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Abstract: Invisibility cloaking devices constitute a unique and potentially disruptive technology,
but only if they can work over broad bandwidths for electrically-large objects. So far, the only
known scheme that allows for broadband scattering cancellation from an electrically-large object
is based on an active implementation where electric and magnetic sources are deployed over a
surface surrounding the object, but whose ‘switching on’ and other characteristics need to be
known (determined) a priori, before the incident wave hits the surface. However, until now, the
performance (and potentially surprising) characteristics of these devices have not been thoroughly
analysed computationally, ideally directly in the time domain, owing mainly to numerical accuracy
issues and the computational overhead associated with simulations of electrically-large objects.
Here, on the basis of a finite-difference time-domain (FDTD) method that is combined with a
perfect (for FDTD’s discretized space) implementation of the total-field/scattered-field (TFSF)
interface, we present detailed, time- and frequency-domain analyses of the performance and
characteristics of active cloaking devices. The proposed technique guarantees the isolation
between scattered- and total-field regions at the numerical noise level (around −300 dB), thereby
also allowing for accurate evaluations of the scattering levels from imperfect (non-ideal) active
cloaks. Our results reveal several key features, not pointed out previously, such as the suppression
of scattering at certain frequencies even for imperfect (time-delayed) sources on the surface of
the active cloak, the broadband suppression of back-scattering even for imperfect sources and
insufficiently long predetermination times, but also the sensitivity of the scheme on the accurate
switching on of the active sources and on the predetermination times if broadband scattering
suppression from all angles is required for the electrically-large object.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Electromagnetic cloaking represents an exciting emerging technology, unattainable with ordinary
materials, requiring the use of man-made engineered media, known as metamaterials. In principle,
such a technology, if it could be made broadband and for electrically-large objects (much larger
than the wavelength of the incident wave), is better than well-known ‘stealth’ or camouflage
technologies [1] as it does not just make an object ‘black’ (absence of back-scattering) or
impossible to detect owing, e.g., to induced multiple-angle scattering, but it, effectively, reduces
the scattering cross-section of an object to that of a single point (zero) - thereby making the
object completely undetectable, even interferometrically.

For perfect invisibility, the wave incident on the cloaked object should be everywhere (outside
the cloak) exactly the same as it would have been if the cloaked region had been free space.
In other words, there should not be any scattered field in the area outside the cloaked region.
A linear, non-magnetized, passive cloak whose material parameters do not change with time
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cannot, as it currently appears to be the case, provide perfect invisibility of electrically-large
objects to wideband incident waves [2]. In general, there are two approaches allowing for the
reduction of the scattering cross-section (SCS) of an object, namely (i) using active sources
and the surface equivalence theorem, (ii) applying metamaterial, plasmonic or other judicious
coatings. In the former approach (i), a broadband perfect SCS reduction is possible, but the
characteristics of the incident wave need to be known a priori [3]. In the latter approach (ii),
a shell of metamaterial can achieve cloaking of an electrically-large object for narrowband
(near-monochromatic) electromagnetic waves [2]. For a review of various cloaking techniques,
one may refer to Refs. [4,5]. However, all approaches to electromagnetic cloaking do require
full-wave computational corroborations and elaborations that allow for additional insights and
the quantitative analysis of realistic effects. It is the objective of the present work to present and
deploy such a highly accurate (and specifically suitable for the present problem, as explained
below) formulation of the full-wave finite-difference time-domain (FDTD) method of analysis
[6], aiming at analysing the performance of active (‘predetermined’) invisibility cloaks for
electrically-large objects.

The aforementioned interesting approach-(i) to cloaking (i.e., active sources and the surface
equivalence theorem) has been introduced and studied quasi-analytically in [3]. Incident waves
are measured near the surface of the cloaking volume, and appropriate surface sources excite the
domain with analytically calculated waveforms. For a perfect (ideal) implementation, each source
waveform depends on measurements in all sensing points in present and past times. A distinction
was therefore made between true-cloaking and approximate quasi-cloaking schemes. The former
approach employs surface sources whose values are calculated from the wave measurements
in present and past times in all the sensing points near the cloaking volume. In such a case, a
pulse of the incident wave remains unchanged while propagating through the cloak. The latter
approach uses surface sources whose waveforms are obtained from local measurements only.
Distortions of a transmitted pulse through such a cloak may then be observed. Overall, it can be
concluded that perfect and broadband SCS reduction of electrically-large objects can be achieved
in the limiting case of ‘predetermined’ cloaking, i.e., when the parameters of an incident wave are
known a priori. Owing to the essentially analytical nature of that analysis, precise measurements
of the wave scattering when imperfect cloaking is applied were not reported.

The same approach to the cloaking problem has also been studied in [7]. A predetermined
cloaking allowing for the cancellation of electromagnetic scattering by using an array of sources
was simulated using commercial finite-element-method solvers. Making use of the equivalence
principle, it was demonstrated that by superimposing magnetic and electric surface currents at
the boundary of an object, the scattered field from that object can be cancelled. Subsequently,
these magnetic and electric surface currents were discretized into electric and magnetic dipoles
that were physically implementable by straight and loop wire antennas. The authors presented
numerical results in 2-D and 3-D simulation scenarios for electrically-small objects, of size 0.7 λ
(where λ denotes the wavelength of the incident wave). For a metal cylinder in 3-D, a 20 dB
reduction of the forward scattering was reported in simulations using this method.

In this work, we deploy a full-wave 2-D FDTD method with a highly accurate realization of the
perfect total-field scattered-field (TFSF) interface [8,9] - specifically suited for the time-domain
analysis of active invisibility of electrically-large objects. This particular TFSF implementation
guarantees excellent isolation between the scattered- and total-field regions of the computational
domain, right at the numerical noise level (−300 dB). Hence, and first, it is suitable for checking
whether a considered cloak implementation is indeed perfect. Moreover, and quite crucially,
it allows one to precisely evaluate the scattering levels of imperfect active electromagnetic
cloaks - a subtle issue requiring, ideally, direct time-domain simulations, and which has not been
studied in the past. To our knowledge, the TFSF implementation [8,9] has not been employed
yet for precise (high-accuracy) simulations of the scattering from cloaking devices. In general,
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due to the mismatch between the intended source implementation (analytic continuous-time
solution) and the propagating wave in the descritized FDTD grid, non-physical reflections as
large as 10% (−20 dB) of the incident plane wave can be observed in the scattered-field region
when other implementations of the TFSF interface are deployed [10,11]. In our considered
simulation scenarios, imperfect predetermined cloaks are also taken into consideration, canceling
the scattered field by using arrays of current sources - with our developed FDTD code allowing
one to directly simulate the current sources that are delayed in relation to the scattered field.
Furthermore, it allows us to activate all current sources with a delay, or even simulate their
activation with a given time of predetermination. Overall, our results allow for obtaining useful
insights into the dependence of required scattering levels on active cloak imperfections.

2. Problem formulation

Let us consider an object in 2-D coordinate system which we are going to cloak, refer to Fig. 1(a).
In our case, it is a cylinder made of the perfect electric conductor (PEC) of diameter 500 λ
(where λ = 508.1 nm denotes the wavelength of the incident wave in the centre of the visible
band 430–750 THz). We assume that appropriate electric and magnetic current sources are
placed along the square around the PEC cylinder (i.e., along the cloak surface). The plane wave
impinges on the cloak in the time t1 and the wave then impinges on the PEC cylinder. Then, the
scattered wave is propagated which impinges on the inner cloak surface in the time t2>t1. Based
on the surface equivalence theorem [6,12], one can cancel the scattered field with the use of
current sources given by

Jcloak = −n × Hscat (1)

Mcloak = −Escat × n (2)

where Jcloak and Mcloak denote respectively the density of electric and magnetic currents, Escat
and Hscat denote respectively the intensity of electric and magnetic scattered fields, and n denotes
the unit vector directed outwards which is normal to the cloak surface (i.e., the closed curve in
the 2-D case). However, this cloaking procedure requires the knowledge of the scattered field
(Escat, Hscat) at the cloak surface which might be difficult to determine in sufficiently short time.
One can imagine [3] that the incident field (Einc, Hinc) is known in the bottom-left corner of the
cloak surface, hence, the scattered field can be computed in this point (i.e., locally) based on
scattering characteristics of the volume to be cloaked (e.g., the PEC cylinder in the considered
case). However, information about the incident wave is firstly known only in the point of the
detection of the plane wave by the cloak (i.e., the bottom-left corner of the cloak surface). Hence,
it has to propagate to the current sources along the cloak surface in order to calculate and then
cancel the scattered field. The distance along the cloak surface is always longer than the distance
which the incident wave propagates within the square cloak. Hence, a delay exists between the
scattered field and the field generated by the current sources in order to cancel the scattered field.

Alternatively, one can imagine that the characteristics of the plane wave impinging on the
object are known - hence, cloaking schemes have been proposed based on such an idea of
‘predetermined’ cloaking. In each current source along the cloak surface, it is possible to measure
the total field (Etotal, Htotal) which is given by

Etotal = Escat + Einc (3)

Htotal = Hscat +Hinc. (4)

Then, in each current source, the scattered field can theoretically be determined by subtracting
the measured total field and the predetermined incident field.

In both considered cases, the generation of currents along the cloak surface requires some
time. Therefore, the reaction of the current sources to the incident plane wave is always delayed.
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Fig. 1. Wave incident on the cloaked volume (PEC cylinder). (a) Cloaking scheme. (b)
FDTD simulation scenario.

Unfortunately, to the best of the authors’ knowledge, precise measurements of the influence
of source delays on the scattering characteristics have not been presented yet. Furthermore,
and crucially, the performance of the cloak for different predetermination times has not been
presented yet. It is for such purposes that a high-accuracy FDTD/TFSF method can prove useful,
as shown in some detail in the following.

We here note that the cloak geometry is not limited to square or rectangular shapes. That
is, circular or even arbitrary shapes can be considered. However, due to the implementation of
simulations with the use of a rectangular FDTD grid, the rectangular cloak is the simplest and
preferable solution for our present investigations.

3. Simulation method

We start by outlining the characteristics and details of the 2-D TMz FDTD method that we used
(i.e., where the Hx, Hy, Ez field components are simulated). The correctness of the FDTD
code has been corroborated by comparison with the corresponding solutions based on the
FDTD-compatible discrete Green’s function [13–15].

For 2-D TMz simulations, complementary results can be obtained using the TEz polarization.
The TMz and TEz modes constitute the two possible ways that 2-D electromagnetic wave
interaction problems can be set up for the case of zero partial derivatives in the z-direction [6].
Hence, our conclusions are not restricted to a given polarization of the plane wave, because one
can decompose any 2-D simulation scenario into TMz and TEz FDTD simulations. Furthermore,
this active cloaking scheme, based on the use of a Huygens surface, which is well established in
wave physics and scattering theory, is indeed general, i.e., not restricted to a given polarization
[12].

Let us consider the simulation setup presented in Fig. 1(b). The square geometry of the
FDTD grid is assumed in our simulations (i.e., ∆x = ∆y = 19.98 nm). It stems from the fact
that the numerical dispersion error of the non-square FDTD grid is larger than that of the
corresponding square grid [16]. The size of the computational domain is set to 16 000 × 16 000
cells. The TMz-polarized plane wave is generated at the TFSF interface around the cloak surface.
For this purpose, multipoint auxiliary time-domain 1-D propagator [6,8,9] is implemented,
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which guarantees the leakage error of the plane-wave injection at the numerical noise level.
The angle ϕ between the wave vector k and the x-axis is set to 45◦ (parameters of multipoint
auxiliary time-domain 1-D propagator are set to mx = 1 and my = 1) if not stated otherwise.
The distance between the TFSF interface and the domain boundary is set to 100 cells. The
computational domain is terminated by the perfectly matched layers (PMLs) [6] implemented
based on Berenger’s approach [17]. The number of layers at each boundary being PMLs is set to
16. The distance between the cloak and the domain boundary is set to 200 cells. Hence, the side
length of the square cloak is equal to a = 15 600∆x = 311.8µm. It is assumed that the thickness
of the cloak is equal to ∆r = ∆x = ∆y. Hence, the current densities of numerical sources at the
cloak in FDTD simulations are given by

JFDTD
cloak =

Jcloak

∆r
= −

n × Hscat

∆r
(5)

MFDTD
cloak =

Mscat

∆r
= −

Escat × n
∆r

. (6)

The scattered field Ez is evaluated in three points Q1–Q3 within the scattered-field region
(waveforms for Q2 and Q4 points are the same when ϕ = 45◦). Their coordinates are as follows:
Q1(49,49), Q2(15 950, 49), Q3(15 950, 15 950). Hence, the backward and forward scattering
characteristics correspond to the points Q1 and Q3, respectively. The point Q2 corresponds to
90◦ angle between the directions of incident and scattered waves. The Courant-Fridrich-Lewy
factor being the ratio of the time-step size and the maximum stable time-step size [6] is set to
0.99. Hence, the time-step size in simulations is set to ∆t = 0.0467 fsec. Each FDTD simulation
is executed in 40 000 time steps. A wideband excitation is employed in the FDTD simulations
to tackle bandwidth issues of the cloaks in the visible frequency range 430-750 THz. It is a
Gaussian-modulated sinusoidal pulse presented in Fig. 2. For the sake of reference, the simulation
of scattering from the PEC cylinder is executed without the cloak at first. It gives the reference
level allowing one to evaluate how many times the field scattered by the PEC cylinder within
the cloak is lower than that of the PEC cylinder without the cloak. Then, the cloak scattering
is expressed in dB as 20 log |Ez(f )/Eref

z (f )|, where Eref
z (f ) denotes the frequency-domain field

measured without the cloak in the considered point.

Fig. 2. Gaussian-modulated sinusoidal pulse recorded in the bottom-left corner of the cloak.
(a) Time-domain waveform. (b) Amplitude spectrum.
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4. Numerical results

In this section, on the basis of the afore-outlined methodology, we evaluate, both, in the frequency-
and time-domain, the performance of an active cloak, including previously unexplored, yet
crucial, issues, such as potential ‘errors’ (delays) in the activation of the active sources and/or the
choice of the predetermination time.

4.1. Current sources synchronized with the scattered field

First, we examine the ideal case, where the current sources of the cloak generate an electromagnetic
field perfectly canceling the scattered field; that is, the case where the cloak perfectly conceals
over broad bands an electrically-large object.

To that end, in Fig. 3 the scattered field levels are presented in reference to the case without
the cloak. As may be seen, the scattered field is indeed around the numerical noise level (−300
dB), confirming, both, the proper operation of the ideal cloak as well as the high-accuracy
implementation of the predetermined cloaking in the discretized FDTD/TFSF space. It has been
verified that the same scattering levels (i.e., numerical noise) are consistently observed for the
cases where the incidence angle is set to ϕ = 68.2◦ (mx = 2, my = 5), ϕ = 33.69◦ (mx = 3,
my = 2), and ϕ = 26.56◦ (mx = 2, my = 1), thereby further confirming the correct implementation
of the perfect TFSF interface.

Fig. 3. Scattered field measured for the ideal cloak whose current sources are synchronized
with scattered field and activated without any delay. (a) Q1. (b) Q2. (c) Q3.

Furthermore, it is found that the active cloak is sensitive to perturbations in the geometric
positioning of the active sources. For instance, introduction of small gaps in the cloak by
removing single electric and magnetic current sources may appreciably affect its performance.
Specifically, as an example, 12 gaps spaced by a distance 1201∆x = 23.99 µm, introduced in
each side of the square cloak, increase the scattered field to levels around −39 dB (Q1), −41 dB
(Q2) and −43 dB (Q3).

4.2. Delayed current sources

Next, we investigate the case where the current sources of the cloak generate an electromagnetic
field imperfectly canceling the scattered field, i.e., the current waveforms are the same as in
the previously considered case but now slightly delayed in time - indicating, for instance, for a
real-life experiment, the potential occurrence of an error or inaccuracy in the switching on of
the active sources. To that end, in Fig. 4 the scattered field levels at points Q1, Q2 and Q3 are
presented across the entire visible band, relatively to the PEC cylinder without the cloak, and for
current sources whose waveforms are only slightly delayed - in the example shown there, by a
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single FDTD time step ∆t. As may be seen, the scattered field increases immediately to levels
around −33 dB (Q1), −14 dB (Q2) and −15 dB (Q3). This demonstrates that predetermined
active cloaking is indeed appreciably sensitive to perturbations from the ideal scenario studied in
the previous section. Interestingly, we may also see from Fig. 5 that even for a sufficiently long
delay of (error in) the active-current waveforms, there still exists a frequency in the amplitude
spectrum at which the scattering is suppressed. This result (physically) simply arises from the
fact that, at that frequency point, the delay in the switching on of the active sources is equal to a
period of the scattered field, thereby again allowing for the cancellation of the scattered field.

Fig. 4. Scattered field measured for the cloak whose current sources are delayed by time
t = 1∆t = 0.0467 fsec. (a) Q1. (b) Q2. (c) Q3.

Fig. 5. Scattered field measured for the cloak whose current sources are delayed by time
t = 36∆t = 1.6801 fsec. (a) Q1. (b) Q2. (c) Q3.

Figure 6 summarizes how fast, for three different frequencies (510 THz, 590 THz, and 670
THz), the performance of the active cloak deteriorates when the delay in the switching on of
the sources is increased. One may see that the performance of the cloak deteriorates compared
with the ideal (zero delay) case even for very small delays (errors), from which point onward
the scattering does not change significantly with further delays. Furthermore, for longer delays,
and for the Q2 and Q3 (high-symmetry) measurement points, the scattering actually becomes
comparable to the one of the PEC cylinder without the cloak. However, the back-scattering (Q1
measurement point) is still maintained below 0 dB.
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Fig. 6. Scattered field for frequencies 510, 590 670 THz measured for the cloak whose
current sources are delayed. (a) Q1. (b) Q2. (c) Q3.

4.3. Synchronized current sources activated by information transferred along cloak
surfaces

As already explained, the developed FDTD/TFSF methodology allows for simulations of active
cloaks whose current sources are activated by information progressively being transferred along
the cloak surface. To that end, we have assumed that the first contact of the incident wave with
the cloak is in its lower-left corner. Then, information transfers concurrently along, both, the
left-upper and bottom-right sides of the square cloak. Hence, the direction of information transfer
is from bottom-left to upper-right corner of the cloak. In this section, in order to study the role of
the predetermination time, we vary the effective ‘speed of information’ vinf along the surface of
the cloak. Values of vinf larger than the speed of light in vacuum cannot, of course, occur owing
to relativistic causality, thus they herein simply imply longer predetermination times - that is,
how much ahead in time before the arrival of the incident wavefront on the surface of the cloak
should an active source be switched on. Furthermore, for an even more experimentally-realistic
scenario, we take that each current source (on the surface of the cloak) is activated only when
the time measured from the first contact of the incident wave with the cloak is greater than the
activation time given by

tactive =
d

vinf
+ tdet (7)

where d denotes the distance to the current source along the cloak surface and tdet denotes the
offset time resulting from the finite detection time of the signal in the lower-left corner of the
cloak. For the presented results, the offset time resulting from the finite detection time was
arbitrarily set to (a realistic value of) tdet = 800∆t = 37.34 fsec. This corresponds to the time
moment after the passage of the maximum of the incident plane wave through the bottom-left
corner of the cloak, see Fig. 2.

The results of our simulations are plotted as a function of the predetermination time tpred for
the upper-right corner of the cloak, that is, as mentioned above, the time delay between the arrival
of the light wavefront propagating diagonally in the cloak and the information traveling along the
cloak surface to the upper-right corner of the cloak

tpred =

√
2a
c

−
2a
vinf

− tdet. (8)

First, in Fig. 7, the scattered-field values are presented, in reference to the case without the
cloak, for the ideal case where tpred = 0 sec (this corresponds to an effective vinf = 1.45c). As
may be seen, the scattered field is indeed in this case around the numerical noise level, as it
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should. Here, information travels the distance 2a (where a denotes the side length of the square
cloak) whilst the plane wave propagates the distance

√
2a within the cloak. Hence, for effective

information speeds vinf higher than around
√

2c (notice the non-zero detection time tdet), i.e., for
tpred>0, it is indeed possible to observe broadband perfect cloaking of an electrically-large object.

Fig. 7. Scattered field measured for the cloak whose current sources are activated by
information transferred with tpred = 0 sec along the cloak surface. (a) Q1. (b) Q2. (c) Q3.

In Fig. 8, the scattered field levels are presented, in reference to the case without the cloak,
but now for the case where tpred = −26 fsec (i.e., for a smaller effective information speed
vinf = 1.425c). As can be seen, the backward scattering (Q1) is still around the numerical noise
level, however the scattering levels at the other measurement points deteriorate appreciably to
around −130 dB (Q2) and −60 dB (Q3) - still, though, being overall, for those two points, a
satisfactory cloaking performance. The forward scattering level (at point Q3) is even more
sensitive to the decrease of the predetermination time, showing clearly that the ‘really’ challenging
part in this cloaking scheme too (similarly to all other schemes) is to suppress the forward
scattering, i.e., to prevent the ‘shadow’ effect of a cloak, thereby to allow for the incident wave to
smoothly recombine in free space after it has traveled along the cloak’s surface.

Fig. 8. Scattered field measured for the cloak whose current sources are activated by
information transferred with tpred = −26 fsec along the cloak surface. (a) Q1. (b) Q2. (c)
Q3.

In Fig. 9, the scattered field levels are presented in reference to the case without the cloak
but now for an even smaller effective information speed, corresponding to tpred = −39 fsec
(vinf = 1.4125c). As may be seen, the backward scattering (Q1) is again around the numerical
noise level, with the scattering at point Q2 being maintained at sufficiently good levels, but with
the scattering level at the measurement point Q3 now having deteriorated significantly to around
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0 dB (or above, indicating actually increased scattering owing to the active sources). In this case,
the predetermination time is insufficient to activate the current sources in the upper-right corner
of the cloak before the plane-wave’s arrival at this point.

Fig. 9. Scattered field measured for the cloak whose current sources are activated by
information transferred with tpred = −39 fsec along the cloak surface. (a) Q1. (b) Q2. (c)
Q3.

Finally, Fig. 10 summarizes how the performance of the cloak deteriorates, for three chosen
frequencies (i.e., 510, 590, 670 THz), when the predetermination time takes on progressively
higher negative values (corresponding to delay, i.e., to an effective error). As can be seen, the
forward scattering (Q3) immediately approaches the level of 0 dB, and the curve characteristics
remain flat when the predetermination time is set towards negative values. On the other hand,
the backward scattering (Q1) is relatively insensitive to variations of the predetermination time
because the current sources in the lower-left corner of the cloak are immediately activated,
the incident wave then moves on inside the cloak, is back-scattered by the object, and upon
returning (from the inside) to point Q1 the field value of the source at that point has become
zero, trapping the field inside the cloak and preventing back-scattering to occur (see Fig. 1(a)).
Overall, as may be seen, the improper (negative) values of the predetermination time result in a
clear deterioration of the scattering performance of the cloak. Hence, one may conclude that the
ideal active-cloaking performance with synchronized current sources activated by information
transferred along its surface is quite sensitive to perturbations of (errors or inaccuracies in)
the predetermination time. We also note that for the physically-allowed value of the effective
information speed vinf = c, the scattered field levels turn out to be around −135 dB (Q1), 0 dB
(Q2), and 0 dB (Q3).
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Fig. 10. Scattered field for frequencies 510, 590, 670 THz measured for the cloak whose
current sources are activated by information transferred with varied speed. (a) Q1. (b) Q2.
(c) Q3.

5. Conclusion

In summary, we have deployed a 2-D FDTD method combined with a perfect TFSF interface for
evaluating active electromagnetic cloaks. The employed TFSF implementation guarantees the
isolation between scattered- and total-field regions at the numerical noise level. As a result, it is
suitable not only for directly demonstrating that an ideal cloak functions perfectly, but also for the
evaluation of the scattering performance of imperfect (realistic) active cloaks. In the simulation
scenarios we considered, the active cloaks worked by canceling the scattered field, using arrays
of current sources.

Our approach allowed us to analyse the effect of current sources being delayed in relation
to the scattered field. Furthermore, we also studied the activation of current sources due to
information transfer along the cloak surface, for various predetermination times. We found that
the performance of the active cloak is appreciably sensitive to the choice of those times, at least
insofar as broadband operation is concerned. Our results, providing time- and frequency-domain
insights into the response and characteristics of active cloaking, including realistic effects and
device implementations, elucidate the strengths but also weaknesses of such schemes, and could
help towards attaining true, broadband invisibility [18] of electrically-large objects.
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