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FORMULATION OF SPECTRAL TRUSS ELEMENT FOR GUIDED WAVES
DAMAGE DETECTION IN SPATIAL STEEL TRUSSES

J. CHRÓŚCIELEWSKI1, M. RUCKA2, K. WILDE3, W. WITKOWSKI4

This study presents a spectral finite element and time integration scheme for wave propagation in
spatial truss structures of arbitrary geometry. The current approach does not limit the number of
nodes per element. The numerical simulations have been performed for an ideal truss as well as for
the truss with singularity points imposed by the additional mass. The accelerations time histories
of elastic waves have been applied to find the locations of the additional masses. The detection of
truss singularities based on the analysis of elastic waves is discussed.

Keywords: Elastic wave propagation, spectral element method, spatial truss, structural health monitoring.

1. I

Low amplitude elastic waves can be used for damage detection systems (e.g., [1,
2]). The travelling waves pass through the structure reflecting and refracting on the
geometric boundaries, joints, cracks, internal flaws or some other irregularities. The
information carried out by the waves can be decoded and the location of the damage can
be found. Methods based on groups of waves induced simultaneously on the structure
and having carefully selected properties are called guided wave techniques.

The study on very complex problem of elastic waves propagation in large struc-
tures is in relatively early stage. Modelling of wave propagation is possible using the
finite element method (FEM) [3, 4]. However, the numerical integration becomes very
time-consuming since wave propagation concerns high frequencies and the elements
must be very fine (i.e. of order of wavelength). One of very effective techniques to
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solve the wave propagation problems is the spectral finite element method (SFEM)
developed by D [5]. This technique, based of Fourier spectral analysis, is in fact
the finite element method formulated in the frequency domain. The analysis of wave
propagation by the SFEM in the cracked rod, Timoshenko beam and plate can be found
in references [6, 7, 8]. The FSEM has been widely extended by G et al.

for anisotropic media [9].
P [10] in 1984 in the context of fluid dynamics developed a different ap-

proach called spectral element method (SEM). This method is an expansion of FEM.
The main idea of the SEM is the using of one high-order polynomial for each do-
main. The spectral element method has the same view point as the p-version of the
finite element method [11]. In the SEM the Lagrange polynomials are applied at the
Gauss-Legendre-Lobbatto nodes [11]. The spectral elements are available for elemen-
tary elements. The wave propagation in rod, beam membrane and plate elements using
SEM method were presented by K et al. [12] [13] and Ż et al. [14]. The
shell element was presented by Ż et al [15]. However, there are very few studies
on numerical models for the analysis of wave propagation in a truss structure in time
domain.

This study presents a formulation of a spectral finite element and time integration
scheme for wave propagation in spatial truss structures of arbitrary geometry. As the
shape functions of a single truss element, the high order Lagrange interpolation po-
lynomial is used. To integrate element matrices we use the Gauss-Lobatto-Legendre
(GLL) quadrature rule with the appropriate distribution of the quadrature points. The
formulation contains the details of the transformation of local quantities to a global
frame of the structure. The derivation of temporal integration schemes of the New-
mark type formulated in terms of displacements or in terms of acceleration (a-form)
is presented. The time integration scheme is devoted to the problems concerning wave
propagation in structures with complex geometry. The numerical simulations have been
performed for an ideal truss of a shape of the star dome as well as for the truss with
singularity points imposed by the additional mass.

2. F       

The SEM element is viewed in this paper as C0 isoparametric displacement finite
element. The accuracy of the FEM results may be improved using one (or combination)
of the following approaches: decreasing the element size keeping fixed the interpolation
polynomial (known as h-refinement) and/or by increasing the order of polynomial
remaining the size element fixed (known as p-refinement). The SEM is based on the
p-refinement. This is due to the fact that the higher order polynomials used in such
approach enable more accurate wave propagation simulations.

In addition, in the SEM approach the use is made of the GLL quadrature rule to
integrate the element matrices. Consequently, and with proper distribution of element
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nodes (this issue is discussed later in the text), the mass matrix of C0 element in
the local coordinate system has diagonal structure, cf. for instance [12]. Therefore, it
is possible to formulate the temporal integration schemes in terms of accelerations
with straightforward inversion of diagonal or nearly diagonal mass matrix. This is in
contrast to majority of the temporal integration schemes in structural dynamics that
use the generalized displacements as the primary variables. As a consequence the
inverted stiffness matrix is in principle not diagonal so that matrix decomposition is
time consuming.

The formulation of the spectral truss element follows the classical steps, briefly
recapitulated below. The study is concerned with the geometrically linear analysis and
linear elastic material is considered.

2.1. S   

Consider a straight truss rod from Fig. 1 with given: A – cross-section area, L – length,
E – modulus of elasticity and ρ – mass density. The strong form of initial-boundary
value problem is

Fig. 1. Concept of truss element, local definitions.
Rys. 1. Element kratowy w układzie lokalnym

(2.1) n,x + f = ρAü + cAu̇ on x ∈ [0; L], (.),x = d(.)/dx,

where n is the stress (axial force), f is the body force (that may include also damping
effects),
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(2.2) u|x=0 = u∗, n|x=L = t∗

are Dirichlet and Neumman boundary conditions respectively and

(2.3) u(x)|t=0 = u0(x), u̇(x)|t=0 = v0(x)

are the initial conditions. The superposed dot denotes time derivative and c is the
damping density assumed to be positive. It is assumed that ρ and c are proportional
(up to the units) η = c/ρ where η denotes proportional damping coefficient.

The stress is understood as the function of displacement through the constitutive
relation n = EAε in connection with the kinematical (virtual) relations

(2.4) ε = u,x (δε ≡ δu,x ).

Here δu(x) denotes kinematically admissible virtual displacements. In the course of
classical steps, the weak form (principle of virtual displacements) corresponding to
(2.1) is obtained as

(2.5)

δW ≡ δWint + δWkin + δWdamp − δWext

=

∫

L

δεEAεdx +

∫

L

δuρA üdx +

∫

L

δuηA u̇dx −

∫

L

δu f dx − δu t∗ = 0.

2.2. I ,   

Let ξ ∈ [−1,+1] is the natural coordinate of an element and N is the number of element
nodes. The vector-type variables are interpolated in the way usual for C0 isoparametric
elements way (e.g. [19]) i.e.

(2.6) z̃ (ξ) =
N
∑

i=1

LN
i (ξ) zi = L(e) (ξ) z(e),

where

(2.7) z(e)
= [z1, z2, ..., zN ]T , L(e) (ξ) =

[

LN
1 (ξ) , LN

2 (ξ) , ..., LN
N (ξ)
]

.

Here L(e) (ξ) is the shape function matrix of an element, LN
i (ξ) are the Lagrange

interpolation polynomials of order N − 1 that obey rules

(2.8) LN
i (ξ) =

N
∏

k=1,k,i

ξ − ξk

ξi − ξk
, LN

i

(

ξ j

)

= δi j,

N
∑

i=1

LN
i (ξ) = 1,
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where δi j is the Kronecker delta. Here z(e) stands for vector of (any) nodal values of
function zi = z(ξi) in element. In Eq. (2.6) z̃(ξ) denotes the approximated values of:
geometry x̃(ξ), displacement field ũ(ξ, t), virtual displacement field δũ(ξ). The same
scheme (2.6) is used to interpolate the time derivatives of u(ξ, t) i.e. acceleration ü(ξ, t)
and velocity u̇(ξ, t).

The strains ε̃(ξ, t) and virtual strains δε̃(ξ) are interpolated using standard relations

(2.9) ε̃ (ξ, t) =
N
∑

i=1

Bi (ξ)ui (t) = B(e) (ξ) u (t)(e) ,

(2.10) δε̃ (ξ) =
N
∑

i=1

Bi (ξ)δui = B(e) (ξ) δu(e).

The element strain-displacement operator B(e)(ξ)

(2.11) B(e) (ξ) =
[

B1 (ξ) , B2 (ξ) , ..., BN (ξ)
]

is defined in terms of nodal quantities

(2.12) Bi(ξ) =
dLN

i
(ξ)

dξ
J(ξ)−1, J(ξ) =

N
∑

j=1

dLN
j
(ξ)

dξ
x j

and

(2.13) u(e)(t) = [u1(t), u2(t), . . . , uN (t)]T , δu(e) = [δu1, δu2, . . . , δuN ]T

are the element displacement vector and virtual displacement vector. Taking into ac-
count (2.9) and (2.10) in equation (2.5) and skipping the time argument yields

(2.14)
δWint = (δu(e))T





















∫

L

(B(e)(ξ))T E(e)A(e) B(e)(ξ) dx





















u(e)

= (δu(e))T K(e)u(e) = (δu(e))T r(e),

(2.15) δWkin = (δu(e))T





















∫

L

(L(e)(ξ))Tρ(e)A(e) L(e)(ξ) dx





















ü(e) = (δu(e))T M(e)ü(e),

(2.16) δWdamp = (δu(e))T





















∫

L

(L(e)(ξ))T c(e)A(e) L(e)(ξ) dx





















u̇(e) = (δu(e))T C(e)u̇(e),
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(2.17)
δWext = (δu(e))T





















∫

L

(L(e)(ξ))T f (e)(ξ) dx





















+ δu1t
∗
1 + δuN t∗N

= (δu(e))T (f(e)
ext + f

(e)
nod) = (δu(e))T f(e),

where r(e)

N×1
is the vector of internal forces, K(e)

N×N
is the local stiffness matrix, M(e)

N×N
is

local mass matrix, C(e)

N×N
is local damping matrix, f(e)

N×1
= f

(e)
ext + f

(e)
nod is the load vector

composed of f
(e)
ext

N×1
=























∫

L(e)

Li f
(e)dx























– the vector of element applied forces per unit length

and f
(e)
ext

N×1
= {t∗1, 0, ..., 0, t

∗
N }

T – the vector of prescribed nodal forces.

2.3. N 

To evaluate the element matrices the numerical integration is employed. Therefore, the
formulae for the stiffness matrix, mass matrix and load vector become

(2.18) K(e) → K
(e)
i j
= EA

M
∑

p=1

Bi

(

ξp
)

B j

(

ξp
)

wpJ
(

ξp
)

,

(2.19) M(e) → M
(e)
i j
= ρA

M
∑

p=1

LN
i

(

ξp
)

LN
j

(

ξp
)

wpJ
(

ξp
)

,

(2.20) f
(e)
ext → f

(e)
i
=

M
∑

p=1

LN
i

(

ξp
)

f
(

ξp
)

wpJ
(

ξp
)

,

where M is the number of integration points of the selected integration rule, p ∈

1, 2, ...,M is the label of ξp i.e. the abscissa and wp is the corresponding weight.
In this paper the Gauss-Lobatto-Legendre (cf. for example [11]) quadrature rule

will be used. Here the abscissas are obtained as the roots of the equation

(2.21)
(

1 − ξ2
) dPM−1 (ξ)

dξ
= 0,

where PM denotes the M–th order Legendre polynomial (see for instance [11])

(2.22) PM(ξ) =
1

2M M!
dM

dξM

[

(ξ2 − 1)M
]

.
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The weights wp are found from

(2.23) wp =
2

M (M − 1)
(

PM−1
(

ξp
))2
.

The roots of (2.21) are found numerically using Newton type procedures originally
elaborated in Matlab by Greg von Winckel, downloadable from [16]. Other algorithms
may found in [11] or [17] (for Gauss quadrature).

Based on Greg von Winckel’s experience we have developed own Fortran proce-
dures for finding roots ξp and associated weights wp of the GLL quadrature of arbitrary
large order. Following Greg von Winckel we have assumed the convergence criterion
of order E−16 defined as the maximal absolute difference between ith and (i − 1)th
approximation of the root.

It should be stressed that due to the costs of computations, in our implementation
equations (2.21) and (2.23) are not solved for each element. Instead, given the known
number of nodes per elements for N ≤ 101 the above calculations are carried out once
at the beginning of the simulation. In our implementation, the computed values are
stored in a common and are available for each element and at each time step. For
N > 101, in order to avoid time-consuming calculations, we have created a library of
the abscissas ξp and the weights wp, stored in the external memory in a binary form.
The values required in given calculations are uploaded once in the beginning from the
external database.

The mass matrix of an element will be diagonal if integration points ξp in (2.19)
are nodes ξi of the Lagrange interpolation polynomials in the natural coordinate system
ξ ∈ [−1,+1] (2.6) (2.7), which follows from (2.8). Then M = N and as a consequence
the formula (2.19) becomes

(2.24) M(e) → M(e)
pp = ρA

N
∑

p=1

wpJ
(

ξp
)

, M
(e)
i j
= 0, i , j.

It should be stressed that here the coordinates of the interpolation nodes follow
from distribution of the integration points that are not uniformly distributed in the
natural domain as in standard isoparametric formulation (Fig. 2).

The above discussion shows why the Gauss-Legendre-Lobatto rule is used instead
of standard Gauss quadrature. The latter can not be applied here due to the fact that it
does not include the end nodes of an element. Hence the required inter-element con-
tinuity conditions can not be satisfied. Moreover, the distribution of nodes compatible
with integration points of the GLL quadrature rule (the GLL nodes) eliminates the
so-called the Runge oscillation effect appearing when the uniformly distributed nodes
are used. Figure 2 shows the interpolation polynomial for 11-node element in two
variants: the uniformly distributed (UD) nodes and the GLL nodes. In the first case,
the Runge oscillation effect can be observed. The oscillations occur near the ends and
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Fig. 2. Lagrange interpolation polynomial for GLL and UD distribution of nodes.
Rys. 2. Wielomian interpolacyjny Lagrange’a dla rozkładu węzłów typu GLL i węzłów równomiernie

rozłożonych

they rise with the increase of the number of interpolation nodes. The Runge effect may
lead to no reliable solution. This effect does not appear when the GLL nodes are used.
Additionally, the mass matrix for the uniformly distributed nodes is significantly worse
conditioned for the polynomial orders higher than 5 [18].

The above developments are generally well-known and therefore the discussion
has been confined to necessary details. The most important aspects of the present
formulation are covered in-depth in the following sections.

2.4. T   

In the present paper the principal focus is on spatial trusses. Therefore, the transforma-
tion of local element matrices and vectors appears in the standard FEM approach. In
comparison with the existing elements (see for instance [12]) the crucial point of our
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formulation, is to devise transformation that will not cause the singularity associated
with the internal nodes of the multi-node spectral truss element. The transformation is
described as follows.

The structure is divided into spectral truss elements as illustrated in Fig. 3. Within
an element there are two types of nodes distinguished: two external nodes (1,N)
with three structural degrees of freedom at each end of the element, and (N − 2)
internal nodes (2, 3, ...,N − 1) with one degree of freedom along the element axis.
According to hypothesis of truss element it is assumed that an element may experience
only an overall rotation described by structural displacements of its end nodes so the
element does not undergo bending and remains straight during the whole deformation.
Simultaneously it can undergo elongation or shortening tangent to its (rotated) axis
due to the displacements of the internal nodes. When the local axes of a finite element
are not parallel to the structural axes, transformation from the local to structural axes
must be performed.

Fig. 3. Example of spatial truss structure modelled by SEM: a) overall spatial motion, b) nodal
displacements definitions.

Rys. 3. Przykład kratownicy przestrzennej modelowanej elementami spektralnymi: a) ogólny ruch
przestrzenny, b) definicja przemieszczeń węzłowych

Bearing in mind the effectiveness of the ultimate algorithm it is assumed that
end nodes are transformed to the structural coordinate system while the internal nodes
remain in the local frame. This eliminates additionally time-consuming transformations
of the internal element nodes, which appear in the standard FEM approach. As a
consequence, the final system of equations is of global-local character. Thus, in the
considered N–node truss element the structural displacement q(e) vector has N + 4
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components whereas the local nodal displacements vector u(e) has N components

(2.25) u(e) = [u1, u2, ..., uN ]T , q(e) = [qT
1 , u2, ..., uN−1,q

T
N ]T , qi =



























ūi

v̄i

w̄i



























, i = 1,N.

The local displacements ui, i = 1,N , at each end of the element can be expressed
by the structural displacements:

(2.26) qi : tx → ui, ui = tT
x qi, tx =



























cosαxx̄

cosαxȳ

cosαxz̄



























, i = 1,N,

where tx is a unit vector of element axis composed of directional cosines cosαxx̄,
cosαxȳ, cosαxz̄. Therefore, the transformation matrix T(e) enabling the rotation of the
local axes to the structural axes is given by

(2.27) u(e) = T(e)q(e), T(e) =

























tT
x 0 0

0 1 0

0 0 tT
x

























N×(N+4)

, 1 =





























1 0 0

0
. . . 0

0 0 1





























(N−2)×(N−2)

.

The transformation of the local element stiffness matrix (2.18), the element load
vector (2.20) and the vector of internal forces (2.17) to the structural coordinate system
is then

(2.28) K̄(e)
= T(e)T K(e)T(e), f̄ (e)

= T(e)T f(e)
, r̄(e)

= T(e)T r(e).

The inertia forces and mass matrix must take into account spatial motion of a
structure. Therefore, in contrast to stiffness matrix, all three local nodal translational
degrees of freedom d(e) must be taken into account in the local mass matrix. Thus, in
the case of the N–node truss element, the structural displacement vector q(e) remains
unchanged and has N+4 components, whereas the local nodal displacement vector d(e)

coupled with the inertia forces and mass matrix must be extended to 3N components

(2.29) d(e) = [uT
1 ,u

T
2 , ...,u

T
N ]T , ui =



























ui

vi

wi



























, i = 1, 2, 3, ...,N.

This follows from the fact that the transverse spatial motion of the truss ele-
ment also generates inertia forces though such motion does not contribute to stiffness.
Therefore, the local mass matrix M(e) must be extended to accommodate all three
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nodal degrees of freedom. It can be achieved either formally by appropriate direct
approximation or by straightforward triple aggregation of M(e) i.e.
(2.30)

M
(e)
N×N
= [M(e)

i j
]N×N → M̂

(e)
3N×3N

= [m̂(e)
i j (3×3)]N×N , m̂

(e)
i j
=



























M
(e)
i j

0 0

0 M
(e)
i j

0

0 0 M
(e)
i j



























(3×3)

.

Thus, the element inertia force vector is

(2.31) b̂(e) = M̂(e)d̈(e).

However, d(e) and its time derivatives must be subjected to the kinematical truss
assumptions (constraints) discussed above. They can be elegantly introduced by making
use of the dynamical generalized coordinates concept

(2.32) d(e) = Aq(e),

where the matrix A reads
(2.33)

A
3N×(N+4)

=











































































































































QT o o · · · o O

oT 1 0 · · · 0 oT

(1 − ξ2)t
T
y 0 0 · · · 0 ξ2t

T
y

(1 − ξ2)t
T
z 0 0 · · · 0 ξ2t

T
z

oT 0 1 · · · 0 oT

(1 − ξ3)t
T
y 0 0 · · · 0 ξ3t

T
y

(1 − ξ3)t
T
z 0 0 · · · 0 ξ3t

T
z

...
...
...
. . .

...
...

oT 0 0 · · · 1 oT

(1 − ξN−1)t
T
y 0 0 · · · 0 ξN−1t

T
y

(1 − ξN−1)t
T
z 0 0 · · · 0 ξN−1t

T
z

OT o o · · · o QT











































































































































, O
3×3
=

























0 0 0

0 0 0

0 0 0

























, o
3×1
=



























0

0

0



























i.e. the end nodes (i = 1,N) undergo orthogonal transformation

(2.34) ui = QT qi,Q = [tx ty tz ], tx =



























cosαxx̄

cosαxȳ

cosαxz̄



























, ty =



























cosαyx̄

cosαyȳ

cosαyz̄



























, tz =



























cosαzx̄

cosαzȳ

cosαzz̄



























while the internal nodes (i = 2, 3, ...,N − 1) are subjected to the constraints following
from the assumption about rigid rotation

(2.35) vi = (1 − ξi)t
T
y q1 + ξit

T
y qN , wi = (1 − ξi)t

T
z q1 + ξit

T
z qN , ξi =

xi

l
.
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The local mass element matrix M̂(e) and the element inertia force vector b̂(e) are
transformed to the structural coordinate system by the matrix A(e)

(2.36) M̄(e) = A(e)T M̂(e)A(e), b̄(e) = A(e)T b̂(e).

Notations (2.27) and (2.36) are purely formal. In the implementation the extensive
use is made of the fact that both T(e) and A(e) are sparse (pseudo-diagonal). The
system of equation of motion is built in the course of standard aggregation of the
element matrices and vectors referred to the structural coordinate system

(2.37)
M = A

N {elem}

e=1 M̄(e), K = A
N {elem}

e=1 K̄(e), r = A
N {elem}

e=1 r̄(e),

b = A
N {elem}

e=1 b̄(e), p = A
N {elem}

e=1 f̄ (e).

The boundary conditions are introduced simultaneously with the aggregation pro-
cess (2.37). The damping matrix and damping force vector are

(2.38) C = ηM + αK, c = Cq̇.

In the case of explicit time integration schemes it is required [19] that mass and
damping matrices are diagonal for the method to be explicit. Therefore, (2.38) becomes

(2.39) α = 0 ⇒ C = ηM ⇒ c→ {ci} = η
{

biq̇i(q̈i)
−1
}

.

Thus, the final system of equation of motion and equilibrium condition are respec-
tively

(2.40) Mq̈ + Cq̇ +Kq = p, j = p − b(q̈) − c(q̇) − r(q) = 0,

where q, q̈ and q̇ are structural vectors of displacements, accelerations and velocities,
respectively.

In passing it should be noted that even if relation M(e) → M̂(e) renders the diagonal
matrix, as a consequence of the transformation (2.36) the element mass matrix referred
to the structural coordinate system M̄(e) (2.37) is no longer diagonal. Nevertheless, this
fact is concerned with end nodes only while the remaining part is diagonal. This fact
is exploited in the implementation.

2.5. T 

The temporal integration is performed in standard fashion. It is assumed that the
solution of the linear equation of motion (2.40) is approximated qn = q(tn) in finite
number of time points t1, t2, ..., tn, ..., and qn, q̇n and q̈n are known from the previous
step. Then we seek the solution at the next point tn+1 = tn + ∆t writing (2.40)1 as

(2.41) Mq̈n+1 + Cq̇n+1 +Kqn+1 = pn+1,
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where ∆t is the time step. In the Newmark family [20] of the time integration schemes
the solution at time instance tn+1 consists of the following approximations with respect
to the accelerations q̈n+1 as the unknowns

(2.42) q̇n+1 = ṽn+1 + ∆tγq̈n+1, ṽn+1 = q̇n + ∆t(1 − γ)q̈n,

(2.43) qn+1 = d̃n+1 + (∆t)2βq̈n+1, d̃n+1 = qn + ∆tq̇n +
1
2

(∆t)2(1 − 2β)q̈n.

The values of β and γ specify various integration schemes, cf. for instance [19].
These parameters are also responsible for the stability and the accuracy of the inte-
gration scheme. In the numerical simulations presented in the following Sections the
trapezoidal rule is used with β = 1/4 and γ = 1/2.

Solving (2.43) with respect to q̈n+1 and substituting the result into (2.42) yields
the relations

(2.44)
q̇n+1 = −γ(∆tβ)−1qn + (1 − γβ−1)q̇n + ∆t(1 −

1
2
γβ−1)q̈n + γ(∆tβ)−1qn+1

= v̄n+1 + γ(∆tβ)−1qn+1,

(2.45)
q̈n+1 = −(∆t)−2β−1[qn + ∆tq̇n +

1
2

(∆t)2(1 − 2β)q̈n] + (∆t)−2β−1qn+1

= ān+1 + (∆t)−2β−1qn+1.

The temporal integration scheme proposed by authors is based on the pseudo-diagonal
matrices M and C. Combining (2.41) with (2.42) and (2.43) leads to the following
equation with respect to the acceleration q̈n+1 as the unknown

(2.46)
[

M + ∆tγC + (∆t)2 βK
]

q̈n+1 = pn+1−Cṽn+1−Kd̃n+1, q̈n+1 = M̃−1
(

pn+1 − j̃n+1

)

,

(2.47) M̃ =M + ∆tγC + (∆t)2 βK, j̃n+1 = j̃n+1
(

qn, q̇n, q̈n

)

= Cṽn+1 +Kd̃n+1.

To obtain q̈n+1 it is necessary to find

(2.48) M̃−1 = [M + ∆tγC + (∆t)2 βK]−1.

For multi-node truss element the above formal inversion would be extremely time
consuming. Yet, from (2.48) it is seen that if matrices M and C are pseudo-diagonal,
as obtained from the GLL quadrature rule, a considerable reduction of computational
time is obtained. Nevertheless, due to the fact that the stiffness matrix K is by definition
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of full structure, the efficiency of the computation is limited. This problem may be
overcome by rephrasing (2.41) in terms of the vectors of internal forces viz.

(2.49) Mq̈n+1 + Cq̇n+1 = pn+1 − r
(

qn+1
)

.

Here r
(

qn+1
)

is found directly from (2.37), and therefore, the stiffness matrix K

is not necessary. The present approach makes only sense with the pseudo-diagonal
matrices M and C, for the reasons discussed below.

Due to the presence of qn+1 on the right hand side of (2.49) the scheme is implicit,
and therefore, requires iteration. By introducing iterative notation i.e.

(2.50) q̈
(i+1)
n+1 = q̈

(i)
n+1 + δq̈,

(2.51) q̇
(i+1)
n+1 = q̇n + ∆t[(1 − γ)q̈n + γq̈

(i)
n+1] + ∆tγδq̈ = q̇

(i)
n+1 + ∆tγδq̈,

(2.52) q
(i+1)
n+1 = qn + ∆tq̇n +

1
2

(∆t)2[(1 − 2β)q̈n + 2βq̈(i)
n+1] + (∆t)2βδq̈ = q̈

(i)
n+1 + (∆t)2βδq̈

into (2.49) and rearranging terms yields implicit equation with respect to δq̈

(2.53)
[

M + ∆tγC
]

δq̈ = pn+1 − b
(i)
n+1 − c

(i)
n+1 − r(q(i)

n+1 + (∆t)2βδq̈).

The correction of δq̈ is found using method of simple iteration

(2.54) δq̈ =
[

M + ∆tγC
]−1
(

pn+1 − b
(i)
n+1 − c

(i)
n+1 − r(q(i)

n+1)
)

.

It is clear that if M and C = ηM are by assumption pseudo-diagonal substantial
efficiency of computation is gained. The so designed integration scheme is fast and
efficient in the context of the wave propagation analysis.

The equation (2.54) is solved in the iterative way until the equilibrium condition
becomes satisfied

(2.55) j
(i+1)
n+1 = pn+1 − b

(i+1)
n+1 − c

(i+1)
n+1 − r(q(i+1)

n+1 ) → 0.

The iterations are terminated if convergence is achieved. Since in view of (2.54),
the equation (2.55) is equivalent to δq̈ → 0 the convergence is assessed using the
relative convergence criteria

(2.56)
||δq̈||

||q̈
(i+1)
n+1 − q̈n||

< ε1, max
k

|δq̈k |
∣

∣

∣q̈
(i+1)
kn+1 − q̈kn

∣

∣

∣

< ε2,

where ||.|| is Euclidean norm of a vector and ε1 and ε2 are a priori assumed. Once (2.54)
is solved the remaining state variables are updated through relations (2.50)–(2.52).
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3. N    

3.1. G

The possibility of damage detection in spatial truss is studied on the example of the
star dome presented, e.g., in [22]. The geometry of the dome (Fig. 4) has been taken
from [22] while the remaining properties has been adopted as: modulus of elasticity
E = 210 GPa mass density ρ = 7850 kg/m3, element area A = 2×10−7 m2. The damping
parameter η in Eq. (2.39) equals 200 1/s. The value of the damping parameter was
chosen based on experimental investigations carried out on the simple rod.

Fig. 4. Star dome structure, top and front view, geometry and load.
Rys. 4. Konstrukcja kopuły w kształcie gwiazdy, rzut z góry i boku, geometria i obciążenie

The elastic wave actuator is located at the top of the dome. As an excitation
the sinusoidal signal of amplitude 1 N and of frequency 200 kHz modulated by the
Hanning window was applied. The load has been placed at the node 13 of the structure
model along global z̄ axis. The total time of load action is t = 0.02 ms. Two cases are
considered: in the first case a structure is ideal (case 1) while in the second case the
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structure has the additional mass (case 2). The additional mass is equal 2% of the total
mass of the truss girder. The time step was assumed as 10−8 s.

3.2. S   

Based on experimental and numerical simulations performed for a simple rod it has
been concluded, that only the GLL distribution of nodes in both geometric coordinates
and the natural coordinates guaranties the appropriate modelling of wave propagation.
Both the GLL and Gauss integration rule can be used, however the GLL integration
rule is more effective. The minimum number of nodes for proper response modelling
is about 7 nodes per wavelength. Based on the above results the spectral element with
81 GLL distributed nodes in both geometric and natural coordinates is applied to the
numerical model of the 3D truss.

To assess the correctness of the numerical model the acceleration of all the nodes
in the vicinity of the star dome top were plotted in Fig. 5a. It is visible, that all
acceleration signals are the same as they should be due to the geometrical symmetry
of the structure. The similar comparison for the nodal accelerations in the vicinity of
the fixed supports is illustrated in Fig. 5b.

Fig. 5. Acceleration history: a) nodes near the top, b) nodes near the support.
Rys. 5. Sygnały czasowe przyspieszeń: (a) węzły w sąsiedztwie wierzchołka kopuły, (b) węzły w pobliżu

podpory
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Fig. 6. Animation of wave propagation in star dome: a) ideal structure, b) structure with additional mass.
Rys. 6. Animacja propagacji fal w kopule: (a) konstrukcja bez dodatkowej masy, (b) konstrukcja

z dodatkową masą

Figure 6a illustrates the snapshots from the animation depicting the movement of
the waves for the structure without additional mass. Animation was performed using
GiD postprocessor [22]. The wave signal excitation imposed at node 13 in the vertical
direction causes structural movement all structural nodes in the time instance t = 0 ms.
The first time instance in Fig. 6 has been selected as 0.01 ms, when the front of the
wave starts propagating. In the time instance t = 0.035 ms wave propagates through
the all structural elements. In the next selected time instance t = 0.05 the waves reflect
from the nodes 2, 4, 6, 8 10 and 12. In the last time instances t = 0.075 ms, the
reflected waves are visible.

The case 2 concerns the truss with additional mass. The additional mass was
added at the node no. 300, in the distance of 7.77 cm from the node 13 (Fig. 4).
In Fig. 6b animation of propagating waves are illustrated.
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Fig. 7. Acceleration at nodes 13 and 329 for the star dome without additional mass and with additional
mass.

Rys. 7. Sygnał przyspieszenia w węzłach 13 i 329 dla konstrukcji bez dodatkowej masy i z dodatkową
masą
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The comparison of the acceleration signals for the node 13 and 329 is shown in
Fig. 7. The accelerations of node 13 in both x̄ and ȳ direction are close to zero for the
case without the additional mass. However, when the mass is added, the reflections
appear. In the acceleration of node 13 and 329 there are visible peaks corresponding
to the wave reflecting from the truss nodes as well as from the additional mass in
the horizontal acceleration response at the node 2. The time of reflection from the
additional mass is found to be 0.0297 ms. The knowledge of the reflecting time and
the wave speed enables to estimate the localization of the additional mass as 7.68 cm.

4. C

In this paper the formulation of elastic wave propagation in spatial steel truss is presen-
ted. The numerical simulations are conducted on the star dome example. The modelling
of the star dome was performed by the spectral element method with the Lobbato in-
tegration rule. 81-node elements have been applied. Use of Gauss-Legendre-Lobatto
(GLL) nodes is necessary to avoid the Runge effect. Despite of using the Lobatto
integration rule, the mass matrix is not diagonal. The mass matrix losses the diagonal
form in the process of transformation from local to global coordinate system. However,
it remains pseudo diagonal and integration of the equations of wave propagation can
be efficiently conducted.

The numerical simulations have been performed for an ideal truss as well as for the
truss with singularity points imposed by the additional mass. The location of additional
mass can be estimated by analysis of the travelling times of the incident and reflected
waves.
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4. L. Ĝ, Computation of propagative waves in free rail using finite element technique, Journal of
Sound and Vibration, 185, 531–543, 1995.

5. J.F. D, Wave propagation in structures: spectral analysis using fast discrete Fourier transforms,
second ed. Springer-Verlag, New York 1997.

6. M. P, M. K, Analysis of longitudinal wave propagation in a cracked rod by the spectral

element method, Computers & Structures, 80, 1809–1816, 2002.
7. M. K, M. P, W. O, The dynamic analysis of a cracked Timoshenko beam by

the spectral element method, Journal of Sound and Vibration, 264, 1139–1153, 2003.
8. M. K, M. P, W. O, Wave propagation in plate structures for crack detection,

Finite Elements in Analysis and Design, 40, 991–1004, 2004.
9. S. G, A. C, D. R. M, Spectral finite element method: wave propa-

gation, diagnostics and control in anisotropic and inhomogeneous structures, Springer-Verlag, London
2008.

10. T. P, A spectral element method for fluid dynamics: laminar flow in a channel expansion, Journal
of Computational Physics, 54, 468–488, 1984.

11. C. C, M. Y. H, A. Q, T. A. Z, Spectral Methods in Fluid Dynamics, Springer
Verlag, Berlin, Heidelberg 1998.

12. P. K, M. K, W. O, Wave propagation modelling in 1D structures using

spectral finite elements, Journal of Sound and Vibration, 300, 88–100, 2007.
13. P. K, A. Ż, M. K, W. O, Modelling of wave propagation modelling in

composite plates using the time domain spectral element method, Journal of Sound and Vibration,
302, 728–745, 2007.

14. A. Ż, M. K, W. O, Propagation of in-plane wave in an isotropic panel with a

crack, Finite Elements in Analysis and Design, 42, 929–941, 2006.
15. A. Ż, M. K, W. O, Propagation of elastic waves in Shell-like structures, Pro-

ceedings of the Fourth European Workshop on Structural Health Monitoring, 533–539, 2008.
16. http://www.mathworks.com/matlabcentral/fileexchange
17. W.H. P, S.A. T, W.T. V, B.P, F, Numerical recipes in Fortran 90: the

art of parallel scientific computing, Cambridge University Press 1999.
18. C. P, Introduction to Finite and Spectral Element Methods using MATLABr, Chapman &

Hall/CRC, 2005.
19. T.J.R. H, The finite element method: linear static and dynamic finite element analysis, Dover

2000.
20. N.N. N, A method of computation for structural dynamics, Proc ASCE, J. Engng. Mech. Div.,

85, (EM3),67–94, 1959.
21. M. G, F.A.R. G, W.S. V, H.B. C, Nonlinear positional formulation for

space truss analysis, Finite Elements in Analysis and Design, 42, 1079–1086, 2006.
22. http://gid.cimne.upc.es/

SFORMUŁOWANIE WIELOWĘZŁOWEGO KRATOWEGO ELEMENTU SPEKTRALNEGO DO
WYKRYWANIA USZKODZEŃ W STRUKTURACH PRZESTRZENNYCH ZA POMOCĄ FAL

SPRĘŻYSTYCH

S t r e s z c z e n i e

W pracy przedstawiono sformułowanie wielowęzłowego elementu spektralnego oraz odpowiedniego sche-
matu całkowania ukierunkowanego na problem propagacji fal w kratownicach przestrzennych o dowolnej
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geometrii. Zaproponowane podejście nie ogranicza liczby węzłów w elemencie kratowym. Porównawcze
rozwiązania numeryczne przeprowadzono dla konstrukcji idealnej (w stanie nieuszkodzonym) oraz dla
konstrukcji z miejscową nieregularnością w formie dodatkowej masy. Zadaniem odbieranych w punkcie
pomiarowym sygnałów czasowych przyspieszeń fal sprężystych jest wykrycie i zlokalizowanie pozycji do-
datkowej masy. W pracy przeprowadzono dyskusję nad możliwością detekcji uszkodzeń w konstrukcjach
kratowych na podstawie analizy fal sprężystych.
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