtered fracture profile (roughness).  
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4.2. An attempt to retrace the fatigue damage history based on fracture parameter 

Considering the high correlation of some of the fracture surface parameters with fatigue life, it is assumed that the fatigue damage 
history can be roughly retraced based on them [56,57]. By simple transformation of Eq. (3), the relationship between the fatigue life 
and the roughness parameter can be obtained. Fig. 9 presents a comparison of the experimental and retraced fatigue lives. Quite good 
compliance has been achieved. However, it should be further investigated if this method works for other loading levels and materials. 

Table 3 
Measured fracture surface profile parameters.  

Specimen Rp Rv Rz Rc Rt Ra Rq Rsk Rku Rmr Rdc 

029_TC L 26.9 28.19 55.09 31.94 115.6 10.52 12.89  − 0.09  2.69  0.03  21.32 
029_TC S 28.57 28.85 57.41 32.22 108.4 10.68 13.29  0.06  3.02  0.04  21.07 
009_TOR L 132 118 250 492 2600 40.4 54.8  0.05  4.2  0.01  38.3 
009_TOR S 125 119 244 327 1680 40.5 52.4  − 0.09  3.56  0.01  38.2 
037_PRO L 86.6 57.5 144 153 1170 23.3 31  0.275  4.96  0.00539  29.1 
037_PRO S 144 53.9 198 648 2860 18.1 29.4  0.267  7.08  0.00539  27.2 
024_OOP L 54.75 43.89 98.64 69.33 440.6 13.82 18.68  0.43  5.02  0.01  24.27 
024_OOP S 49.98 35.83 85.81 82.08 681.1 11.53 16.15  0.14  4.4  0.01  20.21 
030_ASN1 L 33.5 33.8 67.3 41.4 194 13 16.3  0.05  3.05  0.01  24.3 
030_ASN1 S 37 38.9 75.9 48.3 282 12.7 16.5  − 0.00285  3.66  0.01  22.6 
045_ASN2 L 41.91 47.5 89.41 75.48 600.9 15.9 20.57  − 0.02  2.94  0.01  23.58 
045_ASN2 S 49.16 39.25 88.42 62.63 386.9 15.09 19.57  0.23  3.75  0.01  24.82 
059_ASN3 L 30.1 30.5 60.6 36.4 294 8.56 11.6  − 0.04  5.21  0.01  15.7 
059_ASN3 S 23.06 26.2 50.1 29.5 159 7.48 9.88  − 0.09  4.35  0.01  13.8 
058_ASN4 L 65.84 61.6 127.4 92.92 594.4 15.45 22.72  0.06  6.31  0.01  25.49 
058_ASN4 S 54.26 42.65 96.91 68.09 443.3 14.8 19.55  0.31  4.79  0.01  27.45 
066_ASN5 L 21.1 27.9 49 28.1 202 7.48 9.86  − 0.24  4.26  0.02  14.3 
066_ASN5 S 19.6 21.3 41 23.9 128 7.2 9.09  − 0.3  3.7  0.02  12.1 
003_MON L 45.2 46.2 91.4 89.6 352 17.4 22.9  − 0.07  3.01  0.03  22.6 
003_MON S 43.8 56 99.7 93.9 518 17 23.5  − 0.07  3.63  0.01  22.9  

Fig. 6. Original profiles and result of filtering for both sides of 0.29_TC specimen.  
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Fig. 8. Profile parameters versus fatigue life.  

Fig. 7. Relationship of particular profile parameters evaluated for fracture of the long side (horizontal axis) and the short side (vertical axis): (a) Rp; 
(b) Rv; (c) Rz; (d) Rc; (e) Rt ; (f) Ra; (g) Rq; (h) Rsk; (i) Rku; (j) Rmr; and (k) Rdc. L denotes the long side and S denotes the short side. 
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4.3. Fractographic analysis 

Figs. 10 and 11 show characteristic images of the fatigue fracture surface features in terms of initiation and final ductile fracture 
zones obtained with both confocal and SEM shows, respectively. These areas were previously identified with FRASTA method [50]. 
Fig. 11 demonstrates the micrographs taken with a Tescan Vega 4 microscope for the zones in Fig. 10 (upper-left corner). 

The failure process is characterized by the initiation of two cracks, nucleated from the surface of the specimen, in different regions 
of the outer surface (Fig. 10). As can be seen in the pseudo-color views, the images of both initiation sites are relatively similar in terms 

Fig. 10. Characteristic zones of selected fatigue fractures.  

Fig. 9. A comparison of test versus retraced (calculated) fatigue life.  
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of surface topology features. On the contrary, for the final rupture area, the profiles are different, and the roughness is higher which can 
be explained by the higher fatigue crack growth rates. 

Fig. 11 shows that the material exhibited the typical mechanisms associated to fatigue loading, such as traces of plastic deformation 
and ductility with evidence of microvoids (see black points in Fig. 11). It is also visible, particularly in the fatigue crack initiation 
regions, some river patterns with radial convergence to the initiation sites as well as the presence of secondary cracks of variable 
length. In the final rupture region, the pictures reveal more tortuous paths which are caused by the higher fatigue crack growth rates at 
this stage of propagation. 

5. Conclusions 

The post-failure fracture surface behavior of thin-walled tubular X5CrNi18-10 austenitic steel specimens subjected to asynchronous 
axial-torsional fatigue loading has been herein investigated. Pure axial and pure torsional loading were analyzed to better understand 
the effect of multiaxiality on facture surface topology parameters. It was found that the loading path significantly affects the surface 
topography. Thanks to this, it is possible to read from it how a given element has been damaged. On the other hand, it also allows the 
development of a model for determining the fatigue life of materials subjected to multiaxial asynchronous loading based on the 
fracture surface parameters, which is an important outcome. There is one additional benefit from implementing this method, the 
ability to read the fracture mechanisms. In more detail, the results of the present study suggest the following: 

– The analysis of the fracture topography parameters, especially Rq, based on the profiles over the entire fracture surface, demon
strated that their values increase with higher values of the fatigue life Nf;  

– The fracture surface topology parameters collected from both sides of the same specimen led to comparable results which reinforces 
the applicability of the proposed approach; 

Fig. 11. SEM fractography for three different specimens shows crack initiation and final ductile fracture zones.  
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– The proposed fatigue damage model based on the Rq parameter was capable to estimate the fatigue life for the tested multiaxial 
asynchronous loading cases with a quite good compliance;  

– The fractographic analysis of characteristic zones associated with the fatigue phenomenon showed differences failure mechanisms 
in the initiation region and the propagation region. 
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Appendix A 

Original profiles for both sides of each specimen are presented in Fig. A1. The letters “L” and “S” in the descriptions indicate the 
“long” and the “short” side of the broken specimen, respectively. The extracted profiles are provided below the isometric views of the 
fracture surface of each both broken part of the specimens for comparison. 

Fig. 11. (continued). 
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Fig. A1. Original profiles for both sides of each specimen.  
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Fig. A1. (continued). 
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Fig. A1. (continued). 
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Fig. A1. (continued). 
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Fig. A1. (continued). 
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