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Abstract: Molecular dynamics simulations have been performed for a model aqueous solution of
mucin. As mucin is a central part of lubricin, a key component of synovial fluid, we investigate its
ability to form cross-linked networks. Such network formation could be of major importance for
the viscoelastic properties of the soft-matter system and crucial for understanding the lubrication
mechanism in articular cartilage. Thus, the inter- and intra-molecular interaction energies between the
residues of mucin are analyzed. The results indicate that the mucin concentration significantly impacts
its cross-linking behavior. Between 160 g/L and 214 g/L, there seems to be a critical concentration
above which crowding begins to alter intermolecular interactions and their energies. This transition
is further supported by the mean squared displacement of the molecules. At a high concentration,
the system starts to behave subdiffusively due to network development. We also calculate a sample
mean squared displacement and p-variation tests to demonstrate how the statistical nature of the
dynamics is likewise altered for different concentrations.

Keywords: mucin; hydrogen and hydrophobic interactions; biopolymers; molecular dynamics;
stochastic models; crowding effect; interaction energies

1. Introduction

The last 50 years has seen ongoing research into the mechanism of lubrication seen within
joints [1–3]. Hyaluronic acid (HA), phospholipids (PL), and lubricin (proteoglycan 4 (PRG4)),
the constituent components of synovial fluid [4], interact with a complicated multiscale, synergistic
nature [2,5–8] to create a lubrication phenomenon that is still not well described. Thus, it is important
to analyze the dynamics of each component, as well as the synergy between them. In [9–11], we
focused on the tribological role of HA–PL interactions, an effect also investigated in [12] for its role in
tribological surgical adjuvant. To continue building an understanding of synovial lubrication, we now
study the inter- and intra-molecular properties of lubricin within synovial fluid. To such an end, we
analyze the energy of inter- and intra-molecular interactions in the system.
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It was shown by Chang et al. that solutions of HA-PRG4 play an important role in joint lubrication
and wear resistance [13]. It was proven experimentally that lubricin alters the frictional behavior
of model hydrophobic and hydrophilic surfaces. They conjectured that lubricin reduces wear by
shielding the surfaces from direct contact, while HA does not adsorb and thus does not impact friction.
Further, in their experiment, the frictional behavior of a physiologically-consistent mixture of lubricin
and HA was similar to that of lubricin alone [13]. The significance extends to articular cartilage (AC)
systems, whose components possess a dual hydrophobic-hydrophilic nature. The otherwise ordinary
affinity of these nonpolar (NP) and polar (P) molecules for similar groups is ultimately what leads to
the self-ordering seen in AC systems.

Mucin in joint fluid was first isolated by acetic acid precipitation as early as 1846 by Frerichs [14].
Mucins are large glycoproteins, which are very widely distributed throughout the different organs of
the human body, e.g., in stomach, lungs, respiratory tract, gastrointestinal tract, liver, kidney, colon,
eye, and ear [15]. They lubricate and protect a large range of epithelial surfaces by forming gel-like
mucosae when secreted in a large enough concentration. The assumption is that mucin is similarly
responsible for the lubricating properties of lubricin. Lubricin exhibits a bottle-like structure. Such a
formation has been shown to prevent inter-chain penetration between sliding surfaces coated with
this kind of molecule. This consequence is believed to be beneficial for the low friction coefficient in a
natural joint systems [5]. Lubricin, however, is a heavily O-glycosylated protein macromolecule built
from more than 1400 amino acids (AA). It is too complex to be modeled due to the lack of structural
information on the glycosylation sites and the glycan chains, but in its small central region (about 100
AA), mucin-like domains are present [13,16–18].

Genetic sequencing distinguished 22 human mucin genes, denoted as MUC1–MUC22. Although
synovial mucin differs from the mucins of epithelial origin [19], it shares many structural similarities
with members of the mucin family, which contribute to lubricating properties [20]. In this paper,
MUC1 was chosen as an example of the mucin structure as it is most widely distributed in humans.
There were several recent studies, theoretical [21–23], as well as experimental [24], which analyzed the
docking/binding and adhesive properties of mucin, which suggest that hydrogen bonds, in particular
inter-molecular interactions, play an important role in many biological processes. How mucins
cross-link to form networks and which atomic interactions govern this process would seem to be of
particular importance also for its frictional attributes. The present paper focuses on this problem.

Most studies of protein structures and interactions are carried out in dilute environments. In vivo,
however, proteins operate in environments in which other molecules can easily restrict their motion,
with concentrations from 50 up to 400 g/L [25]. It is intuitive that this will affect their behavior. In [26],
it was shown that the excluded volume effect, produced by a high density of macromolecules, alters
the stability and the folding rate of globular proteins. The difference between crowded and diluted
environments can be observed in the inter- and intra-molecular interactions, especially hydrogen
bonds’ creation and annihilation, and the hydrophobic interactions, which are of major importance for
self-arrangement and dynamic properties. Molecular crowding also affects the transport properties of
proteins; molecules in a crowded system exhibit subdiffusion [27]. Additional studies on the crowding
effect in protein systems have been performed in more recent years [26–29], but a description of how
crowding affects interactions in protein networks and its consequences for friction are still worth
further exploration. Such studies could be very important for biomedical application, e.g., to improve
methods of detecting and healing of osteoarthritis [30].

In this paper, we consider a model water-based solution of mucin as a canonical ensemble,
with quasi-infinite (periodic) boundary conditions. We present molecular dynamics simulations of
mucin interactions, with attention to network formation. The simulations were performed for five
different concentrations to locate the onset of crowding effects and the resulting effects on frictional
properties of the environment.

The paper is structured as follows. In the next section (Section 2), we detail the molecular
dynamics simulation and describe the calculation of all parameters used to explore the characteristics

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Energies 2019, 12, 3448 3 of 18

of protein network formation. Next (see Section 2.2), we describe a method to distinguish which
stochastic model is best for describing the time evolution of the system. Section 3 presents results and
their discussion in light of how they can contribute to the modification of the viscoelastic properties of
the system. The paper closes with conclusions (Section 4).

2. Methods

In order to investigate the cross-linking abilities of the mucin, all-atom molecular dynamics
simulations of five different concentrations of mucin solution in water were performed. An analysis of
these results is used to describe protein network formation in (non-)crowded systems and its relation
to friction in the system.

2.1. Simulation Details

Human mucin MUC1 (PDB ID: 2ACM—SEA domain of MUC1; see Figure 1) was taken from the
Protein Data Bank (PDB)[31] and modified using the YASARA Structure Software (Vienna, Austria) [32]
by adding missing hydrogen atoms. Its molecular mass was equal to 12 kDa.

Figure 1. Ribbon structure of the macromolecule MUC1 drawn using YASARA. It is a complex of two
protein chains. The first is built of 66 AA and the second of 55 AA. The structure was taken from PDB.

The AMBER03 force field [33] was chosen to evaluate interactions between mucin molecules due
to its proven performance in biophysical systems. It is given by:

Etotal = ∑
bonds

kb(R− Req)
2 + ∑

angles
kθ(θ − θeq)

2 +

∑
dihedrals

Vn

2
[1 + cos(nϕ− γ)] + ∑

i<j

[
Aij

R12
ij
−

Bij

R6
ij
+

qiqj

εRij

]
, (1)

where kb, kθ , and Vn are force constants. The first two sums accounted for the deviations from
equilibrium bond length Req and bond angle θeq, respectively. The third accounted for torsion from
dihedral angles ϕ, with the phase γ taking a value of 0◦ or 180◦. The final sum corresponded to
short-range repulsion (Aij), London dispersion (Bij), and electrostatic forces (qi, qj). Usually, the
dielectric constant is taken as ε = 1 where the solvent is represented explicitly [33]. Parameters were
as follows: temperature T = 310 K, pH = 7.0, and 0.9% NaCl aqueous solution (using the four-site
model (TIP3P) of water [34]), with a time step of 2 fs. Berendsen’s method with a relaxation time of 1
fs maintained constant temperature and pressure. The simulation box was given sides of X = 130,
Y = 120, Z = 120, and we applied periodic boundary conditions. The mucin molecules were placed
in the simulation box in the folded form, and after the addition of water molecules, the system was
minimized for 3× 103 steps with a time step of 2 fs.

To investigate crowding in the system, increasing concentrations of mucin were chosen:
c1 = 53.42 g/L (5 mucin molecules), c2 = 106.84 g/L (10 mucin molecules), c3 = 160.26 g/L
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(15 mucin molecules), c4 = 213.68 g/L (20 mucin molecules), and c5 = 267.1 g/L (25 mucin molecules).
Each case was repeated 20 times to obtain more statistically-reliable information. The simulation
runs had the same initial conditions, but differed only slightly in simulation temperature (at the third
decimal digit), which in YASARA also served as the random number seed.

Thus, the simulated system probed concentrations in a range encompassing what is present in
living organisms. The chosen range allowed the model system to accurately simulate mucin both
without crowding (too few particles to form a network) and with obvious crowding (stable network
formation) in the time range of 0–20 ns.

2.1.1. Simulation Parameters

The radius of gyration Rg of a (mucin) molecule can be written as:

Rg =

√√√√ 1
Na

Na

∑
i=1
| ~Ri − ~C |2, (2)

where Na is the number of atoms in the molecule, ~Ri is the position vector of i atom, and ~C is the
position vector of the center of mass of the molecule.

The mean squared displacement (MSD) of a molecule at time step t is defined as:

MSD(t) =
1

Nm

Nm

∑
i
|~ri(t)−~ri(0) |2, (3)

where Nm is the number of molecules in the simulation box and~ri is the position vector of geometrical
center of a molecule i.

2.1.2. Diffusion Coefficient

The time evolution of the MSD of the protein particles (cf., Equation (3)) can characterize the
viscoelastic properties of the system [35]. It is related to the mechanical response functions of the
environment through the generalized Stokes–Einstein relation [36]. In 3D Euclidean space, the MSD
should follow the relation [37,38]:

MSD(t) = 6Dαtα, (4)

where Dα is a generalized self-diffusion coefficient (a constant that does not depend on time and is
of the dimension of [Dα] = cm2/sα) [39,40]. An exponent α 6= 1 represents anomalous diffusion
(α = 1 represents normal diffusion). In normal diffusion, the diffusion coefficient obeys the
Stokes–Einstein law,

D =
kBT

β
, (5)

where kBT is the characteristic thermal energy and β is the friction coefficient, which depends on
particle radius Rg viscosity η as β = 6πRgη. In anomalous diffusion, the quantity MSD/6t can still
be identified with diffusion as the “apparent” diffusion coefficient Dapp(t), but it will scale in time
(or length) as [41]:

Dapp(t) = Dαtα−1. (6)

2.2. Statistical Tests

Macromolecules present complex dynamics that can be modeled by stochastic processes. Several
stochastic models bear consideration for the anomalous dynamics frequently seen in macromolecular
systems and characterized by Equation (4). We will distinguish between continuous-time random walk
(CTRW) and fractional Brownian motion (FBM) or the more general fractional Levy α-stable motion
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(FLSM), to determine which optimally describes the evolution of macromolecules with non-Markovian
evolution [42].

We performed statistical tests that can help discriminate between FBM, FLSM, and CTRW
processes. First is the sample mean squared displacement. If we consider stochastic discrete process
(Xi)

N
i=0, then the sample mean squared displacement (sample MSD) for a characteristic time lag τ is

defined as [43]:

MN(τ) =
1

N − τ + 1

N−τ

∑
k=0

(Xk+τ − Xk)
2. (7)

Parameter MN(τ) is a random variable that yields valuable information when we consider
only small τ, i.e., when τ is much smaller than the length of the series N. If the process (Xi)

N
i=0,

which underlies the recorded signal, follows from a continuous-time random walk, then MN(τ) ∼d τ,
where ∼d denotes a similar distribution. By taking different time dependencies, the sample MSD will
reveal whether our process is better modeled as a CTRW or FLSM [43].

A p-variational test was also used in this work. For given time t ∈ (0, T) and p > 0, the p-variation
is defined as [44]:

Vp(t) = lim
n→∞

V(p)
n (t), (8)

where V(p)
n (t) (unrelated to the force constant Vn from Equation (1)) is given by [43]:

V(p)
n (t) =

2n

∑
j=0
| X
(

min{ (j + 1)T
2n , t}

)
− X

(
min{ jT

2n , t}
)
|p . (9)

where X is a parameter calculated from the MD simulations, taking the form of a single time series
X(t1), X(t2), . . ., X(tN). In practice, sample p-variation can be obtained according to [45]:

V(p)
n =

N/n−1

∑
k=0

| X(k+1)n − Xkn |p . (10)

Observations of V(p)
n as a function of n can yield further information on the origins of time series.

3. Results and Discussion

3.1. Geometrical Properties of the Model Protein System

The molecular initial (a,c) and final (b,d) structures of mucin solutions, for two representative
concentrations (c1 and c5), are presented in Figure 2. For the lowest concentration, the proteins were
able to move freely in the simulation box, following a near random walk until meeting. Three mucin
molecules eventually formed an easily-breakable aggregate (having few intermolecular interactions,
presented in the next Subsection). For the highest concentration, c5, initial and final arrangements
(Subfigures c and d) looked very similar due to the creation of a more stable network, whose formation
was enhanced due to crowding in the system. Differences between the initial and the final structures
can be better investigated through the parameters discussed in the previous section.

According to Equation (2), the average radius of gyration, Rg, of a mucin as a function of time is
presented in Figure 3. This offers some information on the overall geometric changes occurring to a
chain throughout the simulation.
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Figure 2. Initial (a,c) and final (b,d) structures of the mucin network. (a,b) show simulation boxes for
c1, and (c,d) show simulation boxes for c5. Light blue atoms represent carbon, dark blue nitrogen, red
oxygen, yellow sulfur, and white hydrogen. Note that the proteins are fragmented due to the periodic
boundary conditions on each wall.

Figure 3. Radius of gyration (averaged over all molecules originating across all simulation runs) as a
function of time.

The initial mucin radius of gyration was about Rg0 = 13.4 Å. In all cases, Rg decreased with time.
The different concentrations all followed a very similar trend. There was, however, a slight difference
between the crowded and non-crowded systems. For high concentrations, Rg declined marginally more
slowly than for low concentrations where the decrease was more visible, though still only about 1.2%.
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For the uncrowded system, this suggests that, despite the initial folded state, some conformational
changes still occurred, and mainly due to the force field presence, the molecule collapsed. In crowded
conditions, the presence of other proteins in close proximity can prevent internal conformational
changes due to the lack of physical space for the unfolding and refolding to occur.

3.2. Inter- and Intra-Molecular Interactions

The total energy of interactions, computed based on the last two parts of Equation (1) and
averaged per mucin molecule, are presented in Figure 4.

Figure 4. Interaction energies (per one mucin molecule originating across all simulation runs) as a
function of time.

All five cases appeared similar, but the trend of increasing energy with concentration revealed a
crowding effect; it was not simply linear. Despite the mucin concentration increasing in even steps,
there was a clear transition between c3 and c4. Interesting features can also be seen in the binding
tendencies between individual AAs. Maps of these interaction energies are depicted in Figure 5.

The highest energies appeared between Asp-Glu, Arg-Lys, and Arg-Ser. The first two were pairs
of AAs with opposing charges, allowing the formation of salt bridges. Ser is neutral and polar, but
can still form hydrogen bonds with Arg. In all three, the energy was about 3–4 kJ/mol. The increased
concentrations led to the association of additional strongly-interacting AA pairs. Arg, Ser, and Glu
were most prominent on the interaction maps for all cases, though for c4 and c5, two new pairs began
to display considerable interactions: Asp-Ser and His-Ser (energies of about 3–4.5 kJ/mol).

Interaction energies can be further separated according to their location (inter- or intra-molecular)
and origin (hydrogen bonds (HBO) or hydrophobic-polar (HP)) to see which prevails for
network formation.

According to YASARA’s definition of HBO, a bond is formed between two oxygen atoms if:
(i) the hydrogen was within 2.6 of each oxygen; and (ii) the oxygens were within 2.8 of each other.
Additionally, the bond energy must be greater than one fourth the optimal value or 6.25 kJ/mol (or
1.5 kcal/mol). Thus, only strong bonds (up to 2.6) were considered. The HBO energy (as well as
HP interaction strength between hydrophobic atoms) was calculated by the algorithm described
previously [12]. Both results presented information about the strength of the protein network.
Intramolecular HP interactions can be identified with conformational stability of an individual
molecule, while backbone intermolecular HBO interactions are related to network stability [46].
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Figure 5. Maps of interaction energies (kJ/mol) between each pair of AA in mucin.

A large difference between the number of inter- and intra-molecular interactions for both HP and
HBO can be seen (see Figures 6 and 7).

Figure 6. Number of hydrogen bonds per single mucin molecule. Two cases are presented:
(left) intramolecular; (right) intermolecular.
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Figure 7. Number of hydrophobic contacts per single mucin molecule. Two cases are presented:
(left) intramolecular; (right) intermolecular.

For example, the relative number of intermolecular HBO interactions to total HBO interactions
was about 2% for c1, 4% for c2, 5% for c3, 7% for c4, and 8% for c5. This is due to the fact that
the conformation taken from PDB was the protein’s folded state, so the number of intramolecular
interactions was maximized at the start of the simulation.

As the proteins aggregated in the course of the simulation, the number of intermolecular
interactions increased, but more time would probably be needed for this to reach a maximum.
The crowding in higher concentrations likely prevented molecules from finding their lowest energy
conformations, while the extra freedom in low concentrations allowed for more fluctuations.
That is why for c1 (and also c2) stabilization began after 10 ns for both parameters (see Figure 6).
Weak networking seemed to appear for the first time at concentration c3 as evidenced by the continued
increase in intermolecular interactions, but would still be broken with relatively small amounts of
energy. This continued increase mirrored those seen for high concentrations, just for a smaller absolute
number of interactions (a downward shift). The cases c4 and c5 were very similar with almost the same
number of HBO and HP contacts by the end of the simulation (cf. Figures 6 and 7). Thus, increasing
the concentration even further would likely not impact the network mechanical properties.

There was a marked decrease (about 2%) in the number of intramolecular HP interactions
during the first 5 ns of simulation (see Figure 7, left). In the same time, increases in the number of
intramolecular HP interactions (see Figure 7, right) and also HBO of both types were seen. This points
to a conformational reorganization inside individual protein chains that was similar across the
concentrations. One also notices that the relation between parameters inverted when moving from
intra- to inter-molecular interactions. Increasing concentration favors interactions between molecules
while slightly mitigating intramolecular interactions. This, again, was evidence of the competition for
bonds resulting from increased crowding.

In all cases, one can notice that the first 10 ns of simulation were crucial for network formation:
the dynamics of contact creation was initially very fast, but after this time, the process slowed.

In all the interactions charts (cf., Figures 6 and 7), a conspicuous gap between concentrations was
visible. Namely, between c3 and c4, there was a critical concentration above which a transition seemed
to occur. More refined concentration values would be necessary to find the optimum conditions for
strong network formation in this range, sparse enough to allow conformations to occur, but dense
enough to provide the necessary cross-linking.

All results presented in Figures 3–7 were averaged over all mucin molecules originating across all
simulation runs. As a measure of scattering of the results, medians of standard deviation for each case
are presented in Table 1.
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Table 1. Median of the standard deviation for the results presented in Figures 3–7.

Concentration Rg Eint HBO inter HBO intra HP inter HP intra

c1 0.11 94.66 0.49 1.83 1.83 28.18

c2 0.10 74.09 0.38 1.41 2.16 28.83

c3 0.11 65.53 0.45 1.11 1.57 27.82

c4 0.10 72.54 0.48 0.99 2.53 31.71

c5 0.11 96.58 0.40 0.78 2.15 33.98

3.3. MSD of Model Proteins

The MSD of the proteins was time dependent, as presented in Figure 8 (cf., Equation (3)).

Figure 8. Evolution of the protein MSD in time (left) and fitting values of diffusion coefficient Dα

(right) for five concentrations of mucin’s solutions, averaged over all molecules for all iterations of the
simulation. Black lines show the STD of the fitting parameters.

Analyzing the MSD of the particles is important due to its relation to the mechanical response
functions of the system through the generalized Stokes–Einstein relation (see Equation (2) in [36]).
It is interesting to consider of what type of motion the MSD is representative. A detailed analysis
is presented in the next paragraph (cf. Section 2.2). Because macromolecular systems often exhibit
anomalous behavior, we tested if the MSD(t) ∝ tα throughout as in Equation (4). Values of the fitting
parameter α are shown in Table 2 and values of generalized (or fractional) diffusion coefficient Dα are
depicted in Figure 8 right. The fitting was done using the Python MDAnalysis Toolkit [47].

Table 2. α parameters for different concentrations of mucin based on the fitting function presented in
Equation (4).

Concentration α STD

c1 0.931 0.008

c2 0.826 0.006

c3 0.662 0.008

c4 0.517 0.007

c5 0.610 0.005

We can clearly see discrepancies between the results for the c1–c3 and c4–c5 cases. The α parameter
for c1 was close to one. It could suggest a common diffusion-like movement, but knowing that the
environment was viscoelastic, we can deduce that the MSD(t) function should take a different, more
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complex form (cf., Figures 2 and 3 in [36]) with three regimes: short times, intermediate times, when
plateau of MSD is obtained, and large times [48].

The α parameters for c2 and c3 were lower than one; this concentration range also behaved
similarly to the viscoelastic regime, though favoring the elastic contribution. Small aggregates were
created, and transient networks appeared. Proteins in high concentrations, c4, c5, tended to attach to
each other and replace intra HBO and HP interactions with their intermolecular counterparts. This
resulted in abnormal diffusion (α was closest to 0.5, i.e., subdiffusion) due to the confinement of mucin
created by the more stable network. In this case, the soft-matter system exhibited quite solid-like
behavior (elasticity). It should be noted that for intracellular media, elastic forces could arise not just
from the polymer network, but also from the forces due to the activity of molecular motors [35].

How macromolecular crowding affects cellular processes such as protein folding and assembly
was studied in [49]. The authors showed experimentally that crowding led to anomalous subdiffusive
of cytoplasmic macromolecules. Moreover, they proposed that the anomaly in the diffusion (manifested
by α parameter) could be used as a quantifiable measure for the crowdedness. Similar approaches
can be seen in many other publications (e.g., [26,27,41,50]). Banks et al. studied the diffusion of tracer
proteins in highly-concentrated (up to 400 g/L) random-coil polymer and globular protein solutions.
Furthermore, noticing the subdiffusion, they computed an apparent diffusion coefficient and observed
its relation with concentration (see Figure 3 in [41]). They showed a lowering of Dapp in the course of
the concentration. We can also see a similar effect when looking at Figure 9.

Figure 9. Apparent diffusion coefficient as a function of time.

The Dapp was computed based on Equation (6) where the parameters α and Dα were found earlier
by fitting (cf., Table 2 and Figure 8). Two different regimes emerged in Figure 9: initial (up to about
5 ns) and long times (above it). The concentration had a different influence on the structure formation
in each of the regimes.

A similar approach to diffusion in (non-)crowded protein solutions was found in [48]. The authors
presented molecular dynamics simulations of villin headpiece solutions at various concentrations.
They analyzed how diffusion depends on protein–protein contacts. Although they considered the
results (mainly MSD) on three separate time scales, their results were still in accordance with our
own. Namely, they claimed that internal protein dynamics remained largely unaltered as the protein
concentration increased, but translational diffusion slowed. The decrease in diffusion was interpreted
resulting from the transient formation of protein clusters.

3.4. Determining a Stochastic Model

In order to frame the dynamics from a statistical point of view, calculations of sample MSD
and p-variational tests were performed. The first test, sample MSD, indicated that the relationship
between τ and MN(τ) was almost linear for small τ for all HBO time series calculated in our
simulations. Directional parameters for the function MN(τ) differed from one. For all concentrations,
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the number of intramolecular HBO interactions (c1-c5) yielded a much steeper relation than for the
corresponding number of intermolecular HBO interactions. In Figure 10, we show the results of the
test for concentration c1 as an example. All results of the sample MSD suggested that a CTRW did not
underlie the process, as this would produce sublinear behavior.

Figure 10. Calculated sample MSD as a function of time lag (τ) for concentration c1. Two cases are
presented: (left) intermolecular; (right) intramolecular.

Next, we performed the p-variational test according to Equation (10). This test again excluded
a CTRW for modeling changes in the number of inter- and intra-molecular HBO interactions for
all concentrations. These changes of HBO should be modeled as FBM or FLSM, but discrimination
between these two requires an additional statistical test. The most interesting results are presented in
Figures 11–13.

Figure 11. p-variation as a function of n for HBO in concentration c1: (a) intermolecular;
(b) intramolecular.
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In Figure 12b, we can see that values of Vp
n as a function of n increased for p = 1/0.1, p = 1/0.2,

and p = 1/0.3, but decreased for p = 1/0.4 and all further values of p. Such a property is characteristic
of an FBM process. We performed the same tests on the number of intermolecular HBO interactions for
concentration c2. The results of the p-variational are presented in Figure 12a and similarly confirmed
that CTRW would be a poor stochastic model for describing the time evolution of intermolecular HBO
interactions. Here, the clear increasing trend persisted until p = 1/0.4. Around p = 1/0.5, this trend
changed and decreased for the remaining values; p = 1/0.6, p = 1/0.7, p = 1/0.8, and p = 1/0.9.
This, again, is a property characteristic of FBM processes.

The p-variation tests for concentrations c3 and c5 indicated FBM processes for the number of
intramolecular HBO interactions and the number of intermolecular HBO interactions in both cases.
However, the shift in behavior for Vp

n appeared at different values of the p parameter.
The same calculations were again performed for intramolecular HBO for concentrations c1 and c4

and are likewise presented on Figures 11b and 13b. They indicated that these processes resembled an
FBM model. Interestingly, Figures 11a and 13a, representing intermolecular interactions, exhibit some
differences from the rest. The first value (p = 1/0.1) for c1 and the first three for c4 showed no clear
trend, while smaller values of p generated definite decreases. For just these cases, we would conclude
that an FLSM process would be most appropriate for modeling the behavior of intermolecular HBO
formation and annihilation.

Figure 12. p-variation as a function of n for HBO in concentration c2: (a) intermolecular;
(b) intramolecular.
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Figure 13. p-variation as a function of n for HBO in concentration c4: (a) intermolecular;
(b) intramolecular.

4. Conclusions

MD simulations of (non)crowded protein systems were performed at different concentrations.
The results showed that between c3 and c4 (160 g/L and 214 g/L), a transition existed where crowding
began affecting the dynamics of protein network formation. The crowding effect was clearly visible
through interactions energy, the number of intermolecular HP and HBO interactions, and through the
stabilization of the radius of gyration Rg. Additionally, above some limiting concentration (within the
same range as above), the system transitioned to subdiffusive behavior due to network formation,
a feature that was shown through an analysis of the mean squared displacement. It would be interesting
to further this narrow range of concentrations to determine the exact value where crowding occurs and
the sharpness of the transition. The focus of our further research will be the problem of initial packing
of the system and adding analysis of the influence of initial conditions on the network formation
process. Additional work analyzing the complex modulus (G*) could tell us more about the viscoelastic
properties of the system.

Similar behavior showing a threshold was noticed also in a recent experimental study, which
analyzed more complex mucin solution (involving mucin (MUC2) oligomers, additional non-mucin
proteins, and ions Ca2+); see Figure 2A in [51]. In their system, they noticed a threshold at a much
lower concentration, between 5 and 10 g/L, when the system started to behave subdiffusively, showing
in this way gel formation. The discrepancy was most probably caused by the differences in the
system, mainly by the length of the mucin molecule: it is much longer, branched, and unfolded at low
concentrations (see Figure 2C in [51]). Despite this, the vast similarity noticed indicated the usefulness
of the molecular simulation technique in the studies within the polymer sciences area. Such a study
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can be used by the experimentalists to design molecular system with specific viscoelastic properties,
which are important, e.g., in food and health sciences [52].

A novelty in our approach presented in the paper was the study of the nature of stochastic
processes connected to the formation of a physically-cross-linked network in the mucin solution. Our
calculations of sample MSD suggested that the CTRW model did not well describe the evolution of the
number of HBO (inter- and intra-molecular) interactions in time, at least for the range of concentrations
considered in this study. According to the above results, the nature of intermolecular HBO interaction
dynamics also changed when we passed from c3 to c4. For c3, an FBM process would seem to model
the dynamics well, but for c4, an FLMS process appeared to be more appropriate. The same transition
was evident from the intermolecular HBO dynamics when we passed from concentration c1 to c2 (a
transition from an FLMS process to an FBM process). Overall, the statistical analysis of intramolecular
HBO dynamics led us to conclude that FBM best described the process over the entire range of
concentrations tested and demonstrated how alterations in bonding behavior (driven by increases in
concentration) became evident in the statistical properties of the system.
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