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Abstract: In this paper, the finite-difference time-domain (FDTD) method is derived for electromag-
netic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s
equations are derived based on these constitutive relations and the Grünwald–Letnikov definition
of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy
dissipation of the considered media, is introduced. Finally, one-dimensional signal propagation in
such electromagnetic media is considered. The proposed FDTD method is derived based on a discrete
approximation of the Grünwald–Letnikov definition of the fractional derivative and evaluated in
a code. The stability condition is derived for the proposed FDTD method based on a numerical-
dispersion relation. The obtained numerical results are compared with the outcomes of reference
frequency-domain simulations, proving the accuracy of the proposed approach. However, high
spatial resolution is required in order to obtain accurate results. The developed FDTD method is, un-
fortunately, computation and memory demanding when compared to the ordinary FDTD algorithm.

Keywords: finite-difference time-domain; fractional calculus; Grünwald–Letnikov derivative;
Maxwell’s equations; stability limit

1. Introduction

Fractional calculus has been used in modeling of electromagnetic phenomena for
many years. In particular, time-fractional (TF) derivatives allow for modeling materials with
memory effects and energy dissipation [1]. Nonlocality is a crucial property of fractional-
order (FO) operators as it allows for including the effects of the electromagnetic-field
history on the current response of the media [2]. Notably, the FO models of dielectric
media, such as the Cole–Cole or Davidson models, can be used to describe some biological
tissues more accurately and over a broader frequency range than the integer-order (IO)
ones, e.g., the Debye model [3]. Fractional derivatives can also be applied in modeling
of capacitors, which has been experimentally confirmed to be more accurate than the
IO classical approach [4,5]. Spatial fractional derivatives, in the form of a fractional curl
operator [6], are applied to the description of chiral media [7]. Another possible application
of the FO calculus is the formulation of fractional multipoles, which has proved to be useful
in solving some electrostatic problems, especially those including perfectly conducting
wedges and cones [8].

The finite-difference time-domain (FDTD) method [9] remains one of the most popular
techniques of electromagnetic simulation, which is successfully applied to FO models of
media. For the Debye, Drude and Lorentz media, whose relative complex permittivity is
described by a rational function involving integer powers of jω, the time-domain expres-
sion of the constitutive relation can easily be formulated and implemented inside the FDTD
algorithm [10]. On the other hand, the dielectric response involving non-integer powers of
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jω requires implementation of fractional derivatives in the time domain, which introduces
difficulties in terms of domain discretization and computational overhead. In the early
approach [11,12], dielectrics with fractional relaxation of the Cole–Cole, Cole–Davidson
and Havriliak–Negami models are implemented based on approximation of the dielectric
response by the Debye functions. Unfortunately, this technique does not correctly rep-
resent the singularity of time-domain susceptibility, which arises from dielectric models
with fractional relaxation [13]. Hence, it is not possible, with the use of this technique, to
accurately compute the impulse or step response of spatially complex dispersive scatter-
ers. Other approaches employ the Z-transformation for implementation of the Cole–Cole,
Cole–Davidson and Havriliak–Negami models of dispersive media. The method based on
the Z-transformation and a second-order Taylor approximation of the Cole—Cole formula
is proposed in [14]. This approach is then applied to the problem of the penetration of a
short electromagnetic pulse into biological matter. The algorithm of the Cole–Cole model
implementation in FDTD [15] is developed based on the Z-transformation and the bilinear
transformation. The FO differentiators in this model are approximated by polynomials,
whose coefficients are found using a least-squares fitting method. In the approach [16],
fractional derivatives in the time-domain representation of the dielectric response are cir-
cumvented by the use of fast inverse Laplace transformation and Prony’s method. The
Laplace transformation is used to transform the frequency-domain response of a medium
into the time domain, and Prony’s method is employed to extract the parameters and
transform further the time-domain response into the Z-domain in order to incorporate it
directly into the FDTD method. The obtained numerical results are found to be in good
agreement with those obtained by an analytical method over a broad frequency range,
demonstrating the validity of this FDTD scheme. In other approaches [17,18], the FDTD
simulations of the Cole–Cole media employing the auxiliary differential equation (ADE)
are proposed. Whilst the former approach [17] approximates the FO differentiation with the
use of a rational function derived based on the Padé approximation, the latter approach [18]
approximates the FO derivatives linearly between time-steps. Both techniques, therefore,
provide efficient ADE schemes with straightforward implementation within the FDTD
algorithm. In the approach [19], FDTD is successfully applied to the more general Raicu
medium. The proposed method solves Maxwell’s equations directly in the time domain
with the use of a Riemann–Liouville FO derivative. The obtained results prove the accuracy
of this technique in the ultra-wideband frequency range. In [20], a general FDTD scheme,
able to incorporate the model of the medium based on the general fractional polynomial se-
ries approximation, is presented. Its applicability is further considered in several examples
demonstrating its usefulness for understanding a variety of electromagnetic phenomena
involving media with power-law frequency dispersion.

The aim of this paper is to present the FDTD method for simulation of wave propaga-
tion in the media described by the TF constitutive relations [21]. The considered medium is
analysed based on TF Maxwell’s equations. In [22], an analysis of Poynting’s vector and prop-
agation velocity in such a medium is performed. The causality for a plane wave propagating
in the considered medium is confirmed by verification of the Kramers–Krönig relations.
In [23], the uniqueness of solutions and the reciprocity are proved. In both papers, the anal-
ysis is supported by the results of numerical simulations. These are performed using the
frequency-domain simulation method, employing the Fourier and Hilbert transformations,
or using the time-domain method, which is based on Green’s function computations. In
this paper, we investigate an alternative simulation method in an attempt to replicate the
existing results and evaluate the applicability of FDTD for the considered media with the
TF constitutive relations. The novelty of the paper relies on formulation of FDTD for TF
Maxwell’s equations, and its evaluation in a code. Furthermore, the stability condition is
derived for the proposed FDTD method based on a numerical-dispersion relation.

The paper begins with a short introduction to the fractional-derivative definition
and its approximation used throughout the paper. In Section 3, TF Maxwell’s equations
are derived based on the TF constitutive relations. In Section 4, the FDTD method is
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formulated for the media described by the TF constitutive relations, and its stability analysis
is performed. Long derivations of dispersion relations and stability conditions are collected
in Appendices A–C. In Section 5, the obtained numerical results are presented in reference
to the existing frequency-domain method presented in the literature. In Section 6, an
analysis of the computational complexity of the developed method is performed. Finally,
the conclusions are drawn in Section 7.

2. Fractional Derivative

Let us consider a fractional derivative of the time-variable function f (t), where
f : R → R. There are many definitions of a fractional derivative, which are not equiv-
alent in the general case [24]. The most prominent ones include the Riemann–Liouville,
Caputo, Marchaud and Grünwald–Letnikov definitions. For modeling electromagnetic
systems, it is desirable to choose the definition which reflects certain properties, like the
semigroup property

Dα
t Dβ

t f (t) = Dβ
t Dα

t f (t) = Dα+β
t f (t) (1)

and the trigonometric function invariance (derivative of the complex exponent)

Dα
t eΩt = ΩαeΩt. (2)

In (1) and (2), Dα
t denotes the α-order fractional derivative, α, β ∈ R and Ω ∈ C [25]. The

Riemann–Liouville and Caputo definitions do not meet the conditions (1) and (2). The
Grünwald–Letnikov and Marchaud definitions, however, satisfy both properties, making
them more appropriate for applications in the electromagnetic theory [25]. In this paper,
we employ the Grünwald–Letnikov definition given by [2]

Dα
t f (t) = lim

h→0+

(
1
h

)α ∞

∑
l=0

(−1)l
(

α

l

)
f (t− lh). (3)

In the above formula, the symbol (α
l ) for non-integer α is given by(

α

l

)
=

α(α− 1)(α− 2) . . . (α− l + 1)
l!

. (4)

Apart from satisfying the desired conditions, the Grünwald–Letnikov definition can also
be naturally approximated using finite differences. It is also consistent with the Marchaud
definition used by us in previous investigations [22].

The approximation scheme for the derivative Dα
t f (t) is natural for a sufficiently small

time-step size T > 0, and is given by the infinite series

Dα
t f (t) ≈

(
1
T

)α ∞

∑
l=0

(−1)l
(

α

l

)
f (t− lT). (5)

In the case of causal functions (i.e., vanishing for times t < 0), it naturally simplifies to the
finite sum

Dα
t f (nT) ≈

(
1
T

)α n

∑
l=0

(−1)l
(

α

l

)
f ((n− l)T) (6)

when calculated for t = nT.

3. FO Model of Dielectric Media

In a homogeneous and isotropic medium, the electromagnetic field satisfies Maxwell’s
equations

∇ ·D = ρ (7)
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∇× E = −∂B
∂t

(8)

∇ · B = 0 (9)

∇×H = J +
∂D
∂t

(10)

where D and B are, respectively, the electric- and magnetic-flux densities, E and H are,
respectively, the electric- and magnetic-field intensities, J is the current density and ρ is the
volume-charge density.

Let us consider the electromagnetic medium described by the FO constitutive relations

εβE = D1−β
t D (11)

µγH = D1−γ
t B (12)

J = ση D1−η
t E (13)

where εβ, µγ, ση (β, γ, η ∈ (0, 1]) are parameters corresponding to the permittivity, perme-
ability and conductivity, with units F

s1−βm
, H

s1−γm and S
sη−1m

(F—Farad, H—Henr, S—Siemens),
respectively. Assuming there is no energy dissipation due to Joule heating (ση = 0), we can
write the set of constitutive relations in the form

εβDβ
t E =

∂D
∂t

(14)

µγDγ
t H =

∂B
∂t

. (15)

Using (14) and (15), one obtains from (7)–(10) Maxwell’s equations with the TF derivatives
as follows:

∇ · E = 0 (16)

∇× E = −µγDγ
t H (17)

∇ ·H = 0 (18)

∇×H = εβDβ
t E. (19)

Let us calculate the curl of (17). Then, one obtains

∇×∇× E = −µγεβDβ+γ
t E. (20)

Using the vector calculus identity∇×∇× E = ∇(∇ · E)−∇2E and (16), one obtains
from (20) the fractional diffusion-wave equation for the electric field

∇2E− µγεβDβ+γ
t E = 0. (21)

The fractional diffusion-wave equation interpolates between the diffusion and the wave
processes, which are completely different with regard to their response to a localized dis-
turbance [22]. That is, the diffusion equation describes a process in which a disturbance
spreads infinitely fast, whereas the wave equation describes a process in which a distur-
bance propagates with a constant finite velocity. For the fractional diffusion-wave equation,
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a disturbance spreads with an infinite velocity, but its fundamental solution possesses a
maximum which propagates with a finite velocity [26].

Of course, a detailed formulation of the problem in electromagnetics requires not
only the Equation (21), but also boundary and initial conditions. While the boundary
conditions result from the assumed behavior of the electromagnetic field on the boundary
of the spatial domain, the initial conditions are assumed to be a zero electromagnetic
field for t < 0. For the electromagnetic system described by (16)–(19), employing the
Grünwald–Letnikov derivative with an infinite memory of the past, it is important how
the current state of the system was obtained. Therefore, the only option is to assume the
zero initial conditions, which allow for including the entire history of earlier events in
calculations of the current state.

Let us now focus our analysis on the one-dimensional case of a wave propagating along
the z-axis, Ex being the electric field, and Hy being the magnetic field. Equations (17) and (19)
can then be simplified to

∂Ex

∂z
= −µγDγ

t Hy (22)

−
∂Hy

∂z
= εβDβ

t Ex (23)

whereas (21) simplifies to
∂2Ex

∂z2 − µγεβDβ+γ
t Ex = 0. (24)

Let us further assume that β = γ = α ∈ (0.5, 1), which means that the cases intermediate
between diffusion and wave propagation are considered. This assumption and considera-
tion of the one-dimensional propagation allow us to easily refer to the results generated by
the method already presented in the literature.

4. FDTD Algorithm

In this section, the FDTD method for the media described by the TF constitutive
relations is presented.

4.1. Update Equations

The FDTD method is based on a leapfrog time-stepping scheme with update equations
for the electric and magnetic fields derived from discretized Maxwell’s equations [9]. Below,
for any discretized function F : R4 → R representing one of the components Ex, Ey, Ez, Hx,
Hy, Hz, we denote

FN(I, J, K) = F(I · ∆x, J · ∆y, K · ∆z, N · ∆t)

where ∆t is the time-step size and ∆x, ∆y, ∆z are the spatial-step sizes along the x, y and
z directions, respectively. After approximating in (17) and (19) the spatial derivatives by
central differences [9] and the TF derivatives by the finite sum (6) (under the assumption
β = γ = α), one obtains the following relations, which are used to compute new values of
the electric and magnetic fields

Hn+ 1
2

x (i, j +
1
2

, k +
1
2
) =−

n

∑
l=1

wα
l Hn−l+ 1

2
x (i, j +

1
2

, k +
1
2
)+

(∆t)α

µα

(
En

y (i, j + 1
2 , k + 1)− En

y (i, j + 1
2 , k)

∆z
−

En
z (i, j + 1, k + 1

2 )− En
z (i, j, k + 1

2 )

∆y

) (25)
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Hn+ 1
2

y (i +
1
2

, j, k +
1
2
) =−

n

∑
l=1

wα
l Hn−l+ 1

2
y (i +

1
2

, j, k +
1
2
)+

(∆t)α

µα

(
En

z (i + 1, j, k + 1
2 )− En

z (i, j, k + 1
2 )

∆x
−

En
x (i +

1
2 , j, k + 1)− En

x (i +
1
2 , j, k)

∆z

) (26)

Hn+ 1
2

z (i +
1
2

, j +
1
2

, k) =−
n

∑
l=1

wα
l Hn−l+ 1

2
z (i +

1
2

, j +
1
2

, k)+

(∆t)α

µα

(
En

x (i +
1
2 , j + 1, k)− En

x (i +
1
2 , j, k)

∆y
−

En
y (i + 1, j + 1

2 , k)− En
y (i, j + 1

2 , k)
∆x

) (27)

En+1
x (i +

1
2

, j, k) =−
n

∑
l=1

wα
l En−l+1

x (i +
1
2

, j, k)+

(∆t)α

εα

Hn+ 1
2

z (i + 1
2 , j + 1

2 , k)− Hn+ 1
2

z (i + 1
2 , j− 1

2 , k)
∆y

−

Hn+ 1
2

y (i + 1
2 , j, k + 1

2 )− Hn+ 1
2

y (i + 1
2 , j + 1

2 , k− 1
2 )

∆z


(28)

En+1
y (i, j +

1
2

, k) =−
n

∑
l=1

wα
l En−l+1

y (i, j +
1
2

, k)+

(∆t)α

εα

Hn+ 1
2

x (i, j + 1
2 , k + 1

2 )− Hn+ 1
2

x (i, j + 1
2 , k− 1

2 )

∆z
−

Hn+ 1
2

z (i + 1
2 , j + 1

2 , k)− Hn+ 1
2

z (i− 1
2 , j + 1

2 , k)
∆x


(29)

En+1
z (i, j, k +

1
2
) =−

n

∑
l=1

wα
l En−l+1

z (i, j, k +
1
2
)+

(∆t)α

εα

Hn+ 1
2

y (i + 1
2 , j, k + 1

2 )− Hn+ 1
2

y (i− 1
2 , j, k + 1

2 )

∆x
−

Hn+ 1
2

x (i, j + 1
2 , k + 1

2 )− Hn+ 1
2

x (i, j− 1
2 , k + 1

2 )

∆y

.

(30)

The coefficients of the Grünwald–Letnikov derivative wα
l = (−1)l(α

l ) can be computed in a
recursive manner, which allows for reducing the computational overhead as follows:

wα
l =

(
1− 1 + α

l

)
wα

l−1, wα
0 = 1. (31)

This relation holds true because

wα
l = (−1)l

(
α

l

)
= (−1)l α(α− 1)(α− 2) . . . (α− l + 1)

l!
= (32)
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(−1) · (−1)l−1 α(α− 1)(α− 2) . . . (α− l + 2)
(l − 1)!

α− l + 1
l

=

(
1− α + 1

l

)
wα

l−1.

In the one-dimensional case, the update equations simplify to

Hn+ 1
2

y

(
k +

1
2

)
= −

n

∑
l=1

wα
l Hn−l+ 1

2
y

(
k +

1
2

)
− (∆t)α

µα

En
x (k + 1)− En

x (k)
∆z

(33)

En+1
x (k) = −

n

∑
l=1

wα
l En+1−l

x (k)− (∆t)α

εα

Hn+ 1
2

y

(
k + 1

2

)
− Hn+ 1

2
y

(
k− 1

2

)
∆z

. (34)

4.2. Stability

In the IO case of the FDTD method (α = 1), the time-step size is limited by the Courant
condition [9]

∆t ≤ 1

c0

√
1

(∆x)2 +
1

(∆y)2 +
1

(∆z)2

(35)

where c0 denotes the light speed in a vacuum. Meeting this condition is required to ensure
the stability of simulation. However, the condition (35) is not sufficient in the case of FDTD
in the media described by the TF constitutive relations.

Following the standard derivation of the IO FDTD stability condition [9], the time-step
limit is derived for FDTD in the media described by the TF constitutive relations based
on (25)–(30)

∆t ≤ 21− 1
α

 √
µαεα√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

 1
α

. (36)

The detailed derivation of (36) is presented in Appendices A–C. This new time-step limit is
obtained through analysis of the numerical-dispersion relation. When α = 1 is assumed, the
condition (36) simplifies to the IO case (35). In the considered one-dimensional simulation,
the stability condition simplifies to

∆t ≤ 21− 1
α (
√

εαµα∆z)
1
α . (37)

Let us verify numerically the condition (37). For this purpose, let us consider the simulation
with an initial condition E0

x(ks) = 1, while the field values at other spatial and temporal
localizations are equal to zero. For a varying parameter 1

2 < α < 1, values of ∆t around
the analytical stability limit are considered. For each value of the time-step size, a short
simulation is performed. In the case of the considered FO model, a decay in field amplitude
is expected, which is further discussed in Section 5. Therefore, if the maximum value of
the electric field at the end of the simulation is larger than one, it is considered as unstable.
The results of numerical verification are presented in Figure 1, where the minimal unstable
value of ∆t is plotted along with the analytically obtained stability limit.

For each considered value of α, all the verified values of the time-step size below the
limit (37) resulted in stable simulations, while all the values above this limit resulted in
unstable ones. This confirms the correctness of the derived stability condition.D
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0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
10-35

10-30

10-25

10-20

10-15

t 
(s

)

Analytical limit

Numerical results

Figure 1. Stability limit for varying parameter α (∆z = 0.02 µm).

5. Simulation Results

In this section, simulation results are presented for the FDTD method in the media
described by the TF constitutive relations. For all the cases, unless stated otherwise,
∆z = 0.01 µm and the Courant coefficient is equal to 0.999, which means that ∆t is equal
to 0.999 of the stability limit given by (37). We focus on one-dimensional simulations due
to the large computational overhead of the method, which includes the whole history of
the electromagnetic field in the computations, as well as due to easy comparison with the
results generated by the method presented in the literature.

5.1. Simulations of Wave Propagation

One-dimensional simulations of wave propagation are considered in a homogeneous
FO medium, with the values of α slightly below the unit value. The source signal, in the
form of a Gaussian-modulated sinusoidal pulse (presented in Figure 2), is injected 0.1 µm
from the left boundary of the computational domain and propagates rightwards.

0 0.5 1 1.5 2 2.5 3

t (s) 10-14

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
x
 (

V
/m

)

Figure 2. Source-signal waveform.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 10654 9 of 22

Results of the FDTD simulations in the form of the electric-field waveforms measured
at the distance 10 µm from the source are presented in Figure 3.

0 1 2 3 4 5 6

t (s)

 

10-14

-1

-0.5

0

0.5

1

E
x
 (

V
/m

)

(a)

0 1 2 3 4 5 6

t (s)

 

10-14

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

E
x
 (

V
/m

)
(b)

0 1 2 3 4 5 6

t (s)

 

10-14

-0.2

-0.1

0

0.1

0.2

E
x
 (

V
/m

)

(c)

0 1 2 3 4 5 6

t (s)

 

10-14

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

E
x
 (

V
/m

)

(d)

Figure 3. Electric-field waveforms measured 10 µm from source. (a) α = 1. (b) α = 0.99. (c) α = 0.98.
(d) α = 0.97.

In the simulation with α = 1, the pulse propagates without deformation. It is expected,
because this case is equivalent to wave propagation in a vacuum. In other cases, wave
attenuation and distortion are observed, which is consistent with the results in [22]. Fur-
thermore, the pulse maximum is also observed earlier than in a vacuum. All the described
effects (i.e., wave attenuation, dispersion, and increased group velocity) increase with the
decrease in the parameter α.

The obtained results are compared with the results of the frequency-domain method
presented in [22]. The electric-field waveforms are shown for different measurement
positions in Figure 4. There are visible differences in the field values between the results of
both methods, which diminish when the spatial-step size ∆z is decreased for FO FDTD.
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Figure 4. Comparison between results of FDTD with varying spatial-step size and frequency-domain
simulations (α = 0.98). Distance from source: (a) 10 µm. (b) 30 µm. (c) 60 µm. (d) 90 µm.

The differences between the waveforms are visible when the spatial resolution is
insufficient in FO FDTD. It is clear, however, that the results of the FO FDTD simulations
converge to those obtained using the frequency-domain method when the spatial-step size
∆z is decreased. This confirms that the FO FDTD simulation method is developed correctly.

5.2. Simulations of Reflections

The FDTD method allows one to combine different materials in a single computational
domain. Therefore, we consider a simulation of the wave propagating through a vacuum
and impinging on a material described by the TF constitutive relations, with the parameter
α = 0.99. The results, in the form of electric-field distributions in the space for varying time,
are presented in Figure 5.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 10654 11 of 22

0 1 2 3 4 5 6 7

z (m)

 

10-5

-1

-0.5

0

0.5

1

E
x
 (

V
/m

)

(a)

0 1 2 3 4 5 6 7

z (m)

 

10-5

-1

-0.5

0

0.5

1

E
x
 (

V
/m

)

(b)

0 1 2 3 4 5 6 7

z (m)

 

10-5

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

E
x
 (

V
/m

)

(c)

0 1 2 3 4 5 6 7

z (m)

 

10-5

-0.01

-0.005

0

0.005

0.01

E
x
 (

V
/m

)

(d)

Figure 5. Spatial electric-field distribution for computational domain combining vacuum and FO
material. Dashed line indicates boundary between materials, with vacuum on the left and FO
material on the right side of line. Simulation results for time t: (a) 6.880× 10−14 s. (b) 7.556× 10−14 s.
(c) 1.207× 10−14 s. (d) 1.647× 10−14 s.

The incident wave is almost completely transmitted into the FO material, with only a
small reflection, as can be seen in Figure 5b,c. The ratio of the amplitude of the reflected
wave to the amplitude of the incident wave is equal to 0.0091. The transmitted pulse is
further attenuated while propagating through the FO medium. The incident Gaussian-
modulated sinusoidal pulse is, however, also slightly distorted before arriving upon the
boundary, as can be seen in Figure 5a. This is undesired behavior, as the wave should
not experience any significant deformation or attenuation while travelling through a
vacuum. This purely numerical distortion is a result of the Courant coefficient for a
vacuum being significantly lower than 1, i.e., ∆t is different than the magic time-step size,
which provides accurate simulations in one-dimensional IO FDTD [9]. Such a value of the
Courant coefficient is, however, necessary in order to ensure the stability of simulation in
the FO medium.

6. Computational Complexity

Computational complexity is an important factor in numerical simulations. The IO
FDTD algorithm has O(n) complexity with regard to the number of iterations (i.e., time-
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steps). In the case of FO FDTD, complexity increases to O(n2) because, in every iteration,
all the previous electromagnetic-field values are included in the update procedure. The
quadratic dependence on the number of time-steps is confirmed numerically, with the
results presented in Figure 6. All the presented execution times are obtained with the use
of an Intel(R) Core(TM) i7-8750H processor. The OpenMP-based parallelization is used in
our code in order to distribute computations among the CPU cores.
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Figure 6. Dependence of execution time on iteration number Nt for α = 0.98 and varying domain
size Nz.

The execution time, depending on the size of the computational domain, is presented
in Figure 7. The complexity is linear, i.e., the same as in the case of IO FDTD.

Apart from a larger time complexity, FO FDTD also suffers from a significantly larger
memory demand. As all the previous field values need to be stored, the occupied memory
grows linearly with time. In the IO case, on the other hand, it remains constant.

Higher computational and memory demands are further increased by the necessity of
taking lower values of the time-step size in order to satisfy the stability condition (37). As
can be seen in Figure 1, the stable ∆t values are significantly lower than in the IO FDTD
case, even for α near 1.D
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Figure 7. Dependence of execution time on domain size Nz for α = 0.98 and varying iteration
number Nt.

7. Conclusions

In this paper, the FDTD simulation method for wave propagation in the media de-
scribed by the TF constitutive relations is presented. TF Maxwell’s equations are derived
based on these constitutive relations and the Grünwald–Letnikov definition of a fractional
derivative. Then the FDTD algorithm, which includes memory effects and energy dis-
sipation of the considered media, is introduced. The stability limit of the time-step size
is derived for the proposed FDTD method which, to the best of our knowledge, has not
been presented in the literature before. The obtained FDTD results are compared with
those obtained with the use of the reference frequency-domain method already presented
in the literature, and the compatibility between both methods is hereby demonstrated.
Therefore, FDTD is proved to be an appropriate method for simulation of the FO media
as well. High spatial resolution is required, however, to obtain accurate results. FO FDTD
is, unfortunately, computation and memory demanding compared to the ordinary (i.e.,
IO) FDTD algorithm and, therefore, requires larger computational resources than in the
IO case.

Our future research focus will include investigation of implicit FDTD schemes applied
to the FO media, as well as consideration of their acceleration techniques.
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The following abbreviations are used in this manuscript:

FDTD Finite-difference time-domain
TF Time fractional
FO Fractional order
IO Integer order
ADE Auxiliary differential equation

Appendix A. Derivation of Numerical-Dispersion Relation for FO FDTD

For clarity of presentation, the one-dimensional dispersion relation and stability con-
dition are derived first, with subsequent generalisations to the three-dimensional case in
Appendix C.

Let us consider one-dimensional discretized FO Maxwell’s equations

En
x (k + 1)− En

x (k)
∆z

= −µα

(
1

∆t

)α n

∑
l=0

wα
l Hn−l+ 1

2
y (k +

1
2
) (A1)

−
Hn+ 1

2
y (k + 1

2 )− Hn+ 1
2

y (k− 1
2 )

∆z
= εα

(
1

∆t

)α n

∑
l=0

wα
l En−l+1

x (k). (A2)

Let us assume the existence of harmonic solutions with the field distributions

Hn
y (k) = Hy0ej(ω̃n∆t−k̃zk∆z)

En
x (k) = Ex0ej(ω̃n∆t−k̃zk∆z)

(A3)

where ω̃ ∈ C, k̃z ∈ R. Substituting (A3) into (A1) gives

Hy0
∑N

l=0[w
α
l ejω̃(n−l+ 1

2 )∆te−jk̃z(k+ 1
2 )∆z]

(∆t)α
= − 1

µα
Ex0

ejω̃n∆te−jk̃z(k+1)∆z − ejω̃n∆te−jk̃zk∆z

∆z
(A4)

Hy0 = − (∆t)αEx0

µα∆z

ejω̃n∆te−jk̃z(k+ 1
2 )∆z

(
e−jk̃z(

1
2 )∆z − e−jk̃z(− 1

2 )∆z
)

e−jk̃z(k+ 1
2 )∆z ∑N

l=0 wα
l ejω̃(n−l+ 1

2 )∆t

=
(∆t)αEx0

µα∆z

ejω̃n∆t
(

ejk̃z
1
2 ∆z − e−jk̃z

1
2 ∆z
)

ejω̃n∆t ∑N
l=0 wα

l ejω̃(−l+ 1
2 )∆t

=
(∆t)αEx0

µα∆z

2j ejk̃z 1
2 ∆z−e−jk̃z 1

2 ∆z

2j

∑N
l=0 wα

l ejω̃(−l+ 1
2 )∆t

= Ex0
(∆t)α

µα∆z

2j sin
(

k̃z∆z
2

)
∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t
.

(A5)

After substituting (A3) into (A2), one obtains

Ex0
∑N

l=0[w
α
l ejω̃(n−l+1)∆te−jk̃zk∆z]

(∆t)α
= − 1

εα
Hy0

ejω̃(n+ 1
2 )∆te−jk̃z(k+ 1

2 )∆z − ejω̃(n+ 1
2 )∆te−jk̃z(k− 1

2 )∆z

∆z
(A6)
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Ex0 = −
(∆t)α Hy0

εα∆z

ejω̃(n+ 1
2 )∆te−jk̃zk∆z

(
e−jk̃z

1
2 ∆z − e−jk̃z(− 1

2 )∆z
)

e−jk̃zk∆z ∑N
l=0 wα

l ejω̃(n−l+1)∆t

=
(∆t)α Hy0

εα∆z

ejω̃(n+ 1
2 )∆t

(
ejk̃z

1
2 ∆z − e−jk̃z

1
2 ∆z
)

ejω̃(n+ 1
2 )∆t ∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t

=
(∆t)α Hy0

εα∆z

2j ejk̃z 1
2 ∆z−e−jk̃z 1

2 ∆z

2j

∑N
l=0 wα

l ejω̃(−l+ 1
2 )∆t

= Hy0
(∆t)α

εα∆z

2j sin
(

k̃z∆z
2

)
∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t
.

(A7)

Further, substituting the result of (A5) for Hy0 into (A7) gives

Ex0 = Ex0
(∆t)α

µα∆z

2j sin
(

k̃z∆z
2

)
∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t

(∆t)α

εα∆z

2j sin
(

k̃z∆z
2

)
∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t
(A8)

(
∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t

2j

)2

=
(∆t)2α

εαµα(∆z)2

[
sin
(

k̃z∆z
2

)]2

. (A9)

The coefficients of the Grünwald–Letnikov derivative wα
l satisfy the condition [27]

∞

∑
l=0

wα
l zl = (1− z)α (A10)

where z ∈ C. Let us transform the left-hand side of (A9) into(
∑N

l=0 wα
l ejω̃(−l+ 1

2 )∆t

2j

)2

=

(
ejω̃ 1

2 ∆t ∑N
l=0 wα

l ejω̃(−l)∆t

2j

)2

=

(
ejω̃ 1

2 ∆t ∑N
l=0 wα

l (e
−jω̃∆t)l

2j

)2

(using (A10))

≈
(

ejω̃∆t 1
2
(
1− e−jω̃∆t)α

2j

)2

.

(A11)

As a result, one obtains the numerical-dispersion relation for the FO FDTD algorithm(
ejω̃∆t 1

2
(
1− e−jω̃∆t)α

2j

)2

=
(∆t)2α

εαµα(∆z)2

[
sin
(

k̃z∆z
2

)]2

. (A12)

This equation is an equivalent of the IO FDTD numerical-dispersion relation, i.e., the
Formula (4.12) in [9].

Appendix B. Derivation of Stability Condition for FO FDTD

Further transformation of (A12) gives

ejω̃∆t 1
2α

(
1− e−jω̃∆t

)
= (2j)

1
α

∆t

(
√

εαµα∆z)
1
α

∣∣∣∣sin
(

k̃z∆z
2

)∣∣∣∣
1
α

︸ ︷︷ ︸
=ξα

.
(A13)
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After substituting ω̃ = ω̃r + jω̃i, one obtains

e
−ω̃i∆t

2α ej ω̃r∆t
2α

(
1− eω̃i∆te−jω̃r∆t

)
= (2j)

1
α ξα. (A14)

Then, 1− eω̃i∆te−jω̃r∆t can be expressed in the exponential form as follows:

1− eω̃i∆te−jω̃r∆t = 1− eω̃i∆t[cos(−ω̃r∆t) + j sin(−ω̃r∆t)]

= 1− eω̃i∆t cos(ω̃r∆t) + jeω̃i∆t sin(ω̃r∆t)

=

√
[1− eω̃i∆t cos(ω̃r∆t)]2 + [eω̃i∆t sin(ω̃r∆t)]2ej arctg2[eω̃i∆t sin(ω̃r∆t),1−eω̃i∆t cos(ω̃r∆t)].

(A15)

Hence, one obtains∣∣∣1− eω̃i∆te−jω̃r∆t
∣∣∣ = √[1− eω̃i∆t cos(ω̃r∆t)]2 + [eω̃i∆t sin(ω̃r∆t)]2

=
√

1− 2eω̃i∆t cos(ω̃r∆t) + e2ω̃i∆t cos2(ω̃r∆t) + e2ω̃i∆t sin2(ω̃r∆t)

=
√

1− 2eω̃i∆t cos(ω̃r∆t) + e2ω̃i∆t

(A16)

Arg
(

1− eω̃i∆te−jω̃r∆t
)
= arctg2

[
eω̃i∆t sin(ω̃r∆t), 1− eω̃i∆t cos(ω̃r∆t)

]
. (A17)

Finally, one obtains∣∣∣∣e−ω̃i∆t
2α ej ω̃r∆t

2α

(
1− eω̃i∆te−jω̃r∆t

)∣∣∣∣ = e−
ω̃i∆t

2α

√
1− 2eω̃i∆t cos(ω̃r∆t) + e2ω̃i∆t (A18)

Arg
(

e
−ω̃i∆t

2α ej ω̃r∆t
2α

[
1− eω̃i∆te−jω̃r∆t

])
=

ω̃r∆t
2α

+ arctg2
[
eω̃i∆t sin(ω̃r∆t), 1− eω̃i∆t cos(ω̃r∆t)

]
. (A19)

Comparing modules and arguments of the left- and right-hand sides of (A14), one obtains

e−
ω̃i∆t

2α

√
1− 2eω̃i∆t cos(ω̃r∆t) + e2ω̃i∆t = 2

1
α ξα (A20)

ω̃r∆t
2α

+ arctg2
[
eω̃i∆t sin(ω̃r∆t), 1− eω̃i∆t cos(ω̃r∆t)

]
=

π

2α
. (A21)

Analyzing the argument relation (A21), one obtains

eω̃i∆t sin(ω̃r∆t)
1− eω̃i∆t cos(ω̃r∆t)

= tg
(

π − ω̃r∆t
2α

)
. (A22)

The sampling time ∆t must respect the Nyquist theorem; therefore, the only proper solution
to (A22) is ω̃r = π

∆t . Let us substitute cos(ω̃r∆t) = cos
(

π
∆t ∆t

)
= cos(π) = −1 into the

left-hand side of (A20), which gives

e−
ω̃i∆t

2α

√
1 + 2eω̃i∆t + e2ω̃i∆t = e−

ω̃i∆t
2α

√
(eω̃i∆t + 1)2

= e−
ω̃i∆t

2α (eω̃i∆t + 1).
(A23)

Let us introduce auxiliary variables eω̃i∆t = u and 1
2α = β. Using (A20) and (A23), one

then obtains
u−β(1 + u) = 2

1
α ξα (A24)

where 1
2 < α < 1, 1

2 < β < 1. Equation (A24) can be written as

u + 1 = 2
1
α ξαuβ. (A25)
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A simulation is stable when ω̃i ≥ 0, which is equivalent to u = eω̃i∆t ≥ 1. Equation (A25)
is solved graphically and visualised in Figure A1. For ξα larger than the boundary value
equal 2, (A25) has two solutions, i.e., one smaller and one larger than 1. In this case a
simulation is considered unstable. A smaller value of ξα means that either two solutions
larger than 1, one such solution, or even no such solutions exist. All these cases are
considered to be stable, as they lack any unstable term smaller than 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

u+1

1.8*u
0.8

2*u
0.8

2.5*u
0.8

Figure A1. Points of intersection of functions u + 1 and 2
1
α ξαuβ for different values of 2

1
α ξα.

Hence, the stability condition can be written as

2
1
α ξα ≤ 2. (A26)

After expanding ξα, (A26) gives

2
1
α

∆t

(
√

εαµα∆z)
1
α

∣∣∣∣sin
(

k̃z∆z
2

)∣∣∣∣
1
α

≤ 2. (A27)

Transforming further, one obtains

∆t ≤ 21− 1
α (
√

εαµα∆z)
1
α

1∣∣∣sin
(

k̃z∆z
2

)∣∣∣ 1
α

. (A28)

The minimum value of 1∣∣∣sin
(

k̃z∆z
2

)∣∣∣ 1
α

is equal to 1. The stability condition can therefore be

written in its final form
∆t ≤ 21− 1

α (
√

εαµα∆z)
1
α . (A29)

Taking α = 1, one obtains the standard Courant condition for one-dimensional IO FDTD

∆t ≤ √ε0µ0∆z. (A30)
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Appendix C. Generalization of Stability Condition Towards Three-Dimensional
FO FDTD

In the case of three-dimensional FO FDTD, discrete Maxwell’s equations are considered(
1

∆t

)α n

∑
l=0

wα
l Hn−l+ 1

2
x (I, J +

1
2

, K +
1
2
) =

1
µα

(
En

y (I, J + 1
2 , K + 1)− En

y (I, J + 1
2 , K)

∆z
−

En
z (I, J + 1, K + 1

2 )− En
z (I, J, K + 1

2 )

∆y

) (A31)

(
1

∆t

)α n

∑
l=0

wα
l Hn−l+ 1

2
y (I +

1
2

, J, K +
1
2
) =

1
µα

(
En

z (I + 1, J, K + 1
2 )− En

z (I, J, K + 1
2 )

∆x
−

En
x (I + 1

2 , J, K + 1)− En
x (I + 1

2 , J, K)
∆z

) (A32)

(
1

∆t

)α n

∑
l=0

wα
l Hn−l+ 1

2
z (I +

1
2

, J +
1
2

, K) =
1

µα

(
En

x (I + 1
2 , J + 1, K)− En

x (I + 1
2 , J, K)

∆y
−

En
y (I + 1, J + 1

2 , K)− En
y (I, J + 1

2 , K)
∆x

) (A33)

(
1

∆t

)α n

∑
l=0

wα
l En−l+1

x (I +
1
2

, J, K) =
1
εα

Hn+ 1
2

z (I + 1
2 , J + 1

2 , K)− Hn+ 1
2

z (I + 1
2 , J − 1

2 , K)
∆y

−

Hn+ 1
2

y (I + 1
2 , J, K + 1

2 )− Hn+ 1
2

y (I + 1
2 , J + 1

2 , K− 1
2 )

∆z

 (A34)

(
1

∆t

)α n

∑
l=0

wα
l En−l+1

y (I, J +
1
2

, K) =
1
εα

Hn+ 1
2

x (I, J + 1
2 , K + 1

2 )− Hn+ 1
2

x (I, J + 1
2 , K− 1

2 )

∆z
−

Hn+ 1
2

z (I + 1
2 , J + 1

2 , K)− Hn+ 1
2

z (I − 1
2 , J + 1

2 , K)
∆x

 (A35)

(
1

∆t

)α n

∑
l=0

wα
l En−l+1

z (I, J, K +
1
2
) =

1
εα

Hn+ 1
2

y (I + 1
2 , J, K + 1

2 )− Hn+ 1
2

y (I − 1
2 , J, K + 1

2 )

∆x
−

Hn+ 1
2

x (I, J + 1
2 , K + 1

2 )− Hn+ 1
2

x (I, J − 1
2 , K + 1

2 )

∆y

 (A36)

where I, J, K denote coordinate indices in respective directions. Capital letters are used
to differentiate these parameters from the imaginary unit j =

√
−1. Similarly, as in the

one-dimensional case, the following assumptions regarding harmonic solutions are taken

Hn
x (I, J, K) = Hx0ej(ω̃n∆t−ĩx I∆x− j̃y J∆y−k̃zK∆z)

Hn
y (I, J, K) = Hy0ej(ω̃n∆t−ĩx I∆x− j̃y J∆y−k̃zK∆z)

Hn
z (I, J, K) = Hz0ej(ω̃n∆t−ĩx I∆x− j̃y J∆y−k̃zK∆z)

En
x (I, J, K) = Ex0ej(ω̃n∆t−ĩx I∆x− j̃y J∆y−k̃zK∆z)

En
y (I, J, K) = Ey0ej(ω̃n∆t−ĩx I∆x− j̃y J∆y−k̃zK∆z)

En
z (I, J, K) = Ez0ej( ˜̃ωn∆t−ĩx I∆x− j̃y J∆y−k̃zK∆z)

(A37)
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where ω̃ ∈ C and [ĩx, j̃y, k̃z] (where ĩx, j̃y, k̃z ∈ R) is the numerical wavevector.
Substituting (A37) into (A31)–(A36) gives

(
1

∆t

)α

Hx0 =
1

µαzs

(
Ey0

e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃z(K+1)∆z] − e−j[ĩx I∆x+ j̃y(J+ 1

2 )∆y+k̃zK∆z]

e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃z(K+ 1

2 )∆z]∆z
−

Ez0
e−j[ĩx I∆x+ j̃y(J+1)∆y+k̃z(K+ 1

2 )∆z] − e−j[ĩx I∆x+ j̃y J∆y+k̃z(K+ 1
2 )∆z]

e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃z(K+ 1

2 )∆z]∆y

) (A38)

(
1

∆t

)α

Hy0 =
1

µαzs

(
Ez0

e−j[ĩx(I+1)∆x+ j̃y J∆y+k̃z(K+ 1
2 )∆z] − e−j[ĩx I∆x+ j̃y J∆y+k̃z(K+ 1

2 )∆z]

e−j[ĩx(I+ 1
2 )∆x+ j̃y J∆y+k̃z(K+ 1

2 )∆z]∆x
−

Ex0
e−j[ĩx(I+ 1

2 )∆x+ j̃y J∆y+k̃z(K+1)∆z] − e−j[ĩx(I+ 1
2 )∆x+ j̃y J∆y+k̃zK∆z]

e−j[ĩx(I+ 1
2 )∆x+ j̃y J∆y+k̃z(K+ 1

2 )∆z]∆z

) (A39)

(
1

∆t

)α

Hz0 =
1

µαzs

(
Ex0

e−j[ĩx(I+ 1
2 )∆x+ j̃y(J+1)∆y+k̃zK∆z] − e−j[ĩx(I+ 1

2 )∆x+ j̃y J∆y+k̃zK∆z]

e−j[ĩx(I+ 1
2 )∆x+ j̃y(J+ 1

2 )∆y+k̃zK∆z]∆y
−

Ey0
e−j[ĩx(I+1)∆x+ j̃y(J+ 1

2 )∆y+k̃zK∆z] − e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃zK∆z]

e−j[ĩx(I+ 1
2 )∆x+ j̃y(J+ 1

2 )∆y+k̃zK∆z]∆x

) (A40)

(
1

∆t

)α

Ex0 =
1

εαzs

(
Hz0

e−j[ĩx(I+ 1
2 )∆x+ j̃y(J+ 1

2 )∆y+k̃zK∆z] − e−j[ĩx(I+ 1
2 )∆x+ j̃y(J− 1

2 )∆y+k̃zK∆z]

e−j[ĩx(I+ 1
2 )∆x+ j̃y J∆y+k̃zK∆z]∆y

−

Hy0
e−j[ĩx(I+ 1

2 )∆x+ j̃y J∆y+k̃z(K+ 1
2 )∆z] − e−j[ĩx(I+ 1

2 )∆x+ j̃y J∆y+k̃z(K− 1
2 )∆z]

e−j[ĩx(I+ 1
2 )∆x+ j̃y J∆y+k̃zK∆z]∆z

) (A41)

(
1

∆t

)α

Ey0 =
1

εαzs

(
Hx0

e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃z(K+ 1

2 )∆z] − e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃z(K− 1

2 )∆z]

e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃zK∆z]∆z

−

Hz0
e−j[ĩx(I+ 1

2 )∆x+ j̃y(J+ 1
2 )∆y+k̃zK∆z] − e−j[ĩx(I− 1

2 )∆x+ j̃y(J+ 1
2 )∆y+k̃zK∆z]

e−j[ĩx I∆x+ j̃y(J+ 1
2 )∆y+k̃zK∆z]∆x

) (A42)

(
1

∆t

)α

Ez0 =
1

εαzs

(
Hy0

e−j[ĩx(I+ 1
2 )∆x+ j̃y J∆y+k̃z(K+ 1

2 )∆z] − e−j[ĩx(I− 1
2 )∆x+ j̃y J∆y+k̃z(K+ 1

2 )∆z]

e−j[ĩx I∆x+ j̃y J∆y+k̃z(K+ 1
2 )∆z]∆x

−

Hx0
e−j[ĩx I∆x+ j̃y(J+ 1

2 )∆y+k̃z(K+ 1
2 )∆z] − e−j[ĩx I∆x+ j̃y(J− 1

2 )∆y+k̃z(K+ 1
2 )∆z]

e−j[ĩx I∆x+ j̃y J∆y+k̃z(K+ 1
2 )∆z]∆y

) (A43)

where

zs =
N

∑
l=0

wα
l ejω̃(−l+ 1

2 )∆t. (A44)

The system of Equations (A38)–(A43) can be written in the matrix form

−µα 0 0 0 δz −δy
0 −µα 0 −δz 0 δx
0 0 −µα δy −δx 0
0 −δz δy −εα 0 0
δz 0 −δx 0 −εα 0
−δy δx 0 0 0 −εα


︸ ︷︷ ︸

=U



Hx0
Hy0
Hz0
Ex0
Ey0
Ez0

 =



0
0
0
0
0
0

 (A45)

where

δx = (∆t)α e−j[ĩx
1
2 ∆x] − ej[ĩx

1
2 ∆x]

zs∆x
(A46)
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δy = (∆t)α e−j[ j̃y 1
2 ∆y] − ej[ j̃y 1

2 ∆y]

zs∆y
(A47)

δz = (∆t)α e−j[k̃z
1
2 ∆z] − ej[k̃z

1
2 ∆z]

zs∆z
. (A48)

The system of Equations (A45) is homogeneous. In order to obtain any nontrivial (nonzero)
solution, the determinant of the matrix U has to be equal 0. The matrix U can be interpreted
as the block matrix

U =

[
A B
C D

]
(A49)

where A, B, C, D are 3× 3 matrices. They commute because B = −C and 1
µα

A = 1
εα

D = −I,
where I is the identity matrix. In such a case, the determinant of matrix U can be calculated
using the following property [28]:

det(U) = det(AD− BC). (A50)

Hence, one obtains

det(U) = det

µαεα − δy
2 − δz

2 δxδy δxδz
δxδy µαεα − δx

2 − δz
2 δyδz

δxδz δyδz µαεα − δx
2 − δy

2


= µαεα(δx

2 + δy
2 + δz

2 − µαεα)
2.

(A51)

Equating the determinant to 0, one obtains

µαεα = δx
2 + δy

2 + δz
2. (A52)

Using (A11) one obtains(
ejω∆t 1

2
(
1− e−jω∆t)α

2j

)2

=

(
(∆t)α e−j[ĩx

1
2 ∆x] − ej[ĩx

1
2 ∆x]

2j
√

µαεα∆x

)2

+

(
(∆t)α e−j[ j̃y 1

2 ∆y] − ej[ j̃y 1
2 ∆y]

2j
√

µαεα∆y

)2

+

(
(∆t)α e−j[k̃z

1
2 ∆z] − ej[k̃z

1
2 ∆z]

2j
√

µαεα∆z

)2

.

(A53)

From (A53), one directly obtains the numerical-dispersion relation for the three-dimensional
FO FDTD algorithm(

ejω∆t 1
2
(
1− e−jω∆t)α

2j

)2

=
(∆t)2α

µαεα(∆x)2

[
sin
(

ĩx∆x
2

)]2

+

(∆t)2α

µαεα(∆y)2

[
sin

(
j̃y∆y

2

)]2

+
(∆t)2α

µαεα(∆z)2

[
sin
(

k̃z∆z
2

)]2

.

(A54)

If one omits the x- and y-related terms in (A54), it simplifies that formula to the one-
dimensional case (A12). Substituting

ξα =

 (∆t)2α

µαεα(∆x)2

[
sin
(

ĩx∆x
2

)]2

+
(∆t)2α

µαεα(∆y)2

[
sin

(
j̃y∆y

2

)]2

+

(∆t)2α

µαεα(∆z)2

[
sin
(

k̃z∆z
2

)]2) 1
2α

(A55)
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into (A54), and continuing as in the one-dimensional case, one obtains

2
1
α

 (∆t)2α

µαεα(∆x)2

[
sin
(

ĩx∆x
2

)]2

+
(∆t)2α

µαεα(∆y)2

[
sin

(
j̃y∆y

2

)]2

+

(∆t)2α

µαεα(∆z)2

[
sin
(

k̃z∆z
2

)]2) 1
2α

≤ 2.

(A56)

After assuming the maximum possible values of the sine functions, one obtains the stability
condition for the three-dimensional FO FDTD algorithm

∆t ≤ 21− 1
α

 √
µαεα√

1
(∆x)2 +

1
(∆y)2 +

1
(∆z)2

 1
α

. (A57)

After omitting terms related to the x- and y-dimensions, this stability condition simplifies
to the one-dimensional condition (A29). Taking α = 1, one obtains the stability condition
for IO FDTD

∆t ≤
√

µ0ε0√
1

(∆x)2 +
1

(∆y)2 +
1

(∆z)2

. (A58)
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