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A Flexible Knowledge-Vision-Integration Platform for Personal 

Protective Equipment Detection and Classification using Hierarchical 

Convolutional Neural Networks and Active Leaning 

This work is part of an effort to develop of a Knowledge-Vision Integration 

Platform for Hazard Control (KVIP-HC) in industrial workplaces, adaptable to a 

wide range of industrial environments. The paper focuses on hazards resulted from 

the non-use of personal protective equipment (PPE). The objective is to test the 

capability of the platform to adapt to different industrial environments by 

simulating the process of randomly selecting experiences from a new scenario, 

querying the user, and using their feedback to re-train the system through a 

hierarchical recognition structure using Convolutional Neural Network (CNN). 

Thereafter, in contrast to the random sampling, the concept of active learning based 

on pruning of redundant points is tested. Results obtained from both random 

sampling and active learning are compared with a rigid systems that is not capable 

to aggregate new experiences as it runs. From the results obtained, it can be 

concluded that the classification accuracy improves greatly by adding new 

experiences, which makes it possible to customize the service according to each 

scenario and application as it functions. In addition, the active learning approach 

was able to reduce the user query and slightly improve the overall classification 

performance, when compared with random sampling.  

Keywords: Decisional DNA (DDNA), Set of Experience Knowledge Structure 

(SOEKS), Industrial Hazard Control, Hierarchical Convolutional Neural 

Networks, Semi-supervised Learning, Active Learning. 
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Introduction and Background 

Hazards are present in all workplaces and can result in serious injuries, short and long-

term illnesses, and death. According to the Safe Work Australia (2017), from the period 

of 2003 to 2015, over three thousand workers have died in work-related incidents. 

Additionally, Safe Work Australia (2017) also claims that in 2014–2015, there were over 

a hundred thousand serious worker’ compensation claims related to disease and injuries. 

These incidents result in productivity loss, human suffering and the cost of billions of 

dollars to the Australian Economy.  

Aiming at reducing incidents related to occupational health and safety, the 

Australian Work Health and Safety Strategy 2012–2022 has identified the manufacturing 

industry as a priority to reduce the work-related injuries, illnesses and fatalities.  From 

2003 to 2015 the manufacturing sector had the third highest incidence rate of serious 

claims and the fourth highest proportion of deaths (Safe Work Australia, 2012). 

Hazard control is essential to ensure the safety of workers and occupational health 

(Safetycare Australia, 2015). In this context, monitoring of workers activities and 

identifying any risk present emerged as a need. The use of sensors data and computer 

vision techniques support the fast and automated detection of potentially dangerous 

conditions. This information can be used to provide feedback, and manage workers 

behaviour to perform the work in a safe manner (Han & Lee, 2013). However, as stated 

by Little at al. (2013) there is no such flexible system at the moment which is able to 

function in a broad industrial environments without the necessity of rewriting most of 

existing application codes each time the circumstances or conditions change. In addition, 

as the system grows the scalability becomes an issue, and the quantity of considerations 

required for each application in particular can easily lead to a rigid and inflexible structure 

(Zambrano, Toro, Nieto, Sotaquirá, Sanín & Szczerbicki, 2015). 
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This work is part of a research effort to develop a flexible Knowledge-Vision 

Integration Platform for Hazard Control (KVIP-HC) in industrial workplaces, attending 

a wide range of industrial environments (de Oliveira, Sanin & Szczerbicki, 2017). In this 

system, classifiers, feature images, and any context information collected through the 

platform, are represented explicitly by the Set of Experience Knowledge Structure 

(SOEKS), grouped and stored as Decisional DNA (DDNA) (Sanín & Szczerbicki, 2005; 

Sanín & Szczerbicki, 2007). The collected knowledge is used for reasoning and retraining 

of the system from time to time, customizing the service according to each scenario and 

application.  

This paper focuses on hazards resulted from the non-use of personal protective 

equipment (PPE).  It aims to test the capability of the platform to adapt to different 

industrial environments by simulating the process of randomly selecting experiences 

from a new scenario, querying the user, and using their feedback to re-train the system 

over five iterations. In addition, we apply the concept of active learning based on pruning 

of redundant points to reduce the user query. We compare the results obtained from 

random sampling and active learning with a rigid system that is not capable to aggregate 

new experiences as it runs. To train the system, a hierarchical recognition structure using 

Convolutional Neural Network (CNN) is proposed, where in the first layer a CNN binary 

classification is performed to detect the existence or not of PPEs. If a PPE is detected a 

multi-class CNN is used to classify the PPEs into Boots, Gloves and Hats in the second 

layer.  Other market PPEs will be included in the future work, as well as a broader range 

of hazardous activities.  

The rest of the paper is organized as follows. In the “Knowledge-Vision Based 

Approach” section, a background about vision and knowledge-based systems is 

introduced.  The section “Convolutional Neural Network” presents the concept of Deep 
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Neural Networks, including the Convolutional Neural Network proposed.  The semi-

supervised approach for collection of experiences from user feedback, including random 

sampling and active learning, is described in “Experience Selection” section.  The 

“Methodology” section explains the Hierarchical Recognition Structure (HRS),  

 the process of creating datasets, and describes the training and test process.  The section 

“Experimental Results” presents the classification performance for the three approaches 

analysed in the paper: (a) when no experiences are added to the system,  (b) when a 

randomly  selected experiences are used to query the user and their feedback is applied 

to re-training of the system, and (c) when a randomly selected set of experiences are 

collected and only the least redundant are used to query the user.  Conclusions and future 

work are presented in the last section. 

Knowledge-Vision Based Approach 

The use of sensors data and computer vision techniques support automatic detection and 

tracking of workers indicating potential dangerous situations. However, the current 

sensor-based technologies used for this purpose require the devices or markers to be 

attached on the human body, which can disturb some actions (Han & Lee, 2013). On the 

other hand, visual sensing facilities, such as video cameras, can monitor workers 

behaviour and environment conditions without any disturbances. Furthermore, the 

generated data, such as video sequences or digitized visual data can be processed in 

powerful computers in real time (Chen, Hoey, Nugent, Cook & Yu, 2012). For the reasons 

described above, computer vision approach has been a research focus for a long time in 

surveillance systems, human detection, and tracking. However, the accuracy of current 

systems when operating in real life scenarios, subject to change in illumination, variation 

in backgrounds, noise and different camera resolutions, still remains a challenge 
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(Mosberger, Andreasson & Lilienthal, 2013). In addition, sensor data and computer 

vision technologies are, mostly, not scalable and lack adaptability to broad industrial 

environments and existing situations. As a result, the existing technologies create case-

based applications that work only for specific circumstances and any change in conditions 

would result in rewriting most of the application code. 

In this context, methods incorporating prior knowledge and context information 

are gaining interest. The visual and context knowledge can be used for reasoning and 

customizing the service along with each workplace and application. Also, with additional 

contextual information it is possible to enhance the speed and accuracy of the detection 

algorithm and reduce scalability issues (Davis, Shrobe & Szolovits, 1993). For instance, 

an automatic semantic and flexible annotation service able to work in a variety of video 

analysis with little modification to the code using Set of Experience Knowledge Structure 

(SOEKS) was proposed in Zambrano, Toro, Nieto, Sotaquirá, Sanín & Szczerbicki, 2015. 

Though, a lot of information contained in the classifiers was lost by separating the 

classification of the humans and objects from the event recognition. 

Set of Experience Knowledge Structure (SOEKS) and Decisional DNA (DDNA) 

SOEKS is a knowledge representation structure designed to obtain and store formal 

decision events in an explicit way. It is based on four key basic elements of decision-

making actions (variables, functions, constraints and rules). Variables are generally used 

to represent knowledge in an attribute-value form, following the traditional approach for 

knowledge representation. Functions, constraints, and rules of SOEKS are different ways 

of relating knowledge variables. Functions define relations between a dependent variable 

and a set of input variables; therefore, SOEKS uses functions as a way to create links 

among variables and to build multi-objective goals. Likewise, constraints are functions 
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that act as a way to limit possibilities, restrict the set of possible solutions, and control the 

performance of the system in relation to its goals. Finally, rules are relationships that 

operate in the universe of variables and express the condition-consequence connection as 

“if-then-else” and are used to represent inferences and associate actions with the 

conditions under which they should be implemented (Sanín & Szczerbicki, 2004, 2005, 

2007, 2008). 

The repository is composed of experienced decision events, which are represented 

as SOEKS in our platform, grouped according to the areas of decision categories – the 

Decisional DNA. A SOEKS from a formal decision event represents a portion of an 

organization’s DDNA (as a gene that guides decision-making). This gene belongs to a 

decisional chromosome from a certain type or category. A group of chromosomes from 

different kinds (e.g. hazard control decisions, production decisions, marketing decisions) 

comprise the DDNA, a decisional genetic code of an organization. The DDNA can be 

used to solve the scalability issues found in current vision-based approaches by 

introducing an experience-based approximation that aims to recognize events defined by 

the user using production rules, adaptable for different conditions, clients and situations 

(Sanín & Szczerbicki, 2007). 

Convolutional Neural Network 

Neural networks are a very powerful Machine Learning (ML) classifier applied to both 

binary and multi-class problems. The first computational model for neural networks was 

based on mathematics and algorithms called threshold logic (Warren & Pitts, 1943). In 

1965, the first functional networks with many layers (Deep Neural Network DNN) was 

proposed. However, at that time the computers didn't have enough processing power to 

effectively handle the work required by large neural networks (Ivakhnenko & 
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Grigorʹevich, 1967). A key trigger for the renewed interest in neural networks and 

learning was the backpropagation algorithm that accelerated the training of multi-layer 

networks (Werbos & Beyond, 1975). Another technique called dropout used to reduce 

overfitting (a very common problem in deep networks) gave major improvements over 

other regularization methods (Srivastava, 2014). 

To learn all the PPEs existing in the market and extend the model to an immense 

complexity of possible risky activities, a model with a large learning capacity is needed. 

Convolutional Neural Networks (CNNs) constitute one such class of models. CNN is a 

class of deep, feed-forward artificial neural networks (Ciresan, Meier, Masci, 

Gambardella & Schmidhuber, 2011). Supervised deep learning method was the first 

artificial pattern recognizer to achieve human-competitive performance on certain tasks 

(Ciresan, Meier & Schmidhuber, 2012). In addition, when compared to standard 

feedforward neural networks with similarly-sized layers, CNNs have much fewer 

connections and parameters and so they are easier to train (Krizhevsky, Sutskever & 

Hinton, 2012). 

Selection of Experiences 

Finding a way to choose informative images to ask the user to label them can be 

challenging. Such request for the label of an image is called a pool-query (Tong & Chang, 

2001). Most machine learning algorithms are passive in the sense that they use the most 

fundamental and simple way to select a data subset for manual labelling: through 

sampling a small number of data samples from the pool of unlabelled data randomly. 

Random sampling is simple and fast to implement, but the points selected by random 

sampling are not guaranteed to be optimal. Therefore, for the performance of a classifier 

to reach a certain level, a significant number of data samples should be sampled (Woo & 
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Park, 2012). It can result in the oracle (typically a human) being required to spend 

extensive time to label the classes of the instances, increasing in memory required to store 

the data and rising the computational costs of training. 

Active Learning 

Active learning (also known as “query learning” or “optimal experimental design” in 

statistics) is a subfield of semi-supervised machine learning.  Its key hypothesis is that if 

the learning algorithm is allowed to choose the data from which it learns, it will perform 

better with less training (Settles, 2010). An active learning scenario involves evaluating 

the informativeness of unlabelled data, and many ways of formulating these query 

strategies have been proposed in the past few years such as: uncertainty sampling, query 

by committee, expected model change, expected error reduction, variance reduction, 

balance exploration, and Exponentiated Gradient Exploration (EGE) for Active Learning 

(Settles, 2010).  

In contrast, when only unlabelled or very little labelled data is given for training an initial 

classifier, most of the existing active learning methods are difficult to apply. In this 

context, Woo and Park (2012) suggest an optimal experimental design in that the goal is 

to select a subset of samples on which an optimal classification model is trained. In this 

article a similar approach is proposed. However, differently from Woo and Park (2012) 

method, a dataset containing a small set of samples are initially accompanied with class 

labels. 

Methodology 

In this section, (i) the HRS used for detection and classification of the PPEs are presented; 

(ii) the process of creating the dataset is explained; and (iii) the training and test process 
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is described. The codes to perform the data-preparation, training, tests and analysis of the 

methodologies were developed in Python 3 and Jupyter Notebook web application 

platform (Van Rossum, 2009; Kluyver, Ragan-Kelley, Pérez, Granger, Bussonnier, 

Frederic & Ivanov, 2016). 

Hierarchical Recognition Structure 

There is no trivial solution existing for a multi-class problem when one of the 

classes represents the absence of all the other classes. The proposed system must be able 

not only to classify a PPE, but also indicate if no PPE is present. In this case, the "every 

else" feature space is unbounded, and it cannot be described by a limited dataset in a 

multi-classification approach. To overcome this problem and avoid the training of binary 

classifier for each desired PPE (which could lead to scalability issues as the system 

grows), a hierarchical recognition structure is proposed. In this structure, shown in Figure 

1, the hierarchical division of the output space, i.e. the classes, are arranged into a tree. 

The tree created is such that the classes at each parent node are divided into a number of 

clusters, one for each child node. The process continues until the leaf nodes contain only 

a single class. At each node of the tree, a simple classifier, usually a binary classifier, 

makes the discrimination between the different child class clusters (Aly, 2005). In the 

proposed platform, the binary classifier to detect the presence or not of PPE is combined 

with a multi-class classifier for classification in case of PPE detected.  

Each layer of the recognition system is composed by a CNN implemented with 

random regularization to prevent overfitting (CNN Dropout). To build the networks and 

train the classifiers the TensorFlow library, an open source library developed to conduct 

machine learning and deep neural networks research, was utilized (Abadi et al., 2016). 
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Figure 1. Hierarchical Recognition Structure. 

Dataset 

For the creation of the samples that compose the positive dataset of the first layer and the 

Gloves, Boots and Hats dataset of the second layer, 18 videos with different sizes and 

resolutions were used (containing diverse images of boots, gloves and hard hats). These 

videos were separated into frames, and a set of frames containing the objects of interest 

was selected randomly. From each selected frame, a Region of Interest (ROI) comprising 

a PPE was extracted, resized (28x28 pixels), and saved as a positive sample. The video 

processing flow is present in Figure 2. 

 

Figure 2: Video processing flow. 

 For the first layer, samples from every three videos resulted in a different positive 

dataset which were distributed among the initial step and the following five iterations. 

Therefore we simulate a full change of scenario and PPE characteristics in each step, and 

a low accuracy is expected for the system when it starts every new iteration.  Images of 

Download of 
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random objects and scenes were also resized to 28x28 pixels to compose the negative 

dataset of each step. These datasets were split into training and test sub-sets. 

For the second layer, a set of samples from each video resulted in a different 

dataset which was labelled as Boots, Gloves or Hats and distributed among the initial step 

and the five consecutive iterations. These datasets were also subdivided into training and 

test. Figure 3 shows the distribution of samples along each iteration for each layer of the 

recognition system.  
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Figure 3: Distribution of samples along each iteration for each layer of the recognition system. 

Training and Test 

The experiment is performed over five iterations starting from an initial dataset as shown 

in Figure 4. Three approaches are tested: 

Initial Step

126 25

152 25

94 25

Iteration 1

28 25

89 25

193 25

Iteration 2

144 25

36 25

88 25

Iteration 3

128 25

201 25

106 25

Iteration 4

171 25

42 25

143 25

Iteration 5

68 25

140 25

226 25

Training Test 

Gloves 

Boots 

Hats 

Gloves 

Boots 

Hats 

Gloves 

Boots 

Hats 

Gloves 

Boots 

Hats 

Gloves 

Boots 

Hats 

Gloves 

Boots 

Hats 

Initial Step
128 75

372 75

Iteration 1
190 75

310 75

Iteration 2
232 75

268 75

Iteration 3
65 75

435 75

Iteration 4
144 75

356 75

Iteration 5
66 75

434 75

Negative 

Positive 

Negative 

Positive 

Negative 

Positive 

Negative 

Positive 

Negative 

Positive 

Negative 
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Training Test 

First Layer Second Layer 
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• No Learning: The classifier trained in the initial dataset is tested on the 

next iterations without aggregation of experiences and retraining of the 

system in each iteration; 

• Random Selection: For each iteration, the randomly selected experiences 

are used to query the user and retrain the system. The test is performed on 

the same and next iteration after retraining the system; 

• Active Learning by pruning: For each iteration, the randomly selected 

experiences are compared among each other. The most redundant samples 

are deleted by searching for a pair of data samples having the smallest 

distance and removing one of them from the subset. Cosine distance is 

used as a distance measure (Qian, Sural, Gu & Pramanik, 2004). The 

remaining samples are used to query the user and retrain the system. The 

test is performed on the same and next iteration after retraining the system. 

 

Figure 4: Iterations of the experiment 

Initial Step Iter. 1 Iter. 2 Iter. 3 Iter. 4 Iter. 5 

Training  
Dataset 

Training  
Dataset 

Training  
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Training  
Dataset 

Training  
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Experimental  Results 

The CNN was built using Softmax regression and cross-entropy to compute the loss of 

the model that is used. To minimize the loss, ADAM optimizer is applied in a learning 

rate of 0.01. In addition, weights and biases are created. The pooling is a max pooling 

over 2x2 blocks. The convolutional layer has patch size of 5x5 with 3 input channels and 

32 output channels. In the fully-connected layer, there are 1024 neurons (to allow 

processing on the entire image, which is reduced to 14x14), that feed the readout layer 

together with the number of classes to predict. Finally, the regularization function is 

applied before the readout layer to prevent overfitting. The training is performed over the 

whole dataset allocated for each iteration and the best accuracy for test dataset out of 10 

epochs is chosen. For each iteration, the neural network is used for detection of the PPEs 

in the first layer and classification of them in case of detection in the second layer.  

Figure 5 shows the results for accuracy for the first and second layer when no 

experiences are added along the iterations. 

 

Figure 5: Results for accuracy for the first and second layer when no experiences are 

added along the iterations. 
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As can be observed in Figure 5, the accuracy drops significantly from the initial step and 

as no new experiences are added to the system it has no capacity to learning and improve 

its performance for next iterations. The results for the first and second layer of random 

selection and active learning, and test on the same and next iteration are present in Figure 

6 and Figure 7, respectively. 

 

Figure 5: Results for the first and second layer of random selection and active learning and test 

in the same iteration. 

 

Figure 6: Results for the first and second layer of random selection and active learning and test 

in the next iteration. 
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Figure 5 and 6 show that, both random selection and active learning, for testing on the 

same and the next iteration, the second layer classifiers perform better in terms of 

accuracy when compared with the multi-class classifiers of the second layer. In addition, 

the pruning of samples in the active learning approach did not result in overall decrease 

of the classifiers accuracy as can be seen in Table 1. 

Table 1: Average accuracy of classifiers over the iterations. 

 Test on same Iteration Test on next Iteration 

 First Layer Second 
Layer 

First Layer Second 
Layer 

Random 
Selection 

  

93% 99% 83% 70% 

Active 
Learning 

 

94% 99% 84% 73% 

 

In fact, the average of accuracy of the classifier when using active learning is slightly 

better for both layers.  

In the end of all iterations, 2,175 samples composed the training dataset for 

random sample and 1,697 for the active learning. It represents 22% decreasing in samples, 

saving memory consumption to store the experiences. The average of training time over 

the 10 epochs drops when active learning is reduced by 20% which shows that active 

learning also reduces the computation costs to re-train the system for reducing the 

samples. Finally, the classifiers size are reduced by 30% when active learning is used.  

Conclusion and Future Work 

This study demonstrated the enhanced ability of CNN to solve classification problems, 

and the effective use of Active Learning to select the experiences by pruning the most 

redundant samples. The use of Active Learning reduces the user query and the memory 

required to store the data.  It can also reduce computational costs of training procedure as 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


18 
 

the system grows, without reducing the classification performance. In fact, on average 

the system performs better when tested for current and next iteration when using Active 

Learning. In addition, poor results obtained with no new experiences added to the system 

along the iterations, demonstrates the need of re-training the platform to ensure its 

flexibility to function in diverse environments and its capability to adapt to different 

scenarios and circumstances as it runs. 

 In future work, the PPE classification will be expanded, and hazardous activities 

in industrial settings considered. In addition, in the further studies the concept of proactive 

learning will be explored and the assumption of indefatigable (always answers), infallible 

(never wrong), and insensitive to costs oracle will be relaxed.  
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