
Theoretical Computer Science 313 (2004) 45–56
www.elsevier.com/locate/tcs

Finite automata for compact representation
of tuple dictionaries

Jan Daciuk∗ , Gertjan van Noord
Alfa-Informatica, Rijksuniversiteit Groningen, Oude Kijk in ’t Jatstraat 26, Postbus 716,

9700 AS Groningen, The Netherlands

Abstract

A generalization of the dictionary data structure is described, called tuple dictionary. A tuple
dictionary represents the mapping of n-tuples of strings to some value. This data structure is
motivated by practical applications in speech and language processing, in which very large
instances of tuple dictionaries are used to represent language models. A technique for compact
representation of tuple dictionaries is presented. The technique can be seen as an application and
extension of perfect hashing by means of 2nite-state automata. Preliminary practical experiments
indicate that the technique yields considerable and important space savings of up to 90% in
practice.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Finite automata; Language models; Perfect hashing; Tuple dictionaries

1. Introduction

A dictionary is a data structure that de2nes a mapping from strings to some value.
Consider a generalization of such a data structure in which the keys are n-tuples of
strings, for a 2xed n. We call such a data structure a tuple dictionary. Tuple dictionaries
are motivated by practical applications in speech and natural language processing. In
such applications, there are two essential requirements on this data structure: the size
of the data structure and the e>ciency of lookup. Potentially relevant operations on
tuple dictionaries such as insertion and deletion can be ignored, as the dictionaries are

∗ Corresponding author. On leave to the Gda@nsk University of Technology.
E-mail addresses: jandac@eti.pg.gda.pl (J. Daciuk), vannoord@let.rug.nl (G. van Noord).

0304-3975/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2003.10.003

mailto:jandac@eti.pg.gda.pl
mailto:vannoord@let.rug.nl


46 J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56

typically constructed once from a given training data set, and then used repeatedly on
diEerent data. It should be noted that by reducing the size of the data structure, the
time needed to load it into memory can also be signi2cantly reduced. Because of the
sheer size of data in practical applications, that time for traditional representations is
in order of minutes on contemporary computers.
In current practice, a tuple dictionary is typically implemented by an ordinary dictio-

nary. The elements in the tuple of a given key are simply concatenated with a special
separator symbol. The advantage of this approach is that a standard implementation of
dictionaries can then be employed (typically a hash table or perhaps a perfect hash).
We argue below that an important reduction of memory requirements can be obtained
if the structure of the key is exploited.
The paper is organized as follows. First, the practical motivation for tuple dic-

tionaries is described. After some formal preliminaries, we then describe two alter-
native implementations of tuple dictionaries. A number of practical experiments are
reported in Section 7, which give an indication of the expected magnitude of the mem-
ory requirements reduction. In Section 8, a number of alternative implementations is
discussed.

2. Practical motivation

An important practical problem in speech and natural language processing appli-
cations concerns the size of the knowledge sources—in particular in circumstances
in which these knowledge sources are consulted frequently, such that they need to
be loaded into memory. For natural language processing systems which aim at full
parsing of unrestricted texts, for example, realistic electronic dictionaries must con-
tain information for hundreds of thousands of words. In recent years, perfect hash-
ing techniques have been developed based on 2nite state automata which enable a
very compact representation of such large dictionaries without sacri2cing the time re-
quired to access the dictionaries [8,12,13]. A free implementation is provided by one of
us [3,4]. 1

A recent experience in the context of the Alpino wide coverage grammar for Dutch
[1] has once again established the importance of perfect hashing techniques. The Alpino
lexicon contains almost 50,000 stems, which give rise to about 200,000 fully inJected
entries in the compiled dictionary which is used at runtime. Using a standard (hash
table) representation provided by the underlying programming language (in this case
Prolog), the lexicon took up about 27 Mbytes. In contrast, using a perfect hash rep-
resentation (provided by the fsa [3,4] package), the size of the dictionary is only
1:3 Mbytes, without a noticeable delay in lexical lookup times.
However, dictionaries are not the only space consuming resources that are required by

state-of-the-art language and speech systems. In particular, language models containing
statistical information about the co-occurrence of words and=or word meanings typically

1 http://www.pg.gda.pl/∼jandac/fsa.html

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://www.pg.gda.pl/~jandac/fsa.html
http://mostwiedzy.pl


J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56 47

require even more space. In order to illustrate this point, consider the model described
in chapter 6 of [2]; a recent, inJuential, dissertation in this area. That chapter describes
a statistical parser which bases its parsing decisions on bigram lexical dependencies,
trained from the Penn Treebank. Collins reports:

All tests were made on a Sun SPARCServer 1000E, using 100% of a 60 Mhz
SuperSPARC processor. The parser uses around 180Mbytes of memory, and training
on 40,000 sentences (essentially extracting the co-occurrence counts from the corpus)
takes under 15 min. Loading the hash table of bigram counts into memory takes
approximately 8 min.
A similar example is described in [5]. Foster compares a number of linear models

and maximum entropy models for parsing, considering up to 35,000,000 features, where
each feature represents the occurrence of a particular pair of words.
The use of such data-intensive probabilistic models is not limited to parsing. For

instance, [9] describes a method to learn the ordering of prenominal adjectives in
English (from the British National Corpus), for the purpose of a natural language
generation system. The resulting model contains counts for 127,016 diEerent pairs of
adjectives.
In practice, systems need to be capable to work not only with bigram models, but

trigram and fourgram models are being considered too. For instance, an unsupervised
method to solve PP-attachment ambiguities is described in [10]. That method constructs
a model, based on a 125-million word newspaper corpus, which contains counts of the
relevant 〈V; P; N2〉 and 〈N1; P; N2〉 trigrams, where P is the preposition, V is the head
of the verb phrase, N1 is the head of the noun phrase preceding the preposition, and
N2 is the head of the noun phrase following the preposition. In speech recognition,
language models based on trigrams are now very common [11].
For further illustration, a (Dutch) newspaper corpus of 40,000 sentences contains

about 60,000 word types; 325,000 bigram types and 530,000 trigram types. In addition,
in order to improve the accuracy of such models, much larger text collections are
needed for training. In one of our own experiments we employed a Dutch newspaper
corpus of about 350,000 sentences. This corpus contains more than 215,000 unigram
types, 1,785,000 bigram types and 3,810,000 trigram types. A straightforward, textual,
representation of the trigram counts for this corpus takes more than 82 Mbytes of
storage. Using a standard hash implementation (as provided by the gnu version of the
C++ standard template library), will take up 362Mbytes of storage on an AlphaStation
XP900 (64-bit architecture) during run-time. Initializing the hash from the table takes
almost three minutes. Using the technique introduced below, the size is reduced to
49 Mbytes; loading the (oE-line constructed) compact language model takes less than
half a second.
All the examples illustrate that the size of language models is an important practical

problem. The runtime memory requirements become problematic, as well as the CPU-
time needed for loading these knowledge sources. In this paper we propose a method
to represent huge language models in a compact way, using 2nite-state techniques.
Loading compact models is much faster, and using these compact models is e>cient.
In practice, memory savings obtained by the use of the techniques we describe make
it possible to use much larger models.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


48 J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56

3. Formal preliminaries

A tuple dictionary T i; j is a 2nite function (W1× · · · ×Wi)→Zj, where W1 · · ·Wi
are sets of strings, and Z are the integers. For the moment, we assume that this
function maps to a tuple of integers—the case of real numbers is described in Section 6.
The word columns typically contain words, word meanings, the names of dependency
relations, part-of-speech tags and so on. The number columns typically contain counts,
the cologarithm of probabilities, or other numerical information.
An important ingredient of the methods described below is the perfect hash 2nite

automaton [8,12,13]. The perfect hash automaton for a 2nite set of words W is a
minimal deterministic acyclic 2nite automaton N that accepts each word in W ; in
addition, each transition is associated with an integer i, such that if a word w is the
ith word of W in an ordering imposed by the automaton then the sum of the integers
along an accepting path in N is i. An example is provided in Fig. 1. We write N (w)
to refer to the hash key assigned to w by N . The time required to compute N (w) is
O(|w|).
Below, perfect hash automata are used to represent the set of words found in a

given column. If there is enough overlap between words from diEerent columns for a
given tuple dictionary, then we might prefer to use the same perfect hash automaton
for those columns. This is a common situation in n-grams used in statistical natural
language processing. For instance, in a table of bigram counts, the set of 2rst words
is the same as the set of second words. The technique introduced below will be able
to take advantage of such shared dictionaries, but does not require that the dictionaries
for diEerent columns are the same. Naturally, more space savings can be expected in
the 2rst case.

Fig. 1. Example of a perfect hash automaton. The sum of numbers along transitions recognizing a given
word give the word number (hash key). For example, doll has number 5 + 0 + 1 + 0=6.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56 49

4. Compact representation of tuple dictionaries in table form

A given tuple dictionary T i; j : (W1× · · · ×Wi)→Zj is represented by (at most) i
perfect hash 2nite automata, as well as a table with i + j rows. We construct a table
such that for each w1 · · ·wi in the domain of T , where T (w1 · · ·wi)= (z1 · · · zj), there
is a row in the table consisting of N (w1); : : : ; N (wi); z1; : : : ; zj. Note that all cells in the
table contain numbers. We represent each such number on as few bytes as required for
the largest number in its column. The representation is not only compact (a number
is typically represented on 2 instead of 8 bytes on a 64-bit architecture), but it is
machine-independent (in our implementation, the least signi2cant byte always comes
2rst). The table is sorted. So a tuple dictionary is represented by a table of packed
numbers, and at most i perfect hash automata converting words into the corresponding
hash keys.
The access to a value T (w1 · · ·wn) involves converting the words w1 · · ·wn to their

hash keys N (w1) · · ·N (wn) using perfect hashing automata; constructing a query string
from the hash keys by packing these hash keys and using a binary search for the
query string in the table; T (w1 · · ·wn) is then obtained by unpacking the values found
in the table. The time required for calculating the hash keys is proportional to the
combined length of words in the query. Binary search takes O(log |T ij|) time, i.e. it
is proportional to the logarithm of the number of tuples.
There is a special case for tuple dictionaries T i; j, where i=1. Because the words

are unique, their hash keys are unique numbers form 0 · · · |W1| − 1, and there is no
need to store the hash key of the words in the table. The hash key just serves as an
index in the table. Also the access is diEerent than in the general case. After we obtain
the hash key, we use it as the address of the numerical tuple.

5. Tree representation

In the table, the hash key in the 2rst column can be the same for many rows.
In a tuple dictionary, a particular instance of initial words w1 : : : wk ; k¡n in a tu-
ple may appear many times. By representing them once, and providing a pointer to
the remaining part, and doing the same recursively for all columns, we arrive at a
structure called trie (Fig. 2). In the trie, edges going out from root are labeled with
all the hash keys from the 2rst column. They point to vertices with outgoing edges
representing tuples that have the same two words at the beginning, and so on. By
keeping only one copy of hash keys from the 2rst few columns, we hope to econo-
mize the storage space. However, we also need additional memory for pointers. A
vertex is represented as a vector of edges, and each edge consists of two items:
the label (hash key), and a pointer. The pointer points to the 2rst son of the ver-
tex. The number of sons for the current vertex can be calculated as a diEerence
between the pointer for the current vertex, and the pointer for the next one. The
tree representation works best when the table is dense, and when it has very few
columns. We construct the trie only for the columns representing words; we keep the
numerical columns intact (obviously, because it is “output”). Perfect hash automata

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


50 J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56

0 2 4 1

0 15 4 3

20 7 50 1

20 7 53 2

20 15 4 2

0

20

2

15

4 1

4 3

7

15

50

53

1

2

4 2

Fig. 2. Trie (right) representing a table (left). The rightmost labels represent numerical tuples. Numbers
0 and 20 from the 2rst column, and 7 from the second column, are represented only once.

provide the mapping between words and hash keys in the same manner as in the table
representation.
In order to minimize the size of the trie, we should keep the size of the pointers as

small as possible. We use several techniques to accomplish that task. Each level of the
trie corresponds to a column of a table. It is kept separately from other columns. Each
column has a separate address. Pointers in the trie point only to the next column; they
represent an index in the next column (an ordinal number of the item in the column
they point to) and not an index in all nodes of the trie (a much bigger number).
Because at all levels except for the last one, all vertices have at least one son, it is
possible to store a given pointer as a diEerence between the index of the item it points
to and the index of the current (pointing) item. That diEerence is always non-negative.
For example, if the index of the current vertex in the current column is 127341, and the
index of the following vertex in the next column is 129564, the value of the pointer is
only 2223. The size of the pointer is the smallest number of bytes needed to represent
the diEerence between the number of items in the next column and the number of
items in the current one. The last column has no pointers, as its indexes are the same
as indexes in the numerical part of the tuple.
To 2nd T (w1 : : : wi), we compute the value N (w1), and search for it in the 2rst col-

umn. If the value is not present, T (w1 : : : wi) is not de2ned. If the search is successful,
we calculate N (w2), and search for it in the part of the second column pointed to by
the pointer found by N (w1), and limited by the pointer at the next hash key value in
the 2rst column. The process continues until we reach the hash key of the last word
(or fail). The index of the hash key for the last word is also the index of the numerical
part of the tuple. We use binary search to 2nd appropriate keys.
Just as in the table representation, there is a special case for tuple dictionaries T i; j

where i=1. Because the words are unique, their hash keys are unique numbers form
0 · · · |W1| − 1, and there is no need to store the hash key of the words in the 2rst
column. As the 2rst column is the last one, there are also no pointers. The hash key
is an index to the numerical part of tuples.
In most situations, we do not need to represent hash keys in the 2rst column ex-

plicitly. We use the hash keys as indexes. If the same dictionary is used for the 2rst
column and also some other columns, not all possible hash key values may actually

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56 51

731

732

733

1381

1384

1384

1381

1382

1383

1384

633

634

634

2014

2015

2016

2017

I column

II column

III column

Fig. 3. Pointers in the trie representation. Hash key values omitted for clarity, although they are not present
only in the 2rst column. The hash key for the 2rst word is an index in the 2rst column. For 731, there are
3 sons, located in the second column at 1381–1383. The pointer at location 1381 points to 2 sons in the
second column located at 2014= 1381+633. The pointer at location 1382 points to 2016= 1382+634, and
at location 1383 points to 2017= 1383 + 634. There is no pointer for hash key 732 in the 2rst column.

occur in the 2rst column. In that case, we need to represent a null pointer. It cannot
be a special value, because we calculate the number of sons of a given vertex as a
diEerence between pointers for the current and the successive vertex. Therefore, the
null pointer is not a constant value. It points to the next item after the last son of
the previous vertex. We cannot use diEerence pointers in the 2rst column, when null
pointers are present. An example of the use of pointers in the trie representation is
given in Fig. 3.

6. Representation of real numbers

Binary representation of real numbers is not exact. There are standards for it (like
IEEE-754), but they are not always followed, and diEerent computer platforms rep-
resent real numbers in a diEerent way, with various precision. Porting numbers from
one computer to another is usually coupled with loss of precision. Precision of a rep-
resentation can be increased by using more bytes. However, our goal is a compact
representation. There are proposals (e.g. [6]) for variable length representations that
partially deal with this problem.
In order to set these problems aside, we assume that real numbers are presented in a

textual form in our input (so the loss of precision has already occurred—the precision of
our representation cannot be greater than that of the input data). We can calculate how
precisely the numbers in the input data are represented based on the number of digits
in the mantissa. We assume that only the digits present in the textual representation of
a number are signi2cant. The real number r is decomposed into a normalized mantissa
m and an exponent t, such that r=m · 2t , |m|¡=0:5 or m=0:0. Let m̂= a0:a1 : : : an
be a representation of a mantissa m such that m̂=

∑n
i=0 ai2

−i. The precision �—the
biggest number such that |m̂− m|¡�—is 2−n−1. We need at least �n=8	+ 1 bytes to

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


52 J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56

represent the mantissa with precision �. The mantissa is represented in 1’s complement
code (for negative numbers, it is a bit-by-bit negation of the positive counterpart). This
code was chosen for simplicity—other codes could also be used. The number of bytes
for the exponent is also calculated, but in all practical applications it is one.

7. Experimental results

We have performed a number of experiments. The results are summarized in Tables 1
and 2. Table 1 lists the various test sets that we have created to compare the size of
various techniques. For instance, the (a.) test set contains the trigram counts of a
corpus of 20,000 (Dutch) sentences. (e.) test set consists of the data for a simple
part-of-speech tagger (described in [11]), trained on a corpus of 232,000 sentences. Its
knowledge sources are a table of bigrams of tags (containing 124,209 entries) and a
table of word/tag pairs (containing 209,047 entries).
Sets (f.) and (g.) are similar to the (a.) and (b.) test sets, but instead of counts each

tuple is mapped to a probability.
In Table 2, we list the sizes required by the various methods. The 2nal two columns

in this table give the sizes for the two new methods presented in the preceding sections.
We have compared these results with a few methods that are used frequently in practice.
The 2rst column lists the memory size required by a straightforward SICStus Prolog

implementation (as a long list of facts). The sizes reported are the sizes of the compiled
.po object 2les. The amount of memory used by loading these object 2les is at least
as big as the size reported. In the Prolog implementation, the tuples are hashed on the
value of the 2rst element of the tuple; linear search is then used to 2nd the relevant
tuple from the list of tuples which have the same 2rst element. This method therefore
does not provide linear time access.
Another straightforward implementation is provided by a standard implementation

of hashes in C++. In the C++ implementation, we used the hash-map datastructure
provided by the gnu implementation of the C++ standard template library (this was the
original implementation of the knowledge sources in the bigram POS-tagger, referred
to in the table), it is the implementation most commonly used in practice. To construct
the hash keys, each of the strings of a given tuple are concatenated using a unique
separator character. The size reported for this method are estimated from the increase
of processing job size. Both the Prolog and C++ results are obtained on a 64-bit
architecture; for 32-bit machines both methods require less memory (but at least half
of the reported 2gures).
The fsa concat method, indicates a method where the tuples of strings are concate-

nated into a single string, which we then represent by means of a perfect hash 2nite
automaton. It is expected that no great space savings are achieved in this case for
tuple dictionaries of larger arity, because the 2nite automaton representation is able
only to compress pre2xes and su>xes of words; if ‘words’ get very long (as you get
by concatenating multiple words) then the automaton representation is not suitable.
Because all words in n-gram tests came from the same dictionary, we needed only

one automaton instead of 3 for trigrams and 4 for fourgrams. The automaton sizes

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56 53

Table 1
Characterization of test sets

Text size No. of Cols No. of
cols (in) (out) elements

(a.) 20K sents trigram counts 5986 3 int 286614
(b.) 40K sents trigram counts 11,614 3 int 552462
(c.) 20K sents fourgram counts 8726 4 int 325944
(d.) 40K sents fourgram counts 17,291 4 int 644886
(e.) POS-tagger bigram 11,892 2 int 350437
(f.) 20K sents trigram prob 7426 3 real 286614
(g.) 40K sents trigram prob 14,822 3 real 552462

The text sizes are given in Kbytes.

Table 2
Comparison of various representations (sizes in Kbytes)

Test set Hash 2rst el Hash concat fsa concat Table Tree
Prolog C++

(a.) 31,701 27,000 6489 2590 2350
(b.) 60,378 52,000 11,094 4852 4268
(c.) 43,614 33,000 11,702 5819 3941
(d.) 85,467 64,000 20,732 6882 7400
(e.) NA 37,000 4011 4194 3200
(f.) 34,878 27,000 6093 NA 4643
(g.) 67,134 52,000 10,541 NA 8688

for trigrams accounted for 11.84% (20,000 sentences) and 9.33% (40,000 sentences)
of the whole new representation, for fourgrams −8:59% and 6.53% respectively. The
automata for the same input data size were almost identical.
As can be concluded from the results in Table 2, the new representation is in all

cases the most compact one, and generally uses less than half of the space required
by the textual format; if the tuples map to real numbers then the representation is not
as compact. Hashes, which are mostly used in practice for this purpose, consistently
require about ten times as much space.

8. Variations and future work

We have investigated additional methods to compress and speed-up the representation
and use of tuple dictionaries; some other variations are mentioned here as pointers to
future work.
For dense tables, we may perceive the trie as a 2nite automaton. The vertices are

states, and the edges—transitions. We can reduce the number of states and transitions in
the automaton by minimizing it. In that process, isomorphic subtrees of the automaton
for the word columns are replaced with single copies. This means that additional sharing

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


54 J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56

0 2 4 1

0 15 4 3

20 7 50 1

20 7 53 2

20 15 4 2

0::0

20::2

2::0

15::1 4::0
15::1

7::0

50::0

53::1

Fig. 4. Perfect hash automaton (right) representing a table (left). Only word columns are represented in
the automaton. Numerical columns from the table are left intact. They are indexed by hash keys (sums of
numbers after “::” on transitions). The 2rst row has index 0.

of space takes place. However, we need to determine which paths in the automaton
lead to which sequences of numbers in the numerical columns. This is done, again, by
means of perfect hashing. This implies that each transition in the automaton not only
contains a label (hash key) and a pointer to the next state, but also a number which is
required to construct the hash key. Although we share more transitions, we need space
for storing those additional numbers (Fig. 4).
We use a sparse matrix representation to store the resulting minimal automaton.

The look-up time in the table for the basic model described in the previous section is
determined by binary search. Therefore, the time to look-up a tuple is proportional to
the binary logarithm of the number of tuples. It may be possible to improve on the
access times by using interpolated search instead of binary search. In an automaton,
it is possible to make the look-up time independent from the number of tuples. This
is done by using the sparse matrix representation [14] applied to 2nite-state automata
[12]. A state is represented as a set of transitions in a big vector of transitions for the
whole automaton. We have a separate vector for every column. This allows us to adjust
the space taken by pointers and numbering information. The transitions do not have to
occupy adjacent space; they are indexed with their labels, i.e. the label is the transition
number. As there are gaps between labels, there are also gaps in the representation of
a single state. They can be 2lled with transitions belonging to other states, provided
that those states do not begin at the same point in the transition vector. However, it is
not always possible to 2ll all the gaps, so some space is wasted (Fig. 5).
Results on the representation of tuple dictionaries using minimal automata for word

tuples and sparse matrix representation are discouraging. If we take the word tuples,
and create an automaton with each row converted to a string of transitions labeled with
hash keys from successive columns, and then minimize that automaton, and compare
the number of transitions, we get from 27 to 44% reduction. However, the transition
holds two additional items, usually of the same size as the label, which means that it is
3 times as big as a simple label. In the trie representation, we do not need numbering
information, so the transition is twice as big as the label, but the automaton has even
more transitions. Also, the sparse matrix representation introduces additional loss of
space. In our experiments, 32 to 59% of space in the transition vector is not 2lled.
This loss is due to the fact that the labels on outgoing transitions of a state can be

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56 55

A

Ba

C
d

D
a

E

c

b

F

d

0 a D a D

1 a B a B

2 c E c E

3 b E b E

4 d C d C

5 d F d F

Fig. 5. Sparse table representation (right) of a part of an automaton (left). Node A has number 1, B–0, C–3.
The 2rst column is the 2nal representation, column 2–state A, column 3–state B, column 4–state C.

any subset of numbers from 0 to over 50,000. This is in sharp contrast with natural
language dictionaries, for instance, where the size of the alphabet is much smaller.
We also tried to divide longer (i.e. more than 1 byte long) labels into a sequence of
1 byte long labels. While that led to better use of space and more transition sharing, it
also introduced new transitions, and the change in size was not signi2cant. The sparse
matrix representation was in any case up to 3.6 times bigger than the basic one (table
of hash keys), with only minor improvement in speed (up to 5%).
It is possible to pack the data structures we use (both the table and the tree, but not

perfect hash automata) on the level of bits. Both hash keys and pointers in a trie can
be packed on bit level. It requires only a few additional bytes of control information
per 2le, but a few bytes less per tuple (depending on data). However, it would also
slow down processing.
Further reduction of the size of language models can be obtained through a combi-

nation of quantizing language model probabilities and back-oE weights and the pruning
of parameters that are determined to be unnecessary after quantization [15]. That tech-
nique can be used independently of our methods.
We thought of another solution, which we did not implement. We could represent a

tuple dictionary T i; j as an i-dimensional array A[1; : : : ; i]. As before, there are perfect
hashing automata for each of the dictionaries W1 · · ·Wn. For a given query w1 · · ·wn,
the value [N (w1); : : : ; N (wn)] is then used as an index into the array A. Because the
array is typically very sparse, it should be stored using a sparse matrix representation.
It should be noted that this approach would give very fast access, but the space re-
quired to represent A is at least as big (depending on the success of the sparse matrix
representation) as the size of the representation in form of a table.

Acknowledgements

This research was carried out within the framework of the PIONIER Project Algo-
rithms for Linguistic Processing, funded by NWO (Dutch Organization for Scienti2c
Research) and the University of Groningen. We express our gratitude to anonymous
referees who helped us with many useful comments and remarks.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


56 J. Daciuk, G. van Noord / Theoretical Computer Science 313 (2004) 45–56

References

[1] G. Bouma, G. van Noord, R. Malouf, Wide coverage computational analysis of Dutch, in: W.
Daelemans, K. Sima’an, J. Veenstra, J. Zavrel (Eds.), Computational Linguistics in the Netherlands,
CLIN 2000, Rodopi, Amsterdam, 2001, pp. 45–59.

[2] M. Collins, Head-driven statistical models for natural language parsing, Ph.D. Thesis, University of
Pennsylvania, 1999.

[3] J. Daciuk, Finite-state tools for natural language processing, in: COLING 2000 Workshop on Using
Tools and Architectures to Build NLP Systems, Luxembourg, 2000, pp. 34–37.

[4] J. Daciuk, Experiments with automata compression, in: M. Daley, M.G. Eramian, S. Yu (Eds.),
Conference on Implementation and Application of Automata CIAA’2000, University of Western Ontario,
London, Ontario, Canada, 2000, pp. 113–119.

[5] G. Foster, A maximum entropy/minimum divergence translation model, in: K. Vijay-Shanker, C.-N.
Huang (Eds.), Proceedings of the 38th Meeting of the Association for Computational Linguistics, Hong
Kong, 2000, pp. 37–44.

[6] H. Hozumi, Data length independent real number representation based on double exponential cut,
J. Inform. Process. 10 (2001).

[7] F. Jelinek, Statistical Methods for Speech Recognition, MIT Press, Cambridge, MA, 1998.
[8] C. Lucchiesi, T. Kowaltowski, Applications of 2nite automata representing large vocabularies, Software

Practice and Experience 23 (1) (1993) 15–30.
[9] R. Malouf, The order of prenominal adjectives in natural language generation, in: K. Vijay-Shanker,

C.-N. Huang (Eds.), Proceedings of the 38th Meeting of the Association for Computational Linguistics,
Hong Kong, 2000, pp. 85–92.

[10] P. Pantel, D. Lin, An unsupervised approach to prepositional phrase attachment using contextually
similar words, in: K. Vijay-Shanker, C.-N. Huang (Eds.), Proceedings of the 38th Meeting of the
Association for Computational Linguistics, Hong Kong, 2000, pp. 101–108.

[11] R. Prins, G. van Noord, Unsupervised pos-tagging improves parsing accuracy and parsing e>ciency, in:
Proceedings of the Seventh International Workshop on Parsing Technologies (IWPT), Beijing, China,
2001, pp. 154–165.

[12] D. Revuz, Dictionnaires et lexiques: m@ethodes et algorithmes, Ph.D. Thesis, Institut Blaise Pascal, Paris,
France, 1ITP 91.44, 1991.

[13] E. Roche, Finite-state tools for language processing, in: ACL’95, Association for Computational
Linguistics, 1995, tutorial.

[14] R.E. Tarjan, A.C.-C. Yao, Storing a sparse table, Commun. ACM 22 (11) (1979) 606–611.
[15] E. Whittaker, B. Raj, Quantization-based language model compression, Technical Report TR-2001-41,

Mitsubishi Electric Research Laboratories, December 2001.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

	Finite automata for compact representationof tuple dictionaries
	Introduction
	Practical motivation
	Formal preliminaries
	Compact representation of tuple dictionaries in table form
	Tree representation
	Representation of real numbers
	Experimental results
	Variations and future work
	Acknowledgements
	References


