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Flexomagneticity in functionally 

graded nanostructures 

Mohammad Malikan, Tomasz Wiczenbach, and Victor A. Eremeyev 

Abstract Functionally graded structures have shown the perspective of materials in a 

higher efficient and consistent manner. This study reports a short investigation by 

concentrating on the flexomagnetic response of a functionally graded piezomagnetic nano 

actuator, keeping in mind that the converse magnetic effect is only taken into evaluation. 

The rule of mixture assuming exponential composition of properties along with the 

thickness is developed for the ferromagnetic bulk. Nonlocal effects are assigned to the 

model, respecting Eringen's hypothesis. The derived equations deserve to be analytically 

solved. Therefore, numerical results are generated for fully fixed ends. It is denoted that 

the functionality grading feature of a magnetic nanobeam can magnify the flexomagnetic 

effect leading to high-performance nano sensors/actuators. 
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          Nomenclature 

 xx Stress component 

xz  Shear stress 

xxz Hyper stress 

xxz Hyper strain 

 xx  Strain component 

xz   Shear strain 

E     Elasticity modulus 

G    Shear modulus 

1u    Displacement along x 

3u    Displacement along z 

     Poisson's ratio 

L     Length of the beam 

b    Width of the beam 

z     Thickness coordinate 

h    Thickness of the beam 

sk     Shear correction factor 

k    Material property variation 

zI     Area moment of inertia 

u      Axial displacement of the mid-plane 

w     Transverse displacement of the mid-plane 

      Rotation of beam nodes around the y axis 

31q   Component of the third-order piezomagnetic tensor 

31g   Component of the sixth-order gradient elasticity tensor 

31f   Component of fourth-order flexomagnetic tensor 

33a   Component of the second-order magnetic permeability tensor 

A      Area of the cross-section of the beam 

xN    Axial stress resultant 

xM   Moment stress resultant 

xQ     Shear stress resultant 

xxzT    Hyper stress resultant 

      Magnetic potential 
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1     Introduction 

The development of technology leads to the discovery of new, more complex properties 

of materials. One of the recently discovered ones is flexomagnetism (FM). This 

phenomenon is currently being investigated by researchers under the influence of static 

and dynamic states. This effect is based on a strain gradient, which can be called the 

inverse flexomagnetic effect. The flexo-effect can be observed in direct impact by the 

presence of an exterior magnetic field gradient. FM effect can occur in crystalline 

structures and all types of materials, see Fahrner (2005); Lukashev and Sabirianov (2010); 

Pereira et al (2012); Zhang et al (2012); Zhou et al (2014); Moosavi et al (2017); Eliseev 

et al (2019); Kabychenkov and Lisovskii (2019); Eliseev et al (2009). 

A special case of the composite material is functionally graded materials (FGMs). A 

characteristic feature of FG materials is a continuous and smooth transition between the 

various components, see Hadj Mostefa et al (2018); Loh et al (2018); Mahamood et al 

(2012); Vasiliev et al (2017); Malikan and Eremeyev (2020a); Liu et al (2021); Volkov 

et al (2019). For instance, between a ceramic material with a very high thermal resistance 

(low thermal conductivity and expansion coefficient) and a metal with good heat 

conduction (high thermal conductivity and expansion coefficient), there is a transition 

phase (interface), in which a smooth, continuous transition, eliminating the formation of 

microdamage or delamination of the material at the interface is obtained. The smooth 

transition is achieved by changing the volumetric fraction of the individual components 

of the composite, causing the effective thermomechanical properties to change from one 

piece (e.g., metal or metal alloy) to the other part (e.g. ceramic material). In the case of 

thermal barrier coating (TBC), the thickness of the FGM interface is small compared to 

the entire volume of the material. 

Afterwards, flexomagneticity effect being discovered, several research has been 

conducted on small scale sensors and actuators and their static or dynamic response 

subjected to the effect. Within these publications, Zhang et al (2019) concentrated on a 

nano actuator beam exposed to bending and subjected to the flexomagneticity effect. The 

static bending equations have been developed following the Euler-Bernoulli beam theory. 

What is more, the surface elasticity was considered. Diverse boundary conditions were 

chosen following direct and converse magnetization. According to the obtained results, it 

could be obtained that the material property, which is the flexomagneticity effect, is size-

dependent. Differently, Sidhardh and Ray (2018) investigated the Euler-Bernoulli 

nanosize beam and clamped-free ends boundary conditions beam subjected to bending 

with piezo-flexomagnetic effect. Direct and inverse magnetization effects were 

considered. With the elasticity surface, the examination of the size-dependency was 

performed for the small beam. The following results present scale-dependent 

flexomagneticity behaviour. Studies of nanostructures have shown that this effect is very 

significant for the obtained results, despite the omission of the piezomagneticity. 
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A comprehensive examination of functionally graded materials with electro-

magneto-elastic coupling may be found considering a detailed literature review. 

Nonetheless, the flexomagnetic phenomena in FGM materials cannot be found in the 

literature. According to this, the need to investigate the flexomagnetic effect in FGM 

materials is crucial. Moreover, the impact of flexomagneticity on micro-and 

nanostructures can be found in recent publications, see Zhang et al (2019); Sidhardh and 

Ray (2018); Malikan and Eremeyev (2020b); Malikan and Eremeyev (2020c); Malikan 

et al (2020a); Malikan et al (2020b); Malikan et al (2021); Malikan and Eremeyev (2021). 

Although research on flexomagnetism has been conducted in recent years, this 

phenomenon still requires much additional research and raises many questions. 

Best of our knowledge, no studies are performed about examining functionally 

graded materials (FGMs) composed as a nano-actuator beam with the flexomagnetic 

effect. In this study, we intend to investigate the nanostructured FGM beams containing 

the flexomagnetic effect. Performed computation to evaluate the small-scale effect 

following strain gradient elasticity of the nonlocal model. The computed numerical results 

refer to the semi-analytical method. According to the variations in crucial and significant 

criteria, the illustrating graphs present a magneto-mechanical model. 

2     Mathematical modeling 

Let us attach the square nanobeam containing L and h as length and thickness dimensions 

to a rectangular coordinate system as manifested by Fig. 1.  

 

Fig. 1. Hypothetical perspective image of a smart FGM nanobeam in the Cartesian coordinate 

The ferromagnetic functionally graded structure with apparent piezomagnetic effect 

and obscure flexomagnetic influence should concatenate shear deformations to the 

modeling. Due to this, the Timoshenko beam is preferred in the theoretical model as in 

Thanh et al (2021) 

       01 , u x zu x  z z x                                                                                                                  (1a) 
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   3 ,u x z w x                                                                                                                  (1b) 

In a FGM structure with the physical neutral plane, the neutral surface is not matched 

to the mid-plane and deviates a bit; however, it could be valid for the case of a geometrical 

model of FGMs. Physically, the neutral plane does not include any strain and stress during 

a pure bending deformation. One can describe the position of the neutral surface by, see 

Thanh et al (2021); Chu et al (2018); Ahmed Hassan et al (2020), 

 

 

2

2

0 2

2

h

h

h

h

zE z dz

z

E z dz











                                                                                                                                 (2) 

where the shifting between the geometric mid-plane and the physical neutral surface is 

denoted by 0z . 

The use of Voight's theorem can define functionally graded properties, also called 

the rule of mixture, a micromechanics model specifying functionality at any point that 

generally falls within three functions, namely Sigmoid exponential and power ones. These 

functions can model the functionality grading property through the thickness or another 

dimension for a beam/plate. In between those functions, the exponential one is applied in 

this study as in Atmane et al (2011), 

  0

kzP z P e                                                                                                                     (3) 

where the property  P z  can be any effective property at any point of z, 0P depicts that 

property at mid-plane (z=0), k shows the index of material property variation in line with 

the thickness direction. The homogeneous isotropic nanobeam can be described by k=0. 

In this study, in light of the narrow range of Poisson's ratio for various materials, it is 

assumed that the value of Poisson's ratio is constant for the FGM.  

In the skeleton of Lagrangian strain and based on constituting linearization relevance 

to stability phenomenon, one writes 

 0xx

du d
z z

dx dx


                                                                                                                        (4) 

xz

dw

dx
                                                                                                                         (5) 

xx
xxz

d d

dz dx

 
                                                                                                                                       (6) 

Lagrange's principle expresses energy formula on the time-independent theme as 

  0W U                                                                                                                    (7) 

in which W  and U  respectively states thermodynamic work accomplished by 

external forces and the internal strain energy. 

The expanded and variated form of strain energy for a beam is written by 
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 xx xx xz xz xxz xxz z zV
U B H dV                                                                       (8) 

subsequent to Eq. (8), there will be risen a few one or two-dimensional relations 

which can be arranged as follows (one dimensional relates to non-classical boundary 

conditions and two-dimensional correlates to the equilibrium equations),  

0

L
Mech x x x xxz

x

dN dQ dM dT
U u w Q dx

dx dx dx dx
     

 
       

 
                                   (9a) 

2

0 2

hL
Mag z

h

dB
U dzdx

dz
 



                                                                                                (9b) 

 
0

L
Mech

x x x xxzU N u Q w M T                                                                      (10a) 

 
/2

/2
0

L
hMag

z h
U B dx 


                                                                                                   (10b) 

in which 
/2

/2

h

x xx

h

N dz


                                                                                                                     (11) 

/2

/2

h

x xx

h

M zdz


                                                                                                                     (12) 

/2

/2

h

x s xz

h

Q k dz


                                                                                                                      (13) 

/2

/2

h

xxz xxz

h

T dz


                                                                                                                  (14) 

Axial compressive load acting on the ends of the nanobeam works on the domain as 

in Malikan et al (2020c); Malikan and Eremeyev (2020d) 
2

0

0

1

2

L

x

dw
W N dx

dx

 
  

 
                                                                                                              (15) 

After that, Eq. (15) can be developed by variational technique as 

0

0

L

x

d w dw
W N dx

dx dx




 
  

 
                                                                                                   (16) 

in which the 
0
xN  plays the role of buckling force. 

It is considered that the magnetic field acts laterally for which one can formulate the 

following component along the transverse axis, 

0z

d
H

dz


                                                                                                                                  (17) 
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It is deemed that the smart beam is exposed to the reverse flexomagnetic effect. This 

is mathematically possible concerning the pursuant relation by which one defines a 

closed-circuit magnetic potential with the utmost potential on the top surface and the least 

one on the undermost surface of the thickness, 

, 0
2 2

h h
 

   
        
   

                                                                                        (18a,b) 

Let us mingle Eqs. (6, 9b, 10b, 17, and 18) to each other alongside with a few 

mathematical attempts, then one can obtain the relations of magnetic potential in the 

thickness direction and the vertical magnetic field, 

 

 
   

2
231

0 0
332 4 2

q z h d h
z z z z

a z dx h

    
             

                                                                 (19) 

 
 

 
31

0
33

z

q z d
H z z

a z dx h

 
                                                                                                              (20) 

There are various ways to study nanostructures. Experimental observations are one of 

the methods of modeling small scale materials, which due to its high cost, other methods 

such as atomic modeling, and mechanics of continuous environments are proposed. 

Modeling by continuous media is much less expensive than the previous two methods and 

includes Eringen's theory of nonlocal elasticity as Dastjerdi et al (2021), nonlocal strain 

gradient elasticity theory as Malikan et al (2020d), and modified coupling stress theory as 

Malikan (2017), Skrzat and Eremeyev (2020), etc. as Romano and Barretta (2017) for 

nanostructures. Therefore, continuous environment modeling can be used to analyze 

nanostructures such as buckling of these scaled-down structures. Meanwhile, Eringen's 

theory of nonlocal elasticity has relatively more straightforward governing relations and 

calculates the nonlocal effect of small scale to nanoscale structures which is given by the 

expression as in Eringen (1983), 

2

2
1 ij ijkl ij

d
C

dx
  

 
  

 
                                                                                                    (21) 

where an additional length scale parameter is exhibited that is called nonlocal 

parameter and its value has been obtained for some nanostructures in the range of zero up 

to four square nanometers as in Ansari et al (2010). The parameter  equals  
2

0e a  

including 0e  as a nonlocal quantity and a  that is a characteristic length of materials. 

Afterwards, Eq. (21) is imposed on Eqs. (11-14) leading to the following relations, 

 
    

 

 2
31 31 0 31

312
33

1 xxz

q z f z z z f zd d
g z

a z dx hdx


 

   
        

  
                             (22) 

     
 

 

 22
31 31

02
33

1 xx

q z q zd du d
E z z z E z

dx a z dx hdx


 

  
          

   

                          (23) 
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 
2

2
1 xz

d dw
G z A

dxdx
  

   
         

                                                                                            (24) 

Substituting Eq. (21) in Eqs. (11-14) eventuates the nonlocal stress resultants as, 

 
2

1 2 3 42
1 x

d du d
N I I I I

dx dx dx




 
     

 
                                                                                          (25) 

 
2

5 6 7 82
1 x

d du d
M I I I I

dx dx dx




 
     

 
                                                                                       (26) 

2

442
1 x

d dw
Q H

dx dx
 

   
     

  
                                                                                           (27) 

 
2

9 10 112
1 xxz

d d
T I I I

dx dx




 
    

 
                                                                                             (28) 

where the determined parameters can be organized as, 

        
 

 

 

          
 

 
 

 

   
   

 

/2 /2 /22
31 31

1 2 0 3 0 4

33/2 /2 /2

/2 /2 /22
2 2 31 31

5 6 0 0 7 0 8 0

33/2 /2 /2

/2

31 31

9 31 10 0

33/2

, 1, , , ,

, , , , ,

,

h h h

h h h

h h h

h h h

h

h

q z q z
I I E z z z dz  I z z dz  I dz  

a z h

q z q z
I I E z z z z z dz  I z z dz  I z z dz  

a z h

q z f z
I g z dz  I z z dz

a z





  

  



    

      

  

  

  


 

 
/2 /2 /2

31

11 44

/2 /2 /2

, ,

h h h

s

h h h

f z
 I dz  H k G z Adz

h



  

   

 

                                                                                                                                       (29) 

This is the time to pull the governing equations out of the Eqs. (9, 10, and 16) and 

sort them as 

0xdN

dx
                                                                                                                          (30) 

2
0

2
0x

x

dQ d w
N

dx dx
                                                                                                            (31) 

0x xxz
x

dM dT
Q

dx dx
                                                                                                                     (32) 

Thereupon, Eqs. (25-28) with the aid of Eqs. (30-32) can be uncomplicated as, 

 1 2 3 4x

du d
N I I I I

dx dx


                                                                                                  (33) 

   
3 2

0

9 10 5 6 7 83 2x x

d d w du d
M I I N I I I I

dx dx dx dx

 

 

        
 

                                          (34) 

3
0

443x x

d w dw
Q N H

dx dx
 

 
    

 
                                                                                           (35) 
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 
2

9 10 112

xxz
xxz

d T d
T I I I

dx dx


                                                                                                 (36) 

Let us recast Eqs. (30-32) based on Eqs. (33-36) as 

 
2 2

1 2 32 2
0

d u d
I I I

dx dx


                                                                                                                           (37) 

2 2 2
0

442 2 2
1 0x

d d w d d w
N H

dx dx dx dx




    
       

    
                                                                (38) 

   
2 2 2 2

9 10 5 6 7 442 2 2 2
1 0

d d d u d dw
I I I I I H

dx dx dx dx dx

 
 

    
           

   
                     (39) 

To compute the buckling load, Eqs. (37-39) which are coupled together shall be 

solved.   

The combination of longitudinal magnetic force together with the axial mechanical 

compressive load results in the total axial load as 

0
31x crN P q                                                                                                               (40) 

3     Solving procedure 

Mathematically, we can implement all boundary conditions for a FGM system. 

However, inspecting the physics of a FGM involving the transition in the neutral plane, 

Karamanli and Aydogdu (2020) approved that while considering a FGM model consisting 

of z0, there is no buckling mode for simple boundary conditions since the beam/plate will 

bend before bifurcation buckling. It means the buckling will not occur at this boundary 

condition for the physical model of FGMs. Thus, in what follows, we urge to present 

clamped-clamped system only brings about an analytical process as 

   2

1

sin exp n

m

d m
u x x i t

dx L








  
   

  
                                                                          (41) 

   2

1

sin exp n

m

m
w x x i t

L








 
  

 
                                                                                     (42) 

   2

1

cos exp n

m

m
x x i t

L


 





 
  

 
                                                                                      (43) 

where t is the identification of time in time-dependent problems.  

The foregoing series will satisfy the clamped condition ( 0, 0xu w  M   ) at both 

ends for present numerical calculations for axial buckling loads of a square ferromagnetic 

nanobeam made of a functionally graded compound continued by obtaining residual of 

Eqs. (37-39), 

   1

0

0

L

R x u x dx                                                                                                                      (44) 
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   2

0

0

L

R x w x dx                                                                                                                  (45) 

   3

0

0

L

R x x dx                                                                                                                      (46) 

where   1,..,3iR x i   are exhibitions of equations’ residuals. The next equation 

computes the critical buckling load 

11 12 13

21 22 23

31 32 33

0

K K K u

K K K w

K K K 

   
  

  
     

                                                                                                                       (47) 

Then  

det 0ijK                                                                                                                           (48) 

Consequently, Eq. (48) confronts us with a polynomial relation to which the solution 

will keep going crP . 

 

4     Results and discussions 

Let us here illustrate the influence of functionally graded fabrication on the 

flexomagnetic effect detailedly upon the conduction of a parametric study. The 

postulation of size-dependency for functionality composition is also demonstrated. First 

of all, Table 1 incorporates the required material properties, which will be employed in 

the analysis. Second, by presenting a scientific interpretation, one observes the 

importance of FGMs in embossing the flexomagnetic response. Pursuing this, there are 

two kinds of structures, piezomagnetic FGM shown by FG-PM and piezomagnetic FGM 

in conjunction with flexomagneticity displayed by FG-PFM. 

The mechanical and structural properties are used by, see Lu et al (2016); Balsing Rajput 

et al (2013); Senthil et al (2018) 

Table 1. Employed structural properties 

CoFe2O4 

E0=286 GPa 

f31=10-9 N/A 

q31=580.3 N/Am 

a33=1.57×10-4 N/A2 

 

The purpose of this short study is to investigate whether functional grading can lead 

to changes in the flexomagnetic response of materials or not. In fact, it will be more 

difficult to construct matter in a functional state. However, if it gives us the privilege of 

having a more significant flexomagnetic effect and greater polarization overall, it will 

have unique advantages that can persuade designers of smart magnet nanosensors and 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


actuators to turn to functionally graded magnetic nanomaterials. In this section, with the 

help of Figure 2, this vital issue related to the property of flexomagnetism will be 

investigated. What can be seen is that the functional grading property has a direct effect 

on the polarization and will lead to an increase in the flexomagnetic property. As shown, 

with the increasing the value of the k-index, one sees an increase in the distance between 

the results of PFM and PM, especially for larger values of the nonlocal parameter. 

Increasing the value of the nonlocal parameter increases this difference to prove that the 

functionally graded property, in turn, can exhibit size-dependent behavior. Therefore, the 

fabrication of ferromagnetic nanomaterials as a functional scale, regardless of fabrication 

complexity, will provide more efficient nanosensors and magnetic nano actuators with 

greater efficiency and a more substantial flexomagnetic effect. 

       
Fig. 2. FGM variation index vs. critical buckling load for various cases (Ψ=1 mA, m=1, L/h=10) 

5     Conclusions 

Galerkin weighted residual analytical approach has been implemented to compute critical 

buckling load for a ferroic functionally graded shear deformable structure inclusive of 

flexomagneticity. Besides, the composition of the material has been presumed as the rule 

of mixture corresponding to the exponential distribution. The physical neutral surface has 

been taken into the investigation. The size-dependent behavior has been replaced in the 

derived linear stability equations using Eringen's nonlocal elasticity differential model to 

provide nanosize effects. Further, in the framework of performing a short analysis, some 

new achievements have been established. It was indicated that producing piezomagnetic 

functionally graded nanostructure creates a more noticeable flexomagnetic effect. 

Notwithstanding this, the current research is short, and the results will open novel 

potential studies on ferric functionally graded structures and their application in small-

scale sensors and actuators. 
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