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FINITE DIFFERENCE APPROXIMATIONS FOR NONLINEAR
FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

BY ANNA BARANOWSKA AND ZDZISEAW KAMONT

Abstract. Classical solutions of nonlinear partial differential equations are
approximated in the paper by solutions of quasilinear systems of difference
equations. Sufficient conditions for the convergence of the method are
given. The proof of the stability of the difference problem is based on a
comparison method.

This new approach to the numerical solving of nonlinear equations
is generated by a linearization method for initial problems. Numerical
examples are given.

1. Difference systems corresponding to nonlinear equations. For
any metric spaces X and Y we denote by C(X,Y) the class of all contin-
uous functions from X into Y. We will use vectorial inequalities with the
understanding that the same inequalities hold between their corresponding
components. Let E be the Haar pyramid

E={(tz)=(t,x1,...,zn) € Rt €[0,a], b+ Mt <z <b— Mt}

where a > 0, M = (My,...,M,) € R}, Ry =[0,400), b = (b1,...,b,) € R"
and b > Ma. Write 2 = F x R x R"™ and suppose that f: 2 — R is a given

function of the variables (¢, z,p,q), ¢ = (¢1,- - -, qn). We consider the nonlinear
first order partial differential equation

(1) Oz(t,x) = f(t,z,2(t,x),0x2(t, x))

with the initial condition

(2) 2(0,z) = ¢(z), x € [-b,b],

where : [=b,b] — R is a given function and 0,z = (04,2, ...,05,2). We are

interested in the construction of a method for the approximation of solutions
to problem , with solutions of associated difference equations and in the
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estimation of the difference between these solutions. The classical difference
methods for nonlinear partial differential equations consist in replacing partial
derivatives with difference expressions. Then, under suitable assumptions on
given functions and on the mesh, solutions of difference equations approximate
solutions of the original problem.

Let N and Z be the sets of natural numbers and integers, respectively. For
r,y € R", x = (x1,...,2n), y = (Y1,---,Yn), We write

n
rToy = (xlyh s ,.’Enyn) € Rnu HxH - Z ‘xl,
i=1
We define a mesh on the set E in the following way. Suppose that (hg,h’)

where h' = (hq,...,hy) stand for steps of the mesh. For h = (hg,h’) and
(i,m) € Z'*" where m = (myq,...,my), we define nodal points as follows:

t@ =ihg, 2™ =mon!, (™ = (ajgml), .. ,mslm")).

Denote by A the set of all h = (hg, k') such that there is N = (Ny,...,N,,) €
N" with the property N ¢ h/ = b. We assume that A # () and that there is a
sequence { h9) Y, hU) € A, such that lim; o h() = 0. There is Ny € N such
that Nohg < a < (N() + 1)h0. Let

R = {(tD 2™y (i,m) € 2}
and
En=EnR™™, E,={@t92M)cB,: (9 +he,2™) € B},
Eop={z"™: - N<m<N}, I={t¥: 0<i<Ny}.
For a function z: E; — R and for a point (t®), (™) € Ej;, we write 207 =
2(t®, z(M), For 1 < j < n we put ej =(0,...,0,1,0,...,0) € R", 1 standing

on the j-th place. We define difference operators dg, 6 = (d1,...,d,) in the
following way. For z: Ej, — R we put

) 1 ' '
(i,m) = — (i+1,m) _ _(i,;m)
) o2 o (2 20
) 1 ' '
(4) 5.Z(z,m) _ Z(Z,m—i—ej) _ Z(z,m) C1<j<nr,
’ h; ( )
1

(5) (5jz(i7m) = — (z(i7m) — z(i’m_eﬂ')) , k+1<j5<mn,

h;
where 0 < k < n is fixed. If K = 0 then ¢ is given by , for k = n, ¢ is defined
by . Write

§20m) — (512(””), e ,5nz(i’m) ).
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Suppose that problem (]), (2)) is solved numerically by the difference method
(6) (5Oz(i,m) — f(t(l)’ .’L'(m), z(i,Tﬂ)’ 52(2,171) )’

(7) ZO0m) = Wém), 2™ € Egp,

where ¢p: Egp — R is a given function. If we assume that h' < hoM
then the set FEj; has the following property: if (t(i),x(m)) e E;L then
(@ zmte)) (#0) g(m=ei)y ¢ E), for 1 < j < n and consequently, there exists
exactly one solution zp: Ej, — R of problem @, . Sufficient conditions for
the convergence of the method @, to a solution of , are given in the
following theorem.

THEOREM 1.1. Suppose that

1) f € C(Y R) and the derivatives (Oq, f,...,0q,f) = Ogf exist on Q and
9qf € C(Q, R"),
2) there is A € Ry such that
(8) | f(t,@,p,q) — f(t,2,p,9) | < Alp—p| on Q,
3) he A, W < hyM and

n

1
L=ho) |05, f(P)] =0
j=1"

where P = (t,z,p,q) and
(9) 0y f(P) >0 for1<j<k, 0yf(P)<0fork+1<j<mn,

4) vi E — R is a solution of , @, v is of class C' and there is a
function ag: A — Ry such that

| (™) — gpglm) | < ap(h) on Eyp and }llin%) ap(h) =0,

5) zn: Ep — R is a solution of (@, (@
Under these assumptions there is a function a: A — Ry such that

(10) | o(m) — z,(f’m) | < «a(h) on E}, and ’llin% a(h) =0.

The above theorem is a consequence of results presented in [I]-[3], see also
[4]. Note that the Lipschitz condition may be replaced in the theorem by
a nonlinear estimate of the Perron type.

The following condition is important in these considerations. Write

(11) sign Oy f = (signdg, f,...,signdy, f).
We have assumed in Theorem that function is constant on 2.
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REMARK 1.2. Suppose that all the assumptions of Theorem[I.]] are satisfied
and

1) the solution v: E — R of , @ is of class C? and & € R, is such a

constant that
|0z,v(t, )| < ¢, [Ogv(t,z)| < ¢, |0y

where (t,x) € E,
2) there is Ag € Ry such that ||0,f(t,z,p,q)|| < Ap on Q.
Then we have the following error estimate for the method @, @

(12) ™) — 2™ < q(h) on By
where

a(h) = ag(h)e + hgg(l + Ag M) 0(A), M, =max{M;: 1<i<n},

v(t,z)] <¢1<j<n,

ity

and
eAa -1 ‘
0(A) = " if A>0, 0(A)=a if A=0.

The above result can be proved by the methods used in [1]-[2].
Consider now another difference method for problem (1)), (2)). Let the
operators dg, 0 = (d1,...,0,) be defined by

8oz = hi (z(i“am) _ Dz(ivm)) 7

0
(13) o
(im) _ = (i,m+e; ) (i,m—e;)
Dz o Z <z Ttz ’ ) )
Jj=1
) 1 . ;
Lm) (i,m+e;) _ (i,m—e;) < i<

(14) djz o, (z i —z J ), 1<j<mn,

where (t(i),a:(m)) € E; and z: Ej — R. Consider difference problem @,
with dg and § given by , .
THEOREM 1.3. Suppose that conditions 1), 2) of Theorem are satisfied
and
1) he A, b <hoM and for P = (t,z,p,q) € Q we have
1 h .
" h |Gf(P)] 20 1<i<n,
2) v: E — R is a solution of , (@, v is of class C' and there is a
function ag: A — Ry such that |o™) — gogm)] < ag(h) on Eypand
limh_>0 Ozo(h) = 0,

3) zn: En — R is a solution of @, (@ with &g, 0 given by , .
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Then there is a function a: A — R such that condition (@) is satisfied.
This theorem can be proved with use of the methods presented in [1], [4].

REMARK 1.4. Suppose that all the assumtions of Theoren are satisfied
and the solution v: E — of , (@) is of class C%. Then we have the following
error estimate for the method: there are cg, ¢c1 € Ry such that

o) — 5| < coao(h) + erho on By

Now we formulate a new class of difference problems corresponding to (|1,
. We transform the nonlinear differential equation into a quasilinear system
of difference equations. We will use a linearization method for equation
with respect to the last variable. We omit the condition that function is
constant on {2 and we consider difference operators of the form f. We
will need the following assumption.

Assumption Hy[f]. Suppose that f € C(Q2, R) and the derivatives

azf: (8x1f,'-'7axnf)v apfa aqf: (aq1f7"-aaqnf)

exist on Q and 0, f, 0,f € C(Q, R"), 0pf € C(, R).
Denote by (z,u), u = (u1, ..., u,) the unknown functions of the variables
(t®, (M), Write u(t™) = (ugz’m), . ,u,(f’m)) and

Plm, 4] = (t@) g im)  (iam) ) .

We consider the system of difference equations

(15) 8o2™ = F(PO™[2 u]) + Zaqu(P(i,m)[zju]) <5jz(i,m) B u§i,m)) ,

Jj=1

Sout™™ = 8y, f(PU™[z,u]) + Oy f (PO 2, 0] ) uf>™

T s

16 n ) .
(16) +Zaqu(P(l’m)[z,u])5ju£”m), r=1,...,n,
j=1

with the initial condition

(17) L(0m) _ sﬁém), wOm) — ¢§Lm), ~N<m<N,
where ¢p: Egp — Rand ¥, = (Yp1, ..., Upn): Eop — R™ are given functions.
The operators dp and 6 = (d1,...,d,) are defined now in the following way. If
the functions z and u = (uy, . .., u,) are calculated on the set E,N( [0,t]xR™)
then we put

A 1 , A
(18) o20m) = — (z(zﬂ’m) — z(”m)) .

ho
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The difference operators with respect to the spatial variables are given in the
following way:

(19) 5jz(i’m) S (z(i’"”ej) - z(i’m)) if 9y, f( PO™[2 u]) >0,
hj J
and
i,m 1 i,m i,m—e; : i,m
(20) 5jz(’ ) = h—j (z( ) — 2l J)) if 8qu(P( )z,u]) <0,
where j = 1,...,n. The difference expressions

Soult™, ((51u,(f’m), oy Spule™) ), 1<r<mn,

r

are defined in the same way.

Note that if i’ < hoM then there exists exactly one solution (zj,up),
zn: Ep — R, up = (up1,...,upy) : B — R™, of problem f.

It is essential in our considerations that we approximate solutions of nonlin-
ear problem , with solutions of the quasilinear difference system. More
precisely: we will use f for approximation of the solution v: £ — R of
problem , (2) and the derivative O,v: E — R™.

System ((15]), is obtained in the following way. We first introduce
an additional unknown function u = 9,2, u = (u1,...,uy,) in . Then we
consider the following linearization of with respect to w:

(21) Oz(t,x) = f(U)+ > 0 f(U) (0n,2(t, ) — uy(t,z) ),
j=1

where U = (t,z, 2(t, z), u(t, z)). By differentiating equation (/1)) with respect to
z,, 1 <r <n, we get the differential system in the unknown function w :

Oty (t, ) = Op, (U ) + Opf (U ) ur(t, ) + Y 0, f(U ) Oy ur(t, ),

(22) j=1

1<r<n.

Assume that 0,0 = (02, ¢, ..., 0, ) exists on [—b, b]. It is natural to consider
the following initial condition for system , :

(23) 2(0,z) = p(x), u(0,x) = 0p(x), =€ [-b,b].

Difference problem f is a discretization of system , with initial
condition . In our approach, the discretization method for system ,
depends on the point of the mesh and on the previous values of z and wu.
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2. Convergence of difference methods. We will denote by F(X,Y)
the class of all functions defined on X and taking values in Y, X and Y being
arbitrary sets. We will need the following assumption throughout the paper.

Assumption H[f]. Suppose that Assumption Hy[f] is satisfied and

1) there is A € R, such that

10 f(P) I [pf (P, [[94f(P) ]| <A on Q

where P = (t,z,p,q),
2) there is B € R, such that the terms

| Ocf(t,x,p.q) = Ouf(t, 2, 0,0) |, |Opf(t,x,p,q) — Opf(t,x, P, Q) |,
H aqf(t,a:,p, Q) - aqf(t,l',ﬁ, (7) ||
are bounded from above by B [|p — p| + ||lg — ql| ] -

THEOREM 2.1. Suppose that Assumption H[f] is satisfied and
1) he A, 1 < hoM and for P = (t,z,p,q) € Q we have

n

(24 1Yo [0, 5(P)] 20,
j=1""

2) the function @: [—b,b] — R is of class C* and v: E — R is the solution
of , (@) and v is of class C? on E,
3) (zn,un) = (Zn,Unt,---sUnn): En — RY™ is the solution of problem
7(@) and there is ag: A — R such that
[0 = o+ 10a0™ = 0™ || < an(h), —N <m <N,
and limy,_,g ag(h) = 0.
Then there is a function a: A — R4 such that

[l — 20| 4 | 9,00 — ™™ || < a(h) on By
and limp,_ga(h) = 0.

PrOOF. Write w = 0yv and w = (wy,...,w,). Then the functions
(v,w): E — R are the solution of problem f. Let the functions
Cho: B, - R, Tp:Ep —R", Tp=(Tp1,---,Thn)
Ao Ej, — R, Ap: B — R", A= (Ap1,- s Ann)
be defined by

Fi(fgn) — 50U(i,m) _ 6tv(i,m)
+Zaq]f(P(» )[U7w]) 8.1}j/l)(’ )_5‘7/1)(7 ) ,
7j=1
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(26)

and

Write

I’g’;n) =y w(l m) _ atw(i’m)

+Zaqu PO™ Iy, w]) 8xjw£i’m) —5jw7(,i’m) , r=1,...,n,

AP — f(PEM o, w]) — F(PO™ [z, up])

_ Z 0, [ ( plim) [v, w]) w](z',m) 4 Z 0y, f plim) 2, un] ) ug:]m)
Jj=1 j=1

+ Z [8qu( P v, w]) — 9g; f( PO™ [z, uy,] )} §00m),
j=1

A = D0, F(PE™ o, 0]) + B f(PE™ o, 0] ) ™)
— 00, F(PY™ [z, up] ) = Bp f(PO™ [z, up] Y™

37 [0 FPC o)) = 0y, f(PE [, un)) | djuofi™),
j=1
r=1,...,n.

fi(fm) = o) - Zp 5

M =) 0, A = ().

It follows from , and from , that &, and A, satisfy the differ-

ence equations

(29)

f(z+1m 5(““ +h028(hf [Zh,uh])5f(lm

j=1
+ho [THEY + A |

)\;(Ztlm) = )\(Zm +hozaqu(P(i’m)[Zhauh])(51')‘;5.?)
j=1
+h0|: (Zm)‘FASZr)}, r=1...,n
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Let wp.0, wn: In — R be the functions defined by

(31) wiy = max {[¢"™] : (¢D,2(™) € By},
(32) o) = max { AV 2 (1D, 2M) € By},

where 0 < ¢ < Ny. We will write a difference inequality for the function
wh.0 + wp. Put

Jiliym] ={j € {l,....,n}: Oy, fF( P [z, up]) > 0},

J_[i,m]={1,...,n}\ JL[i,m].
Consider the operator W, : F(Ej, R) — F(E}, R) defined by

. . "1 ,
Walg)6m) = €0 | 1= g S o |0, £ (P 2, )

j=1"

1 ; ; ,
+ho Y, 3 Og, f(PO™ [en,up]) €0

g€ fiym]

1 . —_—
— ho Z - 3qu(p(um)[zh,uh])§(um 5)

jeJ_[i,m]

J
where ¢ € F(E),, R) and (t®, (™) ¢ Ej} . Tt follows from , and ,
that

(33) 7™ = Wilgn) O™ + ho [A;(f,gn) + Fﬁf_g”’} , (9 My e By
For the function A\j, = (An.1,..., Anpn) We write
Wh[/\h](i’m) = <Wh[)\h.1](i’m), ey Wh [)\h‘n](i’m) ) .

According to and the definition of the difference operators (41, ...,d,) we
have

(34) A g ) 6m) kg [Aﬁj’”) + r§jvm>] L (tD, 2 e B

We conclude from Assumption H[f] and from condition 2) of the theorem that
there are functions vy, v: A — R, and a constant ¢ € Ry such that

(35) T < vo(k), [ITE™ ) < y(R), (¢D,2™) € By,

and

(36) | Oz;v(t, ) || <€ |0z;0,0(t, @) <E (t,w) e E, jr=1,...,n,
where

li =0, li =0.
lim yo(h) =0, lim 7(h) =0


http://mostwiedzy.pl

A\ MOST

24

According to Assumption H[f] and (31)), (32) we have

(37) ‘ A ‘ < (A+2¢B) [w,(lz) + w(l)} + Aw(z)

(38) IAY™ || < B(1 + 2¢) [w,% + w}(f)} + Aw?,

where (t0), (™) € E, . We conclude from (24)) and from , that
(39) Wileal ™) < wilhy, (10,20) € By,

and

W™ < [ 1= hoy (aqu PO e up))| | 1A

]71

1 ; i,m+e;
(40) tho D o O (PO ) A

jedylim] Y

“ho Y0 o A FCPO ) AT < o,
jed_lim]
where (t®, 2(M) € B} Tt follows from (33) and from Assumption H[f] that
A1) Wl < WO 1+ ho(A + 26B)] + 2ho(A + EB) wl” + hoyo(h),
where 0 < ¢ < Ny — 1. In a similar way we obtain the difference inequality
42) Wi < W 14+ hoB(1 + 26) + hoA] + ho B(1 + 2a)w,<j2) + hw(h)

where 0 < i < Ny —1. Write C = B+ 3A+4¢B. It follows from (41] . ) that
the difference inequality

wils !+l < (wffh + wf) (14 hoC) + ho[o(R) + (R,
1=0,1,...,Ng— 1,
is satisfied. This gives

(43) Wi + 0l <a(h), i=0,1,..., Ny,
with
Ca eCa -1
(44) a(h) = ag(We™ + [o(h) + (W) —— if >0,
(45) a(h) = ag(h) + [o(h) +7(W)]a if C=0.
This completes the proof of the theorem. O

Now we formulate a result on the error estimate for method 7.
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LEMMA 2.2. Suppose that all the assumptions of Theorem [2.1] are satisfied
and

1) the solution v: E — R of , (@ is of class C® on E,
2) the constant ¢ € Ry 1is such that

02,v(t, )|, [0z, v(t, )|, |00 (t, @), |Opter; v(E, )|, | O, 0 (E, )| <6,
where (t,x) € E and i,j,7r=1,...,n.
Then
(46) o™ — ™) |80 — ™| < G(h)

on Ej, where

aC
- e —1
ag(h)e* + F(ho)

a(h) = ag(h) + a¥(ho) if C=0,

(o))

>
S~—

Il

if C' >0,

and
C=B+3A+4Bé¢, A(hy) = hoc[l + A M,].

PRrROOF. It follows from assumption 2) that estimates hold with

1.
Yo(h) =~(h) = 5 7(ho)-
Then we obtain the lemma from inequalities . ]

REMARK 2.3. If we apply method (@, (@ to solve problem , (@) numer-
ically, then we approximate derivatives with respect to spatial variables with
difference expressions which are calculated with use of the previous values of
the approximate solution. If we use method @f then we approrimate
the spatial derivatives of z with using adequate difference equations which are
generated by the original problem. Therefore numerical results obtained by

— are better than those obtained by method (@, @

REMARK 2.4. Results on the error estimates for methods @, (@ and f
can be characterized as follows. In @ and @) we have estimated the

terms
\v(i"n) — z}(f’m)\ and ]v(i’m) — z}(fm)\ + H@zv(i’m) — ug’m)H,

respectively. The functions a and & in (@ and (@) are similar. Therefore,
numerical results obtained by (@f for initial problem , @ are better
that those obtained by (@, @

We illustrate the above properties of difference methods by a numerical example.
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Now we consider the system of dlfference equatlons . with opera-
tors g and § = (01, ...,0,) defined by , where (t(), x )) € Ej and
z: Ey, — R. The difference expressions

60”7(~i7m)7 (51u£’i,m)’ s 75nu£-i7m) )7 1<r< n,
are defined in the same way.

THEOREM 2.5. Suppose that Assumption H[f] is satisfied and
1) he A, b <hoM and for P = (t,z,p,q) € Q we have

1 ho‘

(47) — =3 |94, I P)|>0, 1<j<n,

2) the function @: [—b,b] — R is of class C* and v: E — R is the solution
of , (@ and v is of class C? on E,
3) (zn,up) = (Zn,Uni,--. unn): E — RY™ is the solution of problem

f with dg and & given by , ,
4) there is ag: A — R4 such that
0 — o™+ 0w — ™| < ao(h), ~N <m <N,
and limy,_o ag(h) = 0.
Then there is a: A — Ry such that
\v(i’m) — z,(j’m)\ +l axv(i’m) — ug’m) | <a(h) on Ep
and limy,_,g a(h) = 0.

PROOF. Write w = 0,v, w = (w1, ..., w,). Then the functions (v,w): £ —
R™ satisfy f. Let the functions

Tho, Tn=(Th1,....Thn)s Ano, An=C(Ap1,....;Ann),

be defined by — with §p and 6 = (d1,...,d, given by , . Write

é.i(lz,m) _ U(i’m) o Z}(Li,m)’

)\,(f’m) — !

A = ()
Suppose that the functions wy g, wp: I — R4 are defined by , and
the operator Wj,: F(Ep, R) — F(E}, R) is given in the following way:
wifeim = L3 [L 10 5 pimpe, ) ] gimeen
n hj 45 ’

2 4
7j=1

1” 1 i,m i,m—e;
+2;[n faqgf(P( [Zhvuh])]f(’ 2
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where &€ € F(Ej, R) and (t®), (™) ¢ Ej} . Tt follows that relations , ,
, are satisfied with the above given W; and we get the difference
inequality

WD 4 D < (0L WD) (1 4 hoC) + ho[yo(h) +(R)], 0<i < No — 1,

with ~g, 7, ¢ satisfying , and C' = B + 3A + 4¢B. Then estimate
is satisfied with « defined by , . This completes the proof. O

It it easy to formulate a result on the error estimate for the method under
the additional assumption that the solution of , is of class C® on E.

In the results on error estimates we need estimates for the derivatives of
the solution v of problem , . One may obtain them by the method of
differential inequalities, see [5], Chapter VII.

3. Numerical examples. Let n =1 and
E={(t,x) € R*: tc0,1], |z|] <2—2t}.

Consider the differential equation

(48) Buz(t, ) = 5 sin(1+ Buz(t,)) + £(t,7)
with the initial condition

(49) 2(0,2) =0, z€[-2,2],

where

1
f(t,x):1+x3—§ sin (14 32%t).

The exact solution of this problem is v(¢, z) = t(1+a3), (t,7) € E. The classical
difference method for , has the form

Si+1m) _ % [z(i,m—‘rl) + Z(i,m—l):| 4 hof(i,m)

(50) h . ,
+ ?0 sin [1 + (z(%mﬂ) _ im=1) )(2hy )_1 ] ,

(51) 20m =0 for 2™ e[-2,2],

where f(:™) = f(t(® (™)) Note that Theorern does not apply to equation
. The convergence of method (50)), follows from Theorem

Now we consider method , (16)) for problem , . Denote by (z,u)
the unknown functions of the variables (t(), (™)) and consider the system of
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difference equations

itlm) _ Gm) % sin (14 ulm) 4 ho flm)

(52 " o

+ - cos (14 (ult™)) [5z(l’m) —utm |
(53) wLm) = g 6m) g pem) 4 % cos( 14 ul™™ ) 5y i)
with the initial condition
(54) Z0m — o, O™ =0, 2™ e[-2 79,
where

FOm) — p® o)) P(t,2) = 322 — 3zt cos (1 4 32°t).

The difference expressions 62(0™) and 6u>™) are defined in the following way.
If cos (1 4 u(®™) > 0 then

5, m) _ L(im+1) _ . (i,m) and Sulim) — wHm+) o (@m)

h1 hl ’

If cos (1 4 u®™) < 0 then
iym) _ z(i,mfl)

iwm) _ . (i,m—1)

2

( (
(i,m) _ u u
I and du I

Denote by z;, and (%, up,) the solutions of problems (50)), and (52)-(54),

respectively. Consider the errors

§2(0m) =

(im) _

L) _(im) _(Em)  SEm) _am) _6m) () L) ¢

We put hg = 0.001, h; = 0.002 and we have the following experimental values
for the errors € and €.

Table of errors, ¢ = v — zy,
t=04 t=0.5 t=0.6 t=0.7

=05 —4.307107% —7.032107* —-1.03910"% —1.4341073
=0 —3.284107° —6.4221075 —1.10910~* —1.760 10*

xr=-05 5.09510~% 7.71010~* 1.08910~% 1.469 1073
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Table of errors, ¢ =v — 7y

x=05 2.500 107°  2.022107° 147710~ 1.101107°
z=0 3.425107% —6.664107% —1.146 10~> —1.809 10°°
xr=-05 95171075 1.17410° 1.35510~%* 1.469 10~*

Note that |E(t,z)| < |e(t, )| for all values of (¢, z).
We also give the following information on the errors of methods , and
f. Write
@ = max { ™. (D) ™) e B},
7D = max { |0 . ¢D 2M) e E,}, 0<i< N,.

In Table E, we give experimental values of the functions n and 7 for hy =
0.001, Ay = 0.002.

Table E
t =0.40 t=0.45 t =0.50 t =0.55 t =0.60 t =0.65 t=0.70

n(t): 1.2810°3 1421073 1521072 1.6010~% 1.7610~3 1.8510~3 1.831073

f(t): 3181074 2.85107% 2.3110~* 1.6510~* 1.35107* 1.4210~* 1.50 10~*

Note that 7j(t) < n(t) for all ¢. Thus we see that the errors of method (50,
are larger than the errors of f. This is due to the fact that the
approximation of the spatial derivatives of z in f is better than the
respective approximation of d,z in , . Methods described in Theorems
and have the potential for applications in the numerical solving of first
order nonlinear differential equations.
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