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with elementary functions and dilogarithms. For some of the integrals, the analytic formulas
had never been published before. The correctness of the derived formulae was checked by com-
paring the form of the expressions and values of the selected integrals with the data available
in the literature. The agreement between the values obtained using the derived expressions
and the data from previous studies is to 40 significant digits. The derivation of these integrals
in this form represents an important step towards the applications of the Hylleraas method
in the accurate calculations of atomic and molecular systems with more than a few electrons.
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Chapter 1

Introduction

1.1 Thesis statement

In this thesis we show that all integrals called four-electron singly-linked Hylleraas of form
�

d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

exp(−w1r1−w2r2−w3r3−w4r4)r
n1
1 rn2

2 rn3
3 rn4

4 ra12r
b
13r

c
14r

d
23r

e
24r

f
34, (1.1)

with {w1, w2, w3, w4} ∈ R+ ∧−1 ≤ {a, b, c, d, e, f, n1, n2, n3, n4} ∈ Z with at most three odd pa-
rameters among {a, b, c, d, e, f} can be obtained as the closed-form analytic expressions involving
dilogarithms and elementary functions.

1.2 Motivation

1.2.1 Accurate calculations of the atomic systems

Recent advances in laser spectroscopy have made it possible to the determination of atomic energy
levels with accuracies routinely in the range of 0.01�0.0001 cm−1 across the periodic table [1].
Meanwhile current theoretical methods, with the exception of the few lightest atomic systems up
to �ve or six electrons, typically do not yield results more accurate than 1 cm−1 [2]. Therefore,
new theoretical developments in highly accurate methods are essential for the computational
prediction of spectra and properties of the atomic systems with more than a few electrons, in
order to support and e�ciently guide experimental investigations. The most accurate solutions
of the Schrodinger equation for atomic and small molecular systems are usually obtained using
the variational method based on the quantum mechanical variational principle as it provides
both the upper bound on the true energy eigenvalue and reliable methods to improve the energy
and estimate the convergence (and consequently accuracy) of the calculations [3]. The method
can be summarised as the minimisation of the following functional

ε [Ψ(α)] =
⟨Ψ(α)| Ĥ |Ψ(α)⟩
⟨Ψ(α)|Ψ(α)⟩ , (1.2)

where ε [Ψ(α)] ≥ E0 estimates of the lowest eigenvalue of the Hamiltonian Ĥ and approaches
the exact ground state energy (E0) of the system described by the Hamiltonian from above
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as the trial function Ψ(α) approaches the eigenfunction Ψ0 of the ground state by varying the
parameter (or set of parameters) α. Traditionally, the trial function takes the form of a linear
combination Ψ =

∑
i ciψ(α), which leads to the formulation of the problem in terms of a gen-

eralized eigenvalue problem, resulting in method that is commonly called the Ritz method [4].
The Ritz method also allows to easily �nd also the approximate energies of the excited states as
the subsequent larger eigenvalues of the eigenproblem. In order to use the variational method, a
suitable set of basis functions Ψ(α) must be chosen. The choice of basis functions is necessarily
a compromise between the several factors such as the properties of the trial function must ful�ll,
the required asymptotic behaviour of the wave function (that variational function converges to),
the di�culty and computational cost of obtaining matrix elements, the complexity of the math-
ematical expressions involved, the availability of existing optimised sets of basis functions and
codes to use them, and their suitability for e�cient variational optimisation.

The most important and widely used class of basis functions used in variational calculations
are linear combinations of the products of the orbital functions [5]. Such functions consist of
(usually antisymmetrized) products of one-electron functions [6] of the form

φ(r) = Rl(r)Y
m
l (θ, ϕ), (1.3)

where r, θ, ϕ are spherical coordinates, Rl(r) is the radial function (that can take various forms)
and Y m

l (θ, ϕ) is the angular function, speci�cally the spherical harmonic, while l = 0, 1, 2, 3, ...,m =

−l,−l+1, ..., l+1, l is the angular momentum and its projection on the z axis. Such a formulation,
especially when orbitals are chosen to be orthonormal, allows for extremely e�cient evaluation
of the matrix elements as well as the formulation of self-consistent �eld methods, which can be
followed by the inclusion of the extensions to this method that describe electron correlation.
While it is possible to use various types of orbital functions, including the numerical orbitals
on the grid [7, 8], there are two most commonly used functional forms of the orbitals. For the
Slater [9] orbitals, the radial function is

Rl(r) = N(l, a)rl exp(−ar), (1.4)

where N(l, a) is normalization factor. In turn, for the Gaussian [10] orbitals radial functions are

Rl(r) =M(l, a)rl exp(−ar2) (1.5)

where M(l, a) is the normalisation factor this time. While the Slater orbitals are more physi-
cally motivated and were discovered 20 years earlier, the Gaussian orbitals that are the most
universal and widely used in quantum physics and chemistry nowadays due to extremely e�cient
algorithms for calculating matrix elements, especially for molecular systems [11]. However, they
su�er from the two drawbacks. The �rst is that since they have a quadratic dependence of the
nucleus-electron distance r in the exponent, they decay too quickly for the large values of r
(which is immediately obvious when Gaussian orbital is compared against the analytic solution
for the hydrogen atom). Secondly, the exact many-electron function that the variational method
converges to has to have few known analytical properties at the coalescence of the particles.
These conditions are so called Kato cusp conditions after their discoverer [12] and have the form

lim
rij→0

(
∂ψ (rij)

∂rij

)

av

= µijQiQjψ (rij = 0) , (1.6)
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where av denotes the averaging over the sphere, Qi, Qj are the charges of the particles and
µij is their reduced mass. The Kato cusp condition describes the behaviour of the exact wave
function at the coalescence of two particles and additional conditions are known for three particles
[13]. The Gaussian orbitals do not ful�l these conditions for neither electron-nucleus nor for
electron-electron coalescence. In turn, Slater-type orbitals ful�l the nucleus-electron coalescence
condition, but not for electron-electron condition. As a matter of fact all orbital functions fail
to ful�l this condition. Nevertheless, while they do converge to the true energy limit in the
limit of the in�nite number of basis functions this insu�ciency results in the slow convergence of
methods based on the orbital expansions with respect to the maximum angular momentum lmax

included in the basis. While the theoretical analysis suggests that the convergence of the orbital
functions is proportional to l−4

max [14], convergence proportional to l−3
max arises from the practical

computations [15, 16]. This poses a signi�cant problem when high accuracy of the variational
energy or when the accurate wave function is required. The schematic illustration of this problem
is presented on the Fig 1. This behaviour, while explained theoretically in greater detail later

Figure 1.1: Schematic representation of the convergence of energy with maximum angular mo-
mentum for orbital and explicitly correlated functions. For the explicitly correlated function l−8

max

convergence is assumed following the analysis of Kutzelnigg [14], while for orbitals l−3
max is as-

sumed because it is the most widely used formula for extrapolation to the complete basis [15,16].

by Bartlett [17] (and independently by Fock [13]) was �rst discovered via numerical experiments
by Hylleraas [18]. While calculating ionisation energy of the helium atom, he noticed the slow
convergence of the variational method using orbital functions. He later, discovered that the
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convergence could be signi�cantly improved if the distance between the electrons was introduced
into the variational wave function [19]. This improvement allowed to �nd complete agreement
(within 0.01 eV) with the most accurate spectroscopic measurements at the time and quickly
opened up a research avenue that led to the accurate calculation of the hydrogen molecule by
James and Coolidge [20] and continues to this day, among the others, in the present thesis.
Although the idea of introducing interelectronic distances into the trial function was presented
earlier by Slater [21] based on a theoretical analysis of the behaviour of the wave function near
the Coulomb singularities, he didn't pursue a precise numerical calculation of the ionisation
energy of helium. The methods with interelectronic distances explicitly included into the wave
functions are named correlated methods [22]. While they have been traditionally used only
in highly accurate calculations of few-electron systems [23], recent progress in development of
R12/F12 methods [24] has allowed explicitly correlated methods to be applied to large and
complex molecular systems [25]. The success of the R12/F12 methods in large systems hasn't
fully materialised in the calculations of the atomic [26] and diatomic systems [27] with the
intermediate sizes beyond a few electrons, where the large-scale orbital-based calculations still
rival the accuracy of the R12/F12 methods [28, 29]. In turn, in the classical, high-accuracy
explicitly correlated methods calculations of system with few electrons the two most widely used
approaches are [22] the Hylleraas method and its variants and explicitly correlated Gaussian
functions. Calculations using these types of functions are currently computationally tractable
in systems with no more than six electrons. In my opinion, this means that there is a gap
between the extermely accurate methods available for up to six electrons and general methods
that are applicable to heavier atoms and large molecular systems. In order to analyse what are
the limitations of the many-electron extensions of the existing high-accuracy explicitly correlated
variational methods that have been applied beyond the two-electron systems let us consider these
methods.

1.2.2 Most accurate explicitly correlated methods

First, we start with the explicitly correlated Gaussian (ECG) functions, as introduced by Boys
[30] and Singer [31], which have been extensively described in the recent review [32]. Their
general many electron form of a single linear combination of the ECG function is

n∏

1=i<j

exp(−air2ij) exp(−br2i ), (1.7)

where n is the number of electrons, the indices numbering the electrons are i, j, while ri is the
distance from the nucleus to the ith electron, the rij = |ri − rj | is the distance between the ith
and jth electron and {a, b} ∈ R+ are variational parameters. The main reason for the success
of the ECGs is the fact that it is possible to evaluate matrix elements over these functions
extremely e�ciently using Gaussian Product Theorem, which states that the product of two
Gaussian functions centered at A and B can be expressed as [10]

exp(−ar2A) exp(−br2B) = exp(−sr2C) exp(
−ab(AB)2

s
), (1.8)
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where s = a + b, AB = A − B and C = (aA+ bB) s−1 is the new centre to which the
the Gaussian is shifted. Repeated application of this relation and its generalisation allows to
calculate all integrals over ECGs analytically. Since the evaluation of the ECG integrals does not
pose large di�culty the problem with extension to larger number of electrons must lie elsewhere.
There are two signi�cant problems with extending function of type (1.7) to many electrons.
The �rst is that since the function of electrons needs to be antisymmetric this function needs
to be antisymmetrized generating n! terms, since all interelectronic distances are present in
the function. Secondly, per each linear combination given by equation (1.7) there is a set of
n(n+1)/2 nonlinear variational parameters. Consequently, the number of nonlinear parameters
to optimise for each term in the linear combination of the trial function grows quickly with the
number of electrons leading to di�cult many-variable optimisation problem. The solution to this
problem is possible via restriction of function (1.7) to only single exp(−air2ij) leading to functions
called Gaussian Type Geminals [33] (GTG). This approach has been studied and applied in
the computations involving larger systems, such as neon atom [34] and water molecule [35]
in the past, but the accuracy and e�ciency of GTG methods were surpassed by the newer
R12/F12 methods [24]. Nevertheless, versatility of the ECG functions have been widely used
in calculations of few-electron systems and are nowadays essential in obtaining highest-possible
accuracy in systems few particles where for atomic systems with more than three electrons they
dominate both in terms of accuracy and performance [32]. Furthermore, ECGs have been used
to perturbatively calculate the relativistic and QED corrections, include nonadiabatic e�ects
in few-electron atomic and molecular systems, and have recently been employed to solve the
Dirac-Coulomb equation, including the no-pair Breit interaction [36]. If not for the factorial
scaling with the number of the electrons and steeply growing number of nonlinear parameters
in the ECG functions, they would be excellent candidates for highly-accurate method for the
systems with more than few electrons. Unfortunately do not see how these two di�culties can
be surmounted.

Next, we note that there exists a class of explicitly correlated exponential (ECE) functions
(sometimes called explicitly correlated Slater functions) that are analogous to ECG with the
functional form of the single term in linear combination that is

n∏

1=i<j

exp(−airij) exp(−bri) (1.9)

with symbols having the same meaning as in the de�nition of ECG functions (equation (1.7)).
For two-electron systems such functions are sometimes named Slater type geminals. While these
functions have supreme variational convergence properties, the product theorem that would be
similarly useful for their evaluation as the one for ECG (given in eq. (1.8)) is not known.
Therefore, the integrals with this functions are complicated to evaluate beyond two electrons
and such functions are widely used only in the two-electron systems [37�43]. While the analytic
formulas for three-electron integrals do exist [44, 45] (and was extended to include complex
variational parameters [46]), and we brie�y discuss them in section 2.3.1 of this thesis, their
evaluation is very involved and it is di�cult to control the numerical accuracy and consequently
ECE are scarcely utilised in the three-particle atomic systems, with only one study of the three-
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electron lithium atom [47] that we are aware of. The advantage of ECEs is that the recoil
corrections and higher-order QED e�ects can be e�ciently calculated in this basis [48], but so
far the calculation of such corrections to the energy levels have realised only in the helium-like
systems.

Finally, we turn to the Hylleraas-type functions. The single term of the linear combination
in the Hylleraas wave function has the following form for many-electron atoms

n∏

1=i<j

exp(−wiri)r
ni
i r

mij

ij , (1.10)

where, again, n is a number of electrons, i, j are the electron indices, ri and rij are nucleus-electron
and electron-electron distances, this time raised to the powers −1 ≤ {ni,mij} respectively and
wi ∈ R+ are variational parameters. As this function ful�lls both Kato cusp conditions and has
correct decay for large ri it is an excellent candidate for basis function and it indeed exhibits
exponential convergence to the true energy of the system. Since this form of the function includes
all possible distances between the electrons, the calculation of the matrix elements required by the
variational method involves integration over coordinates of all electrons. Such integrals cannot
be factored to lower dimensional integrals as in the case of the orbitals and the relation similar to
the Gaussian Product Theorem is not known for the Hylleraas integrals. Therefore, the integrals
quickly become extremely formidable with the increasing number of electrons. As a matter of
fact, reliable integration methods for fully correlated Hylleraas function exists only for up to three
electrons (the details of the integration methods avaiable for Hylleraas functions are discussed in
the next section and in Chapter 2). Beyond that number of electrons, the simpli�cations of this
function are necessary. Hylleraas functions were extensively used in highly-accurate calculations
for two- [49�51] and three-electron systems [47, 52] and remains the most accurate method of
calculation for the latter. We also note, that Hylleraas basis was successfully used to calculate
relativistic [53], QED and recoil corrections [54, 55].

Such simpli�cations can be preformed by limiting the number of the interelectronic distances
in the Hylleraas functions. The limitation may be restricted only to odd powers of rij , since the
even powers can be decomposed into the functions of nucleus-electron distances via the relation
r2ij = r2i + r2j − 2rirj cos(θij) and cos(θij) may be further transformed, for example using the
formula for the cosine of the di�erence of two angles. Therefore, if function (1.10) is restricted
to the single odd power of rij is called singly-linked Hylleraas function. Analogously, if there
are two odd factor of inter-electronic distances such function is called doubly-linked function.
Consequently n-tuple linked functions could be constructed up to reconstruction of the original
Hylleraas function. After plugging singly-linked Hylleraas function into the expression for the
variational energy functional (1.2) it is immediately clear that the integrals of the singly-linked
Hylleraas functions involve up to three odd rij 's, since the �rst one is from the bra, the second
one from the ket and the third one is in Coulomb operator of the Hamiltonian. Therefore, we
will restrict our focus to the singly-linked Hylleraas method as it appears to be a reasonable
compromise between the properties ful�lled by the trial function and di�culty of integration.
The results from the Hylleraas methods are mostly limited to two- [49, 50] and three-electron
atomic systems [56�58] with only several studies on the four-electron systems in the singly-
[59�61] and doubly-linked [62, 63] Hylleraas basis. While the latter studies did not yield results
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with leading accuracy it is worth noting, that very small basis sets were used. This indicates,
that the bottleneck lied in the evaluation of the matrix elements (since otherwise size of the
eigenproblem is the bottleneck of the calculations) and therefore computation of the integrals of
the singly- and doubly-linked Hylleraas functions. This observation is an important motivation
for the work undertaken in this thesis.

It is worth pointing out that there exists another method of simplifying Hylleraas func-
tion. It was independently proposed by Sims and Hagstrom [64] under the name of Hylleraas-
Con�guration Interaction (Hy-CI) and by Wo¹nicki [65] who named method Superposition of
Correlated Con�gurations (SSC). In this method the wave function takes general form of a CI
expansion

Ψ =
∑

k

CkΦk (1.11)

with

Φk = ÂÔ(Lz)

[
χkr

vk
ij

N∏

m=1

φkm

]
, (1.12)

where the power vk of interelectronic distance is equal to either 0 or 1, Â is the antisymmetrizing
operator, Ô(Lz) is the angular momentum projector operator and χk is an appropriate linearly
independent spin function and φkm are the one-electron orbitals or linear combinations of them.
The orbitals can in principle be either Slater or Gaussian type orbitals and while the original
development used the Slater functions, variants with Gaussian orbitals were also developed.
This method is in essence very similar to the singly-linked Hylleraas method. The similarity
becomes clear if one uses Legendre polynomial expansion to expand the terms cos(θij) in the
even powers of r2ij = r2i + r2j − 2rirj cos(θij) resulting in products of spherical harmonics which
may be summed using addition theorem. Analogously to the Hylleraas methods it is possible
to de�ne doubly-linked Hylleraas-CI methods and higher-linked analogues. Similarly to singly-
linked Hylleraas method the resulting integrals have at most three inter-electronic distances.
The resulting integrals are however quite di�erent in for these methods, since in the case of
Hy-CI/SSC methods the presence of the spherical harmonics requires careful angular integration
and leads to natural partition of the integration procedure to the angular and radial integration.
Extensive descriptions of the methods to evaluate Hylleraas-CI integrals with Slater orbitals were
given by Sims [66�68], Belen-Ruiz [69�72] and Harris [73�75].

The possibility of extension of the Hylleraas-CI/SSC method to systems with more than four
electrons is clear after the inspection of the function as it comes down to having more terms in the
product in equation (1.12) and was realised by Clary and Handy for neon atom. Furthermore,
many-electron Hylleraas-CI wave function can be immediately partitioned to four-electron part
and the remaining one-electron functions. This allows for straightforward integration by factoring
and evaluating the integral over the correlated and the orbital part separately. In order to
illustrate the procedure let us perform it for the single six-electron integral of the Hylleraas-CI
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function with the correlation factor of form r12r23r
−1
24 . The integration proceeds as follows

�
d3r1 d

3r2 d
3r3 d

3r4 d
3r5 d

3r6
r12r23
r24

φ(r1)φ(r2)φ(r3)φ(r4)φ(r5)φ(r6)

=

�
d3r1 d

3r2 d
3r3 d

3r4
r12r23
r24

φ(r1)φ(r2)φ(r3)φ(r4)

�
d3r5φ(r5)

�
d3r6φ(r6).

(1.13)

Therefore, after all possible integrals with three rij 's are solved, the integration of many-electron
problem does not pose further di�culty in Hy-CI/SSC method (at least for the moderate numbers
of electrons).

A lot of research on the Hy-CI/SSC methods was done by several groups resulting in many
accurate results for two- [51, 76, 77] three- [78�82] and four-electron [83�87] atomic systems.
While the calculations of the energy of the �ve-electron boron atom using Hy-CI/SSC method
were made [88], obtained results had signi�cantly lower accuracy than those obtained with ECGs
at the time [89]. The 1976 study of Clary and Handy [90] reports application of the Hy-CI
method for system as large as neon atom. Although the accuracy of calculations was severely
hindered by computational power available at the time, the feat of using explicitly correlated
function (without the approximations used in R12/F12 methods) for system with ten electron
remains unparalleled until this day. The Hylleraas-CI was the �rst [91] and the most extensively
used explicitly correlated method employed to solve Dirac-Colomb equation [92�95] (and until
very recently [36] the only one). A detailed, recent review of the Hylleraas-CI/SSC method is
available [96]. It is also worth mentioning that Exponentially-correlated Hylleraas-CI method,
which adds exponential (Slater) correlation factor into the Hylleraas-CI function, is being recently
developed, but so far the applications are limited to two-electron systems [97�99]. The largest
drawback of the Hylleraas-CI method appears to be that, to the best of our knowledge, QED
and recoil corrections were never calculated using this method, while the relativistic corrections
were obtained only for the helium atom in by directly solving the Dirac-Coulomb equation.

1.2.3 Singly-linked Hylleraas method beyond four electrons

The extendability of the singly-linked Hylleraas function to many electrons while maintaining the
simple integrals is not so clear at �rst. Since many rij 's with even powers may be present under
the integral it cannot be immediately factored to integral products as is the case for Hylleraas-
CI/SSC function. However, one may immediately notice, that decomposition of the even powers
of rij 's that do not share both of the indices with the interelectronic distances with the odd
powers leads to the linear combinations of products of four-electron singly-linked integrals and
one-electron integrals. Let us illustrate this with an example integral, similar to the one shown
for the Hy-CI function, and for simplicity we take �ve electrons and only single square power of
inter-electronic distances that does not share both indices, namely r25. The integral is as follows

�
d3r1 d

3r2 d
3r3 d

3r4 d
3r5

r12r23
r24

r213r
2
14r

2
34r

2
25φ(r1)φ(r2)φ(r3)φ(r4)φ(r5) (1.14)

10

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


may be rearranged to the following form�
d3r1 d

3r2 d
3r3 d

3r4 d
3r5

r12r23
r24

r213r
2
14r

2
34(r

2
2 + r25 − 2r2 · r5)

=

�
d3r1 d

3r2 d
3r3 d

3r4
r12r23
r24

r213r
2
14r

2
34r

2
2φ(r1)φ(r2)φ(r3)φ(r4)

�
d3r5φ(r5)

+

�
d3r1 d

3r2 d
3r3 d

3r4
r12r23
r24

r213r
2
14r

2
34φ(r1)φ(r2)φ(r3)φ(r4)

�
d3r5r

2
5φ(r5)

− 2

�
d3r1 d

3r2 d
3r3 d

3r4 d
3r5

r12r23
r24

r213r
2
14r

2
34φ(r1)φ(r2)φ(r3)φ(r4)φ(r5)r2 · r5

(1.15)

by simply using the law of cosines r2ij = r2i + r2j − 2rirj cos θ12 and the fact that in the Euclidean
space dot product may be written as rirj cos(θij) = ri · rj , multiplying the terms and factoring
the integral. While the uncoupling may seem unsuccessful because of the last integral with the
scalar product is not separated. However, let us point out that�

d3r1 d
3r2 d

3r3 d
3r4 d

3r5
r12r23
r24

r213r
2
14r

2
34φ(r1)φ(r2)φ(r3)φ(r4)φ(r5)r2 · r5

=

�
d3r1 d

3r2 d
3r3 d

3r4
r12r23
r24

r213r
2
14r

2
34φ(r1)φ(r2)φ(r3)φ(r4)

�
d3r5φ(r5)r2 · r5 = 0

(1.16)

since (the rearrangement of the order of integration in the line above is to emphasise which
electron needs to be integrated over �st; in this case � the one that does not share an index with
any rij raised to the odd power)�

d3r5φ(r5)r2 · r5 =
�

d3r5φ(r5)r2r5 cos(θ25)

= r2

� ∞

0
drr35φ(r5)

(
cos(θ2)

� π

0
dθ5 sin(θ5) cos(θ5)

� 2π

0
dϕ5

+ sin(θ2) cos(ϕ2)

� π

0
dθ5 sin(θ5)

2

� 2π

0
dϕ5 cos(ϕ5)

+ sin(θ2) sin(ϕ2)

� π

0
dθ5 sin(θ5)

2

� 2π

0
dϕ5 sin(ϕ5)

)
= 0,

(1.17)

where we us formula for the cosine between the two vectors in the spherical coordinates cos(θ25) =
sin(θ2) sin(θ5) cos(ϕ2 − ϕ5) + cos(θ2) cos(θ5) and the formula for the di�erence of the cosine,
cos(ϕ2 − ϕ5) = sin(ϕ2) sin(ϕ5) + cos(ϕ2) cos(ϕ5). The �rst integral in (1.17) vanishes after the
integration over θ5 and the integral over ϕ5 is zero for the two remaining terms of the sum. There-
fore, we have shown that the integral (1.14) has been decomposed into the linear combination of
the product of the four-electron singly-linked Hylleraas integral and products of the one electron
functions. Of course, the angular integration would be more involved with more rij terms to the
even powers present under the integral, but since the functions φ(ri) are spherically symmetric,
such scalar products can always be expanded and the angular integration of the scalar products
can always be performed in the coordinates of the electrons that are not present in the rij 's
with the odd powers. We believe that this opens up a way to extend the singly-linked Hylleraas
methods to systems with more than four electrons, if the e�cient methods of evaluating four-
electron singly-linked Hylleraas integrals can be found. Therefore we pursue development of such
integration method.
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1.2.4 Summary of the motivation

To sum up, we pursue analytic evaluation of the singly-linked four-electron integrals for two main
reasons. Firstly, we believe that current methods for evaluation of these integrals are lacking,
which results in unrealised potential of the singly-linked Hylleraas method in the calculations
of the four-electron atomic systems. Secondly, we believe that singly-linked Hylleraas method
o�ers a promising avenue to develop an accurate computational method that will be applicable
to light atomic systems with more than few electrons. However, in order to test that claims,
e�cient method to obtain matrix elements with four electrons must exist �rst. In addition to
that scienti�c curiosity and formidable challenge of analytic evaluation of explicitly correlated
integrals also motivated us to pursue topic presented in this thesis. Therefore, we proceed to
evaluation of singly-linked four-electron integrals.

1.3 Existing research on the evaluation of the Hylleraas integrals

1.3.1 Methods for evaluation of the integrals of the Hylleraas-type functions

In general, the methods of evaluation of electronic integrals with the explicitly-correlated func-
tions can be divided to several types � direct numerical integration, expansions into sums, di-
rect analytic evaluation that leads to closed-form formulas. All of these methods of evalua-
tion face the following challenges. First, the correlated functions of many electrons are usually
high-dimensional (compared to traditional three- or six-dimensional integration of one- and two-
electron functions), with non-trivial spatial dependence in both angular and radial dimensions.
The standard techniques such as separation to radial and angular integration are much more
di�cult to apply in case of the explicitly correlated functions. Furthermore, the integrals in-
volved in the evaluation of the matrix elements for the variational methods include (integrable)
Culombic singularities � expressions like 1/ri, 1/rij � that make the convergence of numerical
integration around the singular points slow, unless some method (usually involving some form of
regularization) is applied to alleviate this issue. Finally, the problem of evaluating integrals with
several-electronic distances is made more di�cult by the requirement of having many correct
digits, since the values of evaluated integrals are used in eigenproblems to �nd accurate energies
and properties of the considered atomic systems. When high-accuracy energies are required, use
of extended-precision arithmetic (such as quadruple precision) is often necessary and evaluated
values of the integrals should be accurate up to this precision. Although the methods of inte-
gration of explicitly correlated Hylleraas functions have been developed for nearly hundred years
(starting from the seminal work of Hylleraas [19]) so far only two- and three-electron integrals
have been solved in satisfactory manner.

The �rst, most obvious class of methods that deals with integration of correlated functions
is the one that involves direct numerical evaluation of the integrals by quadratures. Despite
the amazing progress in available computation power in recent decades, available computational
facilities are still insu�cient for direct attack on the problem like numerical integration of the
high-dimensional function on the grid with su�cient accuracy and speed for accurate atomic
calculations. This mostly stems from the curse of dimensionality � in order to evaluate N-
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dimensional integral, the number of grid points scales as hN , where h is the number of grid
points in one dimension. Although various schemes that adapt numerical integration methods to
the multi-dimensional problems are available, the purely numerical integration methods remain
largely unsuccessful for systems beyond two-electrons. Such approach was pursued in work of
Guevara, Harris and Turbiner [100] where they have used numerical integration to pursue expo-
nentially correlated functions for lithium atom. Since they used simple, few-parameter �ultra-
compact� trial functions that yield reasonable overall accuracy instead of large basis expansion to
get maximum accuracy their function was limited to only six terms. This basis resulted in three
correct digits of energy, which wile impressive for such short function, is absolutely insu�cient
for accurate calculations of the atomic and small molecular systems. Even though the clever use
of the coordinate transformation has allowed them to reduce the numerical integration to six
dimensions and using state-of-the-art parallelized numerical integration algorithms, the authors
concluded, that "Because of the complicated pro�les of the integrands, the numerical calcula-
tions are very di�cult and if not done with great care can lead to a serious loss of accuracy.
By comparing numerical and analytical evaluations of some of the simpler matrix elements, it
was veri�ed that the numerical methods were reliable at least to six signi�cant digits.". We
believe that this excellent study shows what kind of challenge the explicitly correlated functions
pose to multi-dimensional numerical integration. Therefore, it is of no surprise that we are not
aware of any methods that use numerical quadratures to evaluate four-electron singly-linked
Hylleraas integrals. We note, that while direct numerical integration of the multi-dimensional
functions appears to be hopeless task, the use of one- and two- dimensional numerical inte-
gration is widespread in explicitly correlated methods. When the many-dimensional integrals
can be analytically transformed to the one- [101] or two-dimensional [102] integrals. In such
case, the use of numerical integration, particularly when adapted quadratures are available [103],
can be extremely bene�cial both in terms of numerical accuracy and computational cost [104]
and even allow for the evaluation of some expressions for which other integration methods are
unknown [105].

The second, most classical group of methods to calculate explicitly correlated integrals in-
volve expansions into the (sometimes in�nite) but convergent sums. An excellent review of this
approach (along with some others) was given by King [106] and therefore we will describe only
the silent details and developments that happened after this review was published. The most
widely used expansion is the well-known (and used across all areas of physics) Laplace expansion

1

rij
=

∞∑

l=0

rl<

rl+1
>

Pl (cos θij) , (1.18)

where r< = min {ri, rj} and r> = max {ri, rj}. Its most widely used generalisation is the Sack
expansion [107]

rlij =

∞∑

l1=0

Rll1 (ri, rj)Pl1 (cos θij) , (1.19)

where Rll1 (r1, r2) is a Sack radial function, but for example expansion for the linear rij term [108]
appeared only four years after the seminal works of Hylleraas. These kinds of expansions allow
to decouple the angular and radial integration via expressing rnij as series. Angular integration
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is typically performed using expansion of Legendre polynomials and standard techniques for
coupling of the spherical harmonics. In turn, radial integrals are typically expressed in terms
of sums of auxiliary integrals that are integrals over the radial coordinates. While for the two-
electron integrals these series are �nite, the situation is more complicated in case of the three-
electron Hylleraas integrals. The most daunting situation happens, when all three rij terms are
raised to the odd powers. In this case, the resulting series are convergent but in�nite. While this
has limited the accuracy of the computations using Hylleraas functions for a long time, since the
trial functions were constructed in a way to avoid this di�culty [109�111]. This di�culties were
later surmounted using convergence acceleration techniques [112,113] and asymptotic expansion
method [114] and have allowed for extremely accurate calculations. The extension of these
techniques to four-electron Hylleraas integrals have resulted in only a partial success. While
a lot has been written on the four-electron integrals occurring in the Hylleraas-CI method [66�
75](which are in principle a subset of Hylleraas integrals), the general four electrons have resulted
in moderate amount of attention [115�121]. We note, that some preliminary work was done for
selected limited of �ve-electron Hylleraas integrals [122,123]

The third class of methods to evaluate Hylleraas integrals involve direct analytic evaluation in
order to obtain closed-form analytic expressions. The techniques involve wide spectrum methods
for analytic integration of the multi-dimensional integrals such as Fourier transforms, transfor-
mations of the coordinates, integration using the residue theorem among the other methods of
mathematical physics. Since we extensively rely on this type approach through this thesis, we
describe it for the Hylleraas integrals in the next chapter. We go into the great detail starting
from simple one-electron integrals and �nishing at the four-electron singly-linked Hylleraas in-
tegrals. Another technique worth mentioning here is the one introduced by Pachucki, Puchalski
and Remiddi [124]. It originates form the techniques used for evaluation of Feynman integrals
and allows to generate a scheme of multi-dimensional recurrence relations to calculate Hylleraas
integrals, starting from a set of the master integrals. While we use this technique to obtain the
analytic expressions in the present thesis and describe it in the next chapter, we would like to
point out, that the master integrals can be evaluated numerically and the recurrence relations
can be applied to calculate all the remaining integrals in a purely numerical manner.

1.3.2 Analytic evaluation of four-electron singly-linked Hylleraas integrals

Now, we focus on the existing results concerning directly the topic of our thesis � the analytic
evaluation of the four-electron singly-linked Hylleraas integrals. Not a lot of work was done
using this approach. Padhy [125] has used Fourier representation of the four-electron exponential
integrals to obtain closed-form analytic formulas for the four singly-linked Hylleraas integrals,
that in our notation (see eq. (1.1)) have the following values of the parameters: {n1, n2, n3, n4} =

−1 in all integrals and {a = 1, b = 1, c = −1}, {a = 1, d = −1, f = 1}, {a = 1, d = 1, f = −1}
and {a = 1, b = −1, f = 1} with the remaining parameters not included in braces are equal
to zero. King has published two papers concerned with the analytic evaluation of some singly-
linked Hylleraas integrals [121,126]. In the �rst paper, the classical approach based on the Sack
expansion was used to obtain analytic expressions for four-electron integrals with up to four odd
powers of rij , but with the limitation some of the powers of {r1, r2, r3, r4} are equal to zero
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when there are four odd powers of rij 's. In the second paper, King has generalized his approach
to explicitly correlated exponential functions and gave results slightly more general than those
of Padhy. For us, the most interesting are limiting cases where exponential factors are taken
to zero which correspond to Hylleraas-type functions. We note, that while King had evaluated
Hylleraas integral with (r1r2r12r13r23r24)

−1 in [121] neither of the works considers integrals with
odd r12r23r13 and simultaneously at least one even r14, r24, r34.
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Chapter 2

Methods

2.1 Introduction

In this chapter we describe a method we developed to obtain closed-form analytic formulas1 for
one center singly-linked Hylleraas integrals. While methods allowing to calculate some of the
singly-linked Hylleraas integrals exist in the literature, we are not aware of any method that
allows to e�ciently obtain all such integrals as closed-form analytic expressions.

The presentation of the developed method is as follows. First, we introduce one- two- and
three-electron Hylleraas integrals necessary to bootstrap four-electron calculations as well as
describe methods we use to obtain them in closed form. After that, we proceed to discuss
the four-electron integrals in general. Next, we discuss newly developed recurrence relations
for four-electron Hylleraas integrals. Then, we proceed to discuss our developed methods to
obtain singly-linked Hylleraas integrals as closed-form analytic formulas. The Figure 2.1 serves
as general guide for the method. Each of the blocks corresponds to the section that describes a
part of the calculations. Finally, we show how to obtain all the remaining singly-linked Hylleraas
integrals via permutations, using symmetry of the four-electron integrals.

2.1.1 Notation and minor remarks

In our thesis we use notation that is a compromise between the standard notation used in litera-
ture and in general in the �eld of calculation of the electronic integrals, readability, compactness
and elegance. We use Roman letters from the start of the alphabet (a, b, c, d, e, f) to denote
the powers of the distances between the pairs of electrons sorted by increasing indices, namely
r12, r13, r14, r23, r24, r34. Powers of distances of electrons r1, r2, r3, r4 from the origin of the co-
ordinate system are denoted as n1, n2, n3, n4. The w1, w2, w3, w4 are positive real variational
parameters. We also often use shorthand notation ri, rij and wi with implicit i, j = 1, 2, 3, 4 in
case of four-electron integrals and i, j = 1, 2, 3 in case of the three-electron ones. By d3ri we

1Here, by closed-form analytic formulas we understand mathematical expressions that may involve special

functions, but contain no in�nite sums, products or continued fractions, limits, and derivatives or integrals to

be performed numerically. This makes such expressions readily available for e�cient evaluation with arbitrary

precision.
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indicate integration over all spatial coordinates of the ith electron over the whole space (from
−∞ to +∞ in Cartesian coordinates).

We divide all integrals by factor (4π)n, where n is the number of electrons that are integrated
over their whole respective spaces. Since the functions we consider do not directly contain
spherical harmonics (though they are indirectly "present" in Hylleraas-type functions via the
even powers of rij)2, the integration over angular coordinates of each electron results in 4π. This
cancels with the (4π)n factor by which we divide all the integrals.

2.2 One and two electron integrals

2.2.1 One-electron integrals with exponential functions

One-electron integrals are the most elementary integrals in atomic calculations. Closed-form
formulas are straightforward to obtain for atomic systems, since the spherical symmetry allows
for the separation of the radial and angular integration. The general formula for the exponential
one-electron integrals is

I1(i;α) =

�
d3r

4π
exp(−αr)ri =

∞�

0

dr exp(−αr)ri+2 =
(i+ 2)!

αi+3
, (2.1)

with the parameters limited to α > 0 and i ≥ −2. The extension of these parameters beyond
this range is possible (and necessary, for example, in the case where e�ective QED operators are
calculated), but is beyond the scope of this thesis.

2.2.2 Two-electron integrals of Hylleraas and exponential-type functions

The case of two-electron integrals is slightly more complicated, but easily manageable using some
handy methods for evaluation of spherically-symmetric double volume integrals. This makes the
two-electron systems a benchmark test for development of the electronic structure methods that
are candidates for few-, as well as many-electron atomic systems.

Integrals of the two-electron functions of the Hylleraas type have the following form

I2(l,m, n;α, β) =

�
d3r1
4π

d3r2
4π

exp(−αr1−βr2)rl1rm2 rn12 (2.2)

where α, β > 0 and l,m, n ≥ −1. We will proceed with their evaluation by considering integrals
of more general form and evaluate integrals of type (2.2) as their special case.

The more general as well as symmetric integrals are the two-electron exponential integrals.
They have the following form

Γ(l,m, n;α, β, γ) =

�
d3r1
4π

d3r2
4π

exp(−αr1−βr2−γr12)rl−1
1 rm−1

2 rn−1
12 , (2.3)

2The expression for the square of the distance between the pair of electrons r2ij = r2i + r2j − 2rirj cos(θij) can

be directly related to spherical harmonics using expansion of cos(θij) into Legendre polynomials and Spherical

Harmonics Addition Theorem.
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with α, β, γ > 0 and l,m, n ≥ 0. These integrals have a very symmetric form and an advantageous
property, that the integrals with increased powers of r1, r2, r12 can obtained from one integral
(so-called master integral) via the di�erentiation over the parameters α, β, γ

Γ(l,m, n;α, β, γ) =

(
− ∂

∂α

)l (
− ∂

∂β

)m(
− ∂

∂γ

)n

Γ(0, 0, 0;α, β, γ). (2.4)

Method of calculation of closed-form expressions for the two-electron integrals

The remaining task is to calculate Γ(0, 0, 0;α, β, γ) and now we proceed with that evaluation.
This integral can be calculated in rather straightforward way using clever change of coordinates
[127�129]. The coordinates are obtained by starting from spherical system of coordinates and
expressing double volume element in terms of r1, r2, r12 and angles. The d3r2 is transformed
using the fact, that coordinate system of vector r2 can be rotated, so that the polar axis of
vector r2 is colinear with the vector r1, and the triangle is formed from the sides r1, r2, r12, such
that polar angle of r2 coincides with angle between r1 and r2 (denoted as θ12) and azimuthal
angle of r2 corresponds to rotation over the polar axis of r1 (denoted as χ). After this rotation
the volume element of r2 becomes d3r2 = r22 dr2 sin(θ12) dθ12 dχ. Next, we use the law of cosines

r212 = r21 + r22 − 2r1r2 cos(θ12) (2.5)

by applying the total derivative to both sides of the equation (with r1, r2 �xed)

2r12 dr12 = 2r1r2 sin(θ12) dθ12 (2.6)

we obtain
sin(θ12) dθ12 =

r12
r1r2

. (2.7)

The upper and lower integration limits become
√
r21 + r22 = r1+ r2 and

√
r21 − r22 = |r1 − r2|

respectively (since r1 ∧ r2 ≥ 0 ⇒ max r12 = r1 + r2 and min r12 = |r1 − r2|) leading to

Γ(0, 0, 0;α, β, γ) =
1

2

(� ∞

0
dr1 exp(−αr1)

� ∞

r1

dr2 exp(−βr2)
� r1+r2

r2−r1

dr12 exp(−γr12)

(2.8)

+

� ∞

0
dr2 exp(−βr2)

� ∞

r2

dr1 exp(−αr1)
� r1+r2

r1−r2

dr12 exp(−γr12)
)

(2.8)

that can be straightforwardly evaluated yielding

Γ(0, 0, 0;α, β, γ) =
1

(α+ β)(α+ γ)(β + γ)
. (2.9)

Formulas for the remaining integrals with {l,m, n} > 0 are obtained by applying formula (2.4).
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The only remaining type of the two-electron integral (that is needed to calculate the three-
electron integrals we are interested in) is when one of the parameters {l,m, n} is equal to -1.
These are so-called extended integrals and they are used as boundary terms in evaluation of
three-electron integrals. The master integral for extended integrals Γ(−1, 0, 0;α, β, γ) can be
obtained by following the same procedure as in equation (2.8) (with r−1

1 under the integral), or
by noticing that it can be obtained using direct integration of the equation (2.9) to yield

Γ(−1, 0, 0;α, β, γ) =

� ∞

α
dαΓ(0, 0, 0;α, β, γ)

=

� ∞

α
dα

1

(α+ β)(α+ γ)(β + γ)
=

ln
(
α+β
α+γ

)

β2 − γ2
.

(2.10)

Remaining types of the extended integrals can be obtained by di�erentiation (similarly to equa-
tion (2.4)) and from the symmetry via the permutations of the parameters. These integrals
complete the set of formulas of the two-electron integrals that are required to analytically eval-
uate three- (and consequently four-) electron integrals of Hylleraas type.

2.3 Three-electron integrals

The problem of the correlated three-electron integrals is an order of magnitude more complicated
than for integrals involving two electrons. With the addition of a third electron the integrals
over their all coordinates are, in general nine-dimensional (3 dimensions per electron) integrals
of general form �

d3r1
4π

d3r2
4π

d3r3
4π

f(r1, r2, r3). (2.11)

Consequently, if one wishes to construct a spherically-symmetric function with interelectronic
coordinates, there are six distances between the particles � three from nucleus to electron and
three between the electrons:

f(r1, r2, r3) = f(r1, r2, r3, r12, r13, r23). (2.12)

These two facts severely complicate three-electron integrals compared against two-electron ones.
However, large progress has been made in the evaluation of these integrals, and for the case of
Hylleraas-type functions this problem is essentially solved for integrals required in non-relativistic
[124], relativistic [130] and lowest-order QED calculations [131].

2.3.1 Fromm-Hill integral

Surprisingly, the �rst major breakthrough in analytic evaluation of three-electron integrals of
Hylleraas type came in 1987 tour de force paper authored by Fromm and Hill [44] where even
more general integral, namely of exponential type, was directly evaluated analytically by using
Fourier integral representation of r−1 exp(−αr) and ingenious application of contour integration.
The Fromm-Hill integral has the following form

I(w1, w2, w3, u12, u13, u23) =

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3−u12r12−u13r13−u23r23)
r1r2r3r12r13r23

,

(2.13)
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with {w1, w2, w3, u12, u13, u23} ∈ R+. We will not present its analytic form after integration,
as it is rather unwieldy. It involves combinations of dilogarithms with complex arguments that
involve the square root of a homogeneous sixth-degree polynomial in parameters wi, uij and
requires careful branch tracking for numerical evaluation.

Analytic evaluation of the Fromm-Hill integral has allowed to obtain expressions for even
more general function, that has arbitrary powers of ri and rij

J(n1, n2, n3, n12, n13, n23;w1, w2, w3, u12, u13, u23) =

�
d3r1
4π

d3r2
4π

d3r3
4π

rn1−1
1 rn2−1

2 rn3−1
3

× rn12−1
12 rn13−1

13 rn23−1
23 exp(−w1r1−w2r2−w3r3−u12r12−u13r13−u23r23)

(2.14)

available via di�erentiation similarly to the two-electron case

J(n1, n2, n3, n12, n13, n23;w1, w2, w3, u12, u13, u23) =

(
− ∂

∂w1

)n1
(
− ∂

∂w2

)n2
(
− ∂

∂w3

)n3

×
(
− ∂

∂u12

)n12
(
− ∂

∂u13

)n13
(
− ∂

∂u23

)n23

I(w1, w2, w3, u12, u13, u23).

(2.15)

The result was di�cult in practical realisation via the computer program that could be used in
large-scale calculations of atomic systems. Next, there appeared a new result by Remiddi [132]
in 1991 where he independently gave analytic formulas for simpler case of I(w1, w2, w3, 0, 0, 0),
namely the most fundamental three-electron integral of Hylleraas type (along with several other
integrals). Signi�cant simpli�cation of Fromm-Hill formulas was given in 1997 by Harris [45]. He
managed to turn integral I(w1, w2, w3, u12, u13, u23) to a form involving Clausen function, that
does not require branch tracking. He also reconciled results of Fromm-Hill and Remiddi and has
shown that it is possible to obtain Remiddi's result as a special case of Fromm-Hill integral (with
uij = 0.

2.3.2 Three-electron integrals of Hylleraas-type functions

If we use Hylleraas-type functions to represent wavefunction for three-electron atomic system,
the integrals have the following form

f(a, b, c, n1, n2, n3;w1, w2, w3) =

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3)r
a
12r

b
13r

c
23r

n1
1 rn2

2 rn3
3 ,

(2.16)

where −1 ≤ {a, b, c, n1, n2, n3} ∈ Z are powers of distances electron-electron distances and the
nucleus-electron distances and {w1, w2, w3} ∈ R+ are nonlinear parameters. These integrals have
the following symmetry

f(a, b, c, n1, n2, n3;w1, w2, w3) = f(b, a, c, n2, n1, n3, w2, w1, w3)

= f(c, b, a, n3, n1;w3, w2, w1) = f(a, c, b, n1, n3, n2;w1, w3, w2).
(2.17)
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2.3.3 Three-electron Hylleraas-type master integral

The most fundamental integral is the one with all powers equal to −1 (it also corresponds to
special case of the Fromm-Hill integral with all uij = 0)

f(−1,−1,−1,−1,−1,−1;w1, w2, w3) = I(w1, w2, w3, 0, 0, 0) =�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1 − w2r2 − w3r3)

r12r13r23r1r2r3
.

(2.18)

The derivation of the resulting expression by Remiddi also involves Fourier representation of
r−1 exp(−αr) but uses sophisticated choice of variable transformations, quadratic forms, deriva-
tives, asymptotic expansions and factor cancellations that yield the �nal result

f(−1,−1,−1,−1,−1,−1;w1, w2, w3)

=
−1

2w1w2w3

{
ln

(
w3

w1 + w2

)
ln

(
1 +

w3

w1 + w2

)
+ Li2

(
− w3

w1 + w2

)
+ Li2

(
1− w3

w1 + w2

)

+ ln

(
w2

w3 + w1

)
ln

(
1 +

w2

w1 + w3

)
+ Li2

(
− w2

w1 + w3

)
+ Li2

(
1− w2

w1 + w3

)

+ ln

(
w1

w2 + w3

)
ln

(
1 +

w1

w1 + w2

)
+ Li2

(
− w1

w2 + w3

)
+ Li2

(
1− w1

w2 + w3

)}
,

(2.19)

where Li2 is the dilogarithm function de�ned as

Li2(z) = −
� z

0
du

ln(1− u)

u
. (2.20)

Increased powers of ri's can again be straightforwardly obtained via di�erentiation over respective
parameters

f(−1,−1,−1, n1, n2, n3;w1, w2, w3)

=

(
− ∂

∂w1

)n1
(
− ∂

∂w2

)n2
(
− ∂

∂w3

)n3

f(−1,−1,−1,−1,−1,−1;w1, w2, w3).
(2.21)

However, increased powers of rij 's are not available this way for Hylleraas-type functions. Al-
though they can be (and have been) obtained via application of the same techniques Remiddi
used for the direct evaluation of the integral f(−1,−1,−1,−1,−1,−1;w1, w2, w3) the procedure
is rather cumbersome and unpractical especially for the higher powers of rijs, since both the
resulting and the intermediate expression lengths increases signi�cantly.

2.3.4 Recurrence relations for three-electron Hylleraas-type integrals

Resolution of this di�culty was found by Pachucki, Puchalski and Remiddi [124] (PPR) in
2004. They have managed to derive closed-form recurrence relations, that allow to express
three-electron Hylleraas-type integrals with increased powers of rij via the integrals with lower
powers and some two-electron integrals. This powerful technique paved a way for analytic (and
consequently numerical) evaluation of integrals of the Hylleraas-type functions with arbitrary
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powers of rij 's. The recurrence relations were obtained by applying the technique of integration
by part identities [133, 134] commonly used in analytical calculations of Feynman diagrams.
Since the full derivation of these identities is rather lengthy and the details were given in [124]
we give only the most salient details of the derivation. First, the following nine identities in the
momentum representation are given

0 ≡ id3(i, j) =

�
d3k1d

3k2d
3k3

∂

∂ki

(
kj(k

2
1 + u21)

−m1(k22 + u22)
−m2

× (k23 + u23)
−m3(k232 + w2

1)
−m4(k213 + w2

2)
−m5(k221 + w2

3)
−m6

)
,

(2.22)

where i, j ∈ 1, 2, 3. Expanding the r.h.s of all the identities in equation (2.22) results in nine
equations involving the functions of the following form

G(m1,m2,m3,m4,m5,m6)

=

�
d3k1d

3k2d
3k3

8π6
(k21 + u21)

−m1(k22 + u22)
−m2(k23 + u23)

−m3

× (k232 + w2
1)

−m4(k213 + w2
2)

−m5(k221 + w2
3)

−m6 .

(2.23)

Next, since we are interested in relations of the integrals of the Hylleraas-type functions, we set
m1 = m2 = m3 = 1 and di�erentiate over u1, u2, u3 at u1 = u2 = u3 = 0. We introduce functions
h3 de�ned as

h3(n1, n2, n3,m4,m5,m6)

= (−1)n1
∂n1

∂un1
1

∣∣∣∣
u1=0

(−1)n2
∂n2

∂un2
2

∣∣∣∣
u2=0

(−1)n3
∂n3

∂un3
3

∣∣∣∣
u3=0

G(1, 1, 1,m4,m5,m6),
(2.24)

which are in turn connected to the three-electron Hylleraas-type integrals via the relation

f(a, b, c, n1, n2, n3;w1, w2, w3)

=

(
− ∂

∂w1

)n1
(
− ∂

∂w2

)n2
(
− ∂

∂w3

)n3

h3(n1, n2, n3, 1, 1, 1)
(2.25)

and the following Fourier representation

exp(−wr)
r

=
1

(2π)3

�
d3k

4πeik·r

k2 + w2
, (2.26)

and (in distributional sense)

δ3(r) =
1

(2π)3

�
d3k4πeik·r. (2.27)

The recursion relations are obtained by solving the nine identities from relations (2.22) in a
way that yields expressions that allow to increase powers a, b, c and n1, n2, n3. Such expressions
correspond to h3(n1 + 2, n2, n3,m4,m5,m6), h3(n1, n2, n3,m4 + 1,m5,m6) and respective for-
mulas for increased n2, n3 and m5,m6. Since there are nine equations for six unknowns there
is some freedom in exact form of the solutions. PPR chose solution in a way that decouples
recursions to the ones that increase powers of rij 's and separate set for increasing ri's leading
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to expressions for f(a + 2, b, c,−1,−1,−1), f(a, b + 2, c,−1,−1,−1), f(a, b, c + 2,−1,−1,−1)

as well as f(a, b, c, n1+, n2, n3), f(a, b, c, n1, n2 + 1, n3), and f(a, b, c, n1, n2, n3 + 1) respectively
(with dependence of f on w1, w2, w3 was omitted). For more details of the derivation we refer
the reader to original source and proceed to applications of the results obtained by PPR.

Since powers of ri's can be increased via the di�erentiation over wi's we use only recursions
that increase powers or rij . Therefore, as we are interested in analytic evaluation of the three-
electron integrals we present only the recursion that increases powers of rij

f(a, b, c+ 2,−1,−1,−1)

=
1 + c

2

{
1

w2
1

[
b(b− 1)

c+ 1
f(a, b− 2, c+ 2,−1,−1,−1)

+ (a+ 2b+ c+ 2)f(a, b, c,−1,−1,−1) +
1

c+ 1
f(a, b, c+ 2, ⋆,−1,−1)

+
b(b− 1)

a+ 1
f(a+ 2, b− 2, c,−1,−1,−1) +

1

a+ 1
f(a+ 2, b, c,−1,−1, ⋆)

− δb
c+ 1

f(a, ⋆, c+ 2,−1,−1,−1)− δb
a+ 1

f(a+ 2, ⋆, c,−1,−1,−1)

]

+
1

w2
2

[
a(a− 1)

c+ 1
f(a− 2, b, c+ 2,−1,−1,−1)

+ (2a+ b+ c+ 2)f(a, b, c,−1,−1,−1) +
1

c+ 1
f(a, b, c+ 2,−1, ⋆,−1)

+
a(a− 1)

b+ 1
f(a− 2, b+ 2, c,−1,−1,−1) +

1

b+ 1
f(a, b+ 2, c,−1,−1, ⋆)

− δa
c+ 1

f(⋆, b, c+ 2,−1,−1,−1)− δa
b+ 1

f(⋆, b+ 2, c,−1,−1,−1)

]

− w2
3

w2
1w

2
2

[
c(c− 1)

b+ 1
f(a, b+ 2, c− 2,−1,−1,−1)

+ (a+ b+ 2c+ 2)f(a, b, c,−1,−1,−1) +
1

b+ 1
f(a, 2 + b, c, ⋆,−1,−1)

+
c(c− 1)

a+ 1
f(a+ 2, b, c− 2,−1,−1,−1) +

1

a+ 1
f(a+ 2, b, c,−1, ⋆,−1)

− δc
b+ 1

f(a, b+ 2, ⋆,−1,−1,−1)− δc
a+ 1

f(a+ 2, b, ⋆,−1,−1,−1)

]}
,

(2.28)

where the symbol δn denotes the Kronecker delta δn,0 and the ⋆ in the argument denotes the
integral f with respective rij or ri replaced with Dirac delta multiplied by 4π

f(⋆, b, c, n1, n2, n3)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1 − w2r2 − w3r3)4πδ
3(r23)r

b
31r

c
12r

n1
1 rn2

2 rn3
3

(2.29)

and

f(a, b, c, ⋆, n2, n3)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1 − w2r2 − w3r3)r
a
23r

b
31r

c
124πδ

3(r1)r
n2
2 rn3

3 .
(2.30)
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The above integrals with Dirac delta result in two-electron integrals that belong to classes
discussed in the section about two-electron integrals. Respective recursions that increase b and
c are straightforwardly found by applying symmetry relations given in equation (2.17). Since
larger n1, n2, n3 can be found via di�erentiations over w1, w2, w3 the only remaining task is to
�nd the three-electron integrals necessary to use the recursion for increasing a, b, c. The formula
for the �rst integral f(−1,−1,−1,−1,−1,−1;w1, w2, w3) was given in equation (2.19). Since re-
cursion given in equation (2.28) changes the powers of rij by two, the remaining necessary three-
electron integrals to use it are f(0, 0, 0,−1,−1,−1;w1, w2, w3),f(0, 0,−1,−1,−1,−1;w1, w2, w3),
and f(0,−1,−1,−1,−1,−1;w1, w2, w3). All of the remaining necessary integrals are straight-
forward to obtain by using symmetry of the three-electron Hylleraas-type integrals as given in
equation (2.17).

2.3.5 Remaining three-electron Hylleraas-type master integrals

The remaining master integrals for the recursions for the three-electron integrals can be directly
calculated by using the same technique as in the equation (??) by transforming the coordinates
of r2 to r23 (alternatively r1 could be changed instead)

f(0,−1,−1,−1,−1,−1;w1, w2, w3) =

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3)

r13r23r1r2r3

=
1

2

�
d3r1
4π

d3r3
4π

exp(−w1r1−w3r3)

r13r1r3

� ∞

0
dr2 exp(−w2r2)r2

� r1+r3

|r3−r2|
dr23

1

r2r3

=
1

2w2
2

�
d3r1
4π

d3r3
4π

exp(−w1r1−w3r3)

r13r1r3

(
2

r3
− 2 exp(−r3w2)

r3

)

=
1

w2
2

�
d3r1
4π

d3r3
4π

(
exp(−w1r1−w3r3)

r1r23r13
− exp(−w1r1 − (w2 + w3)r3)

r1r23r13

)

(2.31)

leading to a combination of the two-electron integrals that can be evaluated via the equation
(2.10) to yield

f(0,−1,−1,−1,−1,−1;w1, w2, w3) =
1

w2
2

(
Γ(0,−1, 0;w1, w3, 0)− Γ(0,−1, 0;w1, w2 + w3, 0)

)

=
1

w2
2

(
ln(w1+w3

w3
)

w2
1

−
ln(w1+w2+w3

w2+w3
)

w2
1

)

= − 1

w2
1w

2
2

ln(
w3(w1 + w2 + w3)

(w1 + w3)(w2 + w3)
.

(2.32)

The two remaining basic integrals are straightforwardly evaluated as either products of one- and
two-electron (equations (2.1) and (2.9) respectively)

f(0, 0,−1,−1,−1,−1;w1, w2, w3) =

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3)

r23r1r2r3

=

�
d3r2
4π

d3r3
4π

exp(−w2r2−w3r3)

r23r2r3

�
d3r1
4π

exp(−w1)

r1

= Γ(0, 0, 0;w2, w3, 0)I1(−1;w1) =
1

w2w3(w2 + w3)w2
1

(2.33)
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or only one-electron

f(0, 0,−1,−1,−1,−1;w1, w2, w3) =

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3)

r1r2r3

=

�
d3r1
4π

exp(−w1)

r1

�
d3r2
4π

exp(−w2)

r2

�
d3r3
4π

exp(−w3)

r3

= I1(−1;w1)I1(−1;w2)I1(−1;w3) =
1

w2
1w

2
2w

2
3

(2.34)

integrals. Together with symmetry relations given in equation (2.17) this completes the full set
of formulas necessary to calculate all considered three-electron integrals of Hylleraas-type using
recurrence relations given in eq (2.28) and di�erentiation over wi.

2.3.6 Extended three-electron Hylleraas-type integrals

The typical range of parameters for three-electron Hylleraas-type integral, as given in equation
(2.16) is restricted to integers {a, b, c, n1, n2, n3} ≥ −1. However, when one wants to consider
relativistic corrections, using for example, expectation values for Breit-Pauli Hamiltonian [135]
it is necessary with parameters beyond the standard range of parameters. In such extended
integrals one of the parameters takes the value of −2 leading to the integrals with either r−2

ij (if
it is one of the parameters a, b, c) or r−2

i (in case of n1, n2, n3). While in this thesis we solve the
four-electron Hylleraas-type integrals that occur in the non-relativistic calculations, some of the
extended three-electron integrals are required in order to calculate the four-electron ones in our
method.

The extended three-electron Hylleraas-type integrals that we require in our calculations are
the ones with n1 = −2 (and their permutations), leading to integral of interest of form

f(a, b, c,−2, n2, n3;w1, w2, w3) =

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3)r
a
12r

b
13r

c
23r

−2
1 rn2

2 rn3
3

(2.35)

with regular bounds of parameters. Calculation of such integrals is more involved than the
regular Hylleraas-type integrals and although it was solved in [130], the technique developed
there uses numerical integration and therefore is adapted for numerical calculations. Since we
need analytic formulas we will solve the integral (2.35) analytically.

The simplest way to obtain analytic formulas for the extended integral given in equation
(2.35) is to simply integrate it over the parameter, using the fact, that since the di�erentiation
over the parameters wi works also for integrals with r−2

1 we have
(
− ∂

∂w1

)
f(a, b, c,−2, n2, n3;w1, w2, w3) = −f(a, b, c,−1, n2, n3;w1, w2, w3). (2.36)

Therefore3

f(a, b, c,−2, n2, n3;w1, w2, w3) =

∞�

w1

dw1f(a, b, c,−1, n2, n3;w1, w2, w3). (2.37)

3Since for n ∈ N+ ∧ w ∈ R+ we have
(
− ∂

∂w

)
exp(−wr)rn = exp(−wr)rn+1 and lim

w→∞
exp(−wr) rn+1 → 0.
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Although the direct analytic integration using formula (2.37) would be troublesome (but possible)
in the case of the three odd parameters a, b and c, such situation never occurs in the four-electron
Hylleraas-type integrals of our interest. Therefore, the integration can be performed analytically
resulting in formulas with elementary functions only.

2.4 Four-electron integrals

Extension of the three-electron exponentially-correlated integrals to four electrons has the fol-
lowing form

K(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4, u12, u13, u14, u23, u24, u34) =�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

exp(−w1r1−w2r2−w3r3−w4r4)

r−n1
1 r−n2

2 r−n3
3 r−n4

4 r−a
12 r

−b
13 r

−c
14 r

−d
23 r

−e
24 r

−f
34

× exp(−u12r12−u13r13−u14r14−u23r23−u24r24−u34r34),

(2.38)

while the four-electron Hylleraas-type integrals are

g(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

exp(−w1r1−w2r2−w3r3−w4r4)

r−n1
1 r−n2

2 r−n3
3 r−n4

4 r−a
12 r

−b
13 r

−c
14 r

−d
23 r

−e
24 r

−f
34

(2.39)

with (similarly to the three-electron case) {w1, w2, w3, w4} ∈ R+ being the nonlinear parameters
and −1 ≤ {a, b, c, d, e, f, n1, n2, n3, n4} ∈ Z are powers of the electron-electron distances and the
nucleus-electron distances.

These integrals are symmetric with respect to the exchange of the indices of electrons. There
are 4! = 24 such permutations. Furthermore, similarly to the two- and three-electron Hylleraas
functions it is possible to di�erentiate over the parameters w1, w2, w3, w4 in order to increase
powers of r1, r2, r3, r4 getting

g(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

(
− ∂

∂w1

)n1
(
− ∂

∂w2

)n2
(
− ∂

∂w3

)n3
(
− ∂

∂w4

)n4

g(a, b, c, d, e, f,−1,−1,−1,−1;w1, w2, w3, w4)

(2.40)

The analytic formulas for the master integrals (with all powers or ri and rij equal to −1)
are not known, neither for the exponentially-correlated, nor for the Hylleraas-type functions.
Therefore, at the present moment it is not possible to directly generalise approach used for
three-electron integrals. As a result it is necessary to restrict the parameters in order to obtain
a set of integrals that are possible to solve analytically.

2.4.1 Recurrence relations for four-electron Hylleraas integrals

In order to calculate singly-linked Hylleraas-type integrals we use the technique inspired by PPR
approach to develop a set of the recurrence relations that will allow to obtain analytic formulas
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for the singly-linked Hylleraas integrals. We develop and use integration-by-parts identities,
but in the space (instead of momentum) representation. We emphasise, that the recurrence
relations presented here apply for general four-electron Hylleraas integrals and are not limited
to singly-linked type only.

Integration by parts identities

We use the sixteen following identities4

0 = id(i, j) =

�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

∇i · rj
exp(−w1r1−w2r2−w3r3−w4r4)

r−n1
1 r−n2

2 r−n3
3 r−n4

4 r−a
12 r

−b
13 r

−c
14 r

−d
23 r

−e
24 r

−f
34

, (2.41)

with {i, j} ∈ {1, 2, 3, 4} to obtain the recurrence relations for Hylleraas-type integrals g. The
detailed derivation of the recurrence relations are presented in Appendix A in section A.1.2.
Here, we present only the �nal results that are directly applied in calculations. Out of the
sixteen recurrences we use the three that increase indices a, b, c. This is possible, because we
take the integrals given in equation (2.47) as the starting point and develop the strategy to
obtain non-zero indices a, b, c for a given set of {d, e, f, n1, n2, n3, n4}.

Formulas for recurrence relations

The three recurrences developed to obtain analytic formulas for the singly-linked Hylleraas inte-
grals are5

g(a+ 2, b, c, d, e, f,−1,−1,−1,−1) = g(a, b, c, d, e, f,−1, 1,−1,−1)

+
1

2w1

[
(3a+ b+ c+ 6)g(a, b, c, d, e, f, 0,−1,−1,−1)

+ a
(
g(a− 2, b, c, d, e, f, 0, 1,−1,−1)− g(a− 2, b, c, d, e, f, 2,−1,−1,−1)

)

+ b
(
g(a, b− 2, c, d, e, f, 0,−1, 1,−1)− g(a, b− 2, c, d, e, f, 2,−1,−1,−1)

− 2g(a, b− 2, c, d+ 2, e, f, 0,−1,−1,−1) + 2g(a+ 2, b− 2, c, d, e, f, 0,−1,−1,−1)
)

+ c
(
g(a, b, c− 2, d, e, f, 0,−1,−1, 1)− g(a, b, c− 2, d, e, f, 2,−1,−1,−1)

− 2g(a, b, c− 2, d, e+ 2, f, 0,−1,−1,−1) + 2g(a+ 2, b, c− 2, d, e, f, 0,−1,−1,−1)
)]
,

(2.42a)

g(a, b+ 2, c, d, e, f,−1,−1,−1,−1) = g(a, b, c, d, e, f,−1,−1, 1,−1)

+
1

2w1

[
(a+ 3b+ c+ 6)g(a, b, c, d, e, f, 0,−1,−1,−1)

+ a
(
g(a− 2, b, c, d, e, f, 0, 1,−1,−1)− g(a− 2, b, c, d, e, f, 2,−1,−1,−1)

− 2g(a− 2, b, c, d+ 2, e, f, 0,−1,−1,−1) + 2g(a− 2, b+ 2, c, d, e, f, 0,−1,−1,−1)
)

+ b
(
g(a, b− 2, c, d, e, f, 0,−1, 1,−1)− g(a, b− 2, c, d, e, f, 2,−1,−1,−1)

)

+ c
(
g(a, b, c− 2, d, e, f, 0,−1,−1, 1)− g(a, b, c− 2, d, e, f, 2,−1,−1,−1)

− 2g(a, b, c− 2, d, e, f + 2, 0,−1,−1,−1) + 2g(a, b+ 2, c− 2, d, e, f, 0,−1,−1,−1)
)]
,

(2.42b)

4The identities are proven in section A.1.1 of Appendix A.
5The recurrence relations are derived in section A.1.2 of Appendix A.
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g(a, b, c+ 2, d, e, f,−1,−1,−1,−1) = g(a, b, c, d, e, f,−1,−1,−1, 1)

+
1

2w1

[
(a+ b+ 3c+ 6)g(a, b, c, d, e, f, 0,−1,−1,−1)

+ a
(
g(a− 2, b, c, d, e, f, 0, 1,−1,−1)− g(a− 2, b, c, d, e, f, 2,−1,−1,−1)

− 2g(a− 2, b, c, d, e+ 2, f, 0,−1,−1,−1) + 2g(a− 2, b, c+ 2, d, e, f, 0,−1,−1,−1)
)

+ b
(
g(a, b− 2, c, d, e, f, 0,−1, 1,−1)− g(a, b− 2, c, d, e, f, 2,−1,−1,−1)

− 2g(a, b− 2, c, d, e, f + 2, 0,−1,−1,−1) + 2g(a, b− 2, c+ 2, d, e, f, 0,−1,−1,−1)
)

+ c
(
g(a, b, c− 2, d, e, f, 0,−1,−1, 1)− g(a, b, c− 2, d, e, f, 2,−1,−1,−1)

)]
.

(2.42c)

These three equations allow to increase the indices a, b and c by two, similarly as the
recurrences for the three-electron integrals. However, there are signi�cant di�erences between
the three electron recurrence given in equation (2.28) and the derived four-electron recurrences
given in equations (2.42a), (2.42b) and (2.42c).

Comparison with three-electron recurrences

Firstly, contrarily to the three electron case, in the four-electron case we didn't manage to
separate indices corresponding to powers of distances between the two electrons from powers
corresponding to distances between the electrons and nucleus. Therefore, the recurrences for
four-electron integrals cannot be separated to the two set of recursions yielding a method that
increases powers of rij for arbitrary powers of ri. The second important di�erence between
the three- and four-electron recurrences is that the four-electron recurrences do not terminate
for powers below −1. In the three-electron case the integrals with powers lowered by two are
multiplied by factor that equals to zero, for example the term:

b = 0 ∨ b = 1 ⇒ b(b− 1)

c+ 1
f(a, b− 2, c+ 2,−1,−1,−1) = 0 (2.43)

in equation (2.28) guarantees that the recursions terminate for both odd and even powers of b
(and similarly for a and c).

Derived four-electron recurrences terminate only for {a, b, c} = 0. This is immediately obvi-
ous, since equations (2.42) contain terms only such as

b = 0 ⇒
b
[
g(a, b− 2, c, d, e, f, 0,−1, 1,−1)− g(a, b− 2, c, d, e, f, 2,−1,−1,−1)−

2g(a, b− 2, c, d+ 2, e, f, 0,−1,−1,−1) + 2g(a+ 2, b− 2, c, d, e, f, 0,−1,−1,−1)
]
= 0,

(2.44)

and these terms are not multiplied by b−1 which would guarantee that the recurrences terminate
for odd powers of b (again, the same argument is valid for a and c). This prompts the development
of the alternative technique to calculate the odd powers.
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2.4.2 Four-electron singly-linked Hylleraas integrals

Because of the lack of both the master integrals as well as the su�ciently general recurrences for
general four-electron Hylleraas integrals, we restrict our interest to the so-called integrals over
the four-electron singly-linked Hylleraas functions. These functions have the form

h(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

= exp(−w1r1−w2r2−w3r3−w4r4)r
n1
1 rn2

2 rn3
3 rn4

4 ra12r
b
13r

c
14r

d
23r

e
24r

f
34,

(2.45)

with {w1, w2, w3, w4} ∈ R+ ∧ 1 ≤ {a, b, c, d, e, f, n1, n2, n3, n4} ∈ Z and {a, b, c, d, e, f} further
restricted to have only one odd parameter (with the rest of them being even). In turn, when such
function is taken as the basis function in variational calculations of non-relativistic Schrodinger
equation it results in matrix elements that have the form of the integrals of the following type

g(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

h(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

exp(−w1r1−w2r2−w3r3−w4r4)r
n1
1 rn2

2 rn3
3 rn4

4 ra12r
b
13r

c
14r

d
23r

e
24r

f
34,

(2.46)

with {w1, w2, w3, w4} ∈ R+∧−1 ≤ {a, b, c, d, e, f, n1, n2, n3, n4} ∈ Z and {a, b, c, d, e, f} restricted
to at most three odd and consequently at least three even values. From now we will call these
integrals the singly-linked Hylleraas type integrals. The name comes from the fact, that only
such integrals arise as matrix elements of the non-relativistic Hamiltonian of atomic system when
at most single odd power of rij factor is allowed in each basis function6.

The only di�erence between the singly-linked Hylleraas integrals (2.46) and the general Hyller-
aas integral (2.39) is in the restriction of the parameter space to at most three odd parameters.
Therefore singly-linked Hylleraas functions and integrals are subset of the generic Hylleraas func-
tions and integrals. We emphasise, that consequently all of the relations and methods we derived
are generic and apply to generic four-electron Hylleraas-type integrals. So far, we have found
our developed methods to su�ce in obtaining analytic formulas only for the subset restricted to
the singly-linked Hylleraas integrals.

Because of the symmetry properties of the four-electron Hylleraas integrals from now we
consider singly-linked Hylleraas-type integrals that have at most one odd factor in the �rst three
indices (a, b, c) and only the index a can be odd. Consequently, for the considered class of
integrals, if a is odd there are at most two odd number among indices fourth to six (d, e, f),
and three if a is even. This can be done without any loss of generality, since all the remaining
singly-linked Hylleraas integrals can be obtained from such integrals via symmetry operations
as explained in section 2.4.8. Therefore, in this thesis we develop e�cient method to obtain
analytic formulas (involving dilogarithmic functions, since they are already present in three-
electron subsets of four-electron integrals) for all singly-linked Hylleraas integrals. The general
scheme of the method is presented in �gure 2.1.

6There at most three odd factors in the resulting integral, since one comes from the bra of the matrix element,

second from the ket and the third one from the Coulomb operator which has form r−1
ij .
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START

YES NO

STOP

STOP

is
a even

? 

g(0, 0, 0, d, e, f, n1, n2, n3, n4; w1, w2, w3, w4) 
3.4.3 

I1(n1 ; w1) 

2.2.1 

f(d, e, f, n2, n3, n4; w2, w3, w4) 
2.3 

2.4.4 

use reccurences for a+2, b+2, c+2  to calculate
g(a:even, b:even, c:even, d, e, f, n1, n2, n3, n4) 

2.4.5 

use diff. eqn for a=-1 to calculate
g(-1, b:even, c:even, d, e, f, n1, n2, n3, n4) 

2.4.6 

use diff. eqn for a=1 to calculate
g(1, b:even, c:even, d, e, f, n1, n2, n3, n4) 

2.4.7 
use reccurences for a+2 to calculate
g(a:odd, b:even, c:even, d, e, f, n1, n2, n3, n4) 

Figure 2.1: Flowchart of the method developed to analytically calculate singly-linked Hylleraas
integrals. Number at the top left corner of each block corresponds to the section of this chapter,
which describes the given part of the procedure.
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2.4.3 Four-electron integrals reducible to simpler integrals

There exists simplest class of singly-linked Hylleraas integrals, that can be expressed either as the
three-electron integrals multiplied by integration over the fourth electron or as the products of
two-electron integrals (there are also integrals that factor further, to the one-electron integrals).
These two types of such integrals are for example

g(0, 0, 0, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

�
d3r1
4π

exp(−w1r1)r
n1
1

�
d3r2
4π

d3r3
4π

d3r4
4π

exp(−w2r2−w3r3−w4r4)r
n2
2 rn3

3 rn4
4 rd23r

e
24r

f
34 =

I1(n1;w1)f(d, e, f, n2, n3, n4;w2, w3, w4)

(2.47)

and

g(a, 0, 0, 0, 0, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

�
d3r1
4π

d3r2
4π

exp(−w1r1−w2r2)r
n1
1 rn2

2 ra12

�
d3r3
4π

d3r4
4π

exp(−w3r3−w4r4)r
n3
3 rn4

4 rf34 =

Γ(n1 + 1, n2 + 1, a+ 1;w1, w2, 0)Γ(n3 + 1, n4 + 1, f + 1;w3, w4, 0).

(2.48)

The �rst equation (2.47) is used as a starting point to calculate more complicated four-electron
integrals. The integrals with two non-overlapping indices rij are separable into the products of
two-electron integrals (such as the one given in equation (2.48) and its permutations with respect
to electron indices). Since our method of calculation of the singly-linked Hylleraas integral general
and allows to independently calculate such integrals, we use formula (2.48) and other integrals
of this kind to validate the correctness developed method.

2.4.4 Application of recurrence relations for even a, b, c

In the case of even a, b, c, application of the four-electron recurrence relations is rather straight-
forward as all the necessary master integrals are the three-electron integrals multiplied by one-
electron integral. As an example we will show how to use recurrences to obtain formulas allowing
to calculate �rst few integrals. First, we use equation (2.42a) to start from g(0, 0, 0, d, e, f,−1,−1,−1,−1)

in order to get

g(2, 0, 0, d, e, f,−1,−1,−1,−1) = g(0, 0, 0, d, e, f,−1, 1,−1,−1)

+
6

2w1
g(0, 0, 0, d, e, f, 0,−1,−1,−1),

(2.49)

where g(0, 0, 0, d, e, f,−1, 1,−1,−1) and g(0, 0, 0, d, e, f, 0,−1,−1,−1) are straightforwardly ob-
tained via the di�erentiation of g(0, 0, 0, d, e, f,−1,−1,−1,−1) over the respective parameters wi

as per equation (2.40). Integrals g(0, 2, 0, d, e, f,−1,−1,−1,−1) and g(0, 0, 2, d, e, f,−1,−1,−1,−1)

are obtained in the same way as equation (2.49) using equations (2.42b) and (2.42c) respectively.
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Next, we proceed to use equation (2.42b) with a = 2, b = 0, c = 0 which yields

g(2, 2, 0, d, e, f,−1,−1,−1,−1) = g(2, 0, 0, d, e, f,−1,−1, 1,−1)

+
1

2w1

[
8g(2, 0, 0, d, e, f, 0,−1,−1,−1)

+ 2
(
g(0, 0, 0, d, e, f, 0, 1,−1,−1)− g(0, 0, 0, d, e, f, 2,−1,−1,−1)

− 2g(0, 0, 0, d+ 2, e, f, 0,−1,−1,−1) + 2g(0, 0 + 2, 0, d, e, f, 0,−1,−1,−1)
)]
.

(2.50)

All necessary integrals on the right-hand side of the equation above are either already calculated
or straightforwardly computed via the di�erentiation over wi. Equation (2.42c) with a = 2 can
be used in the same way to get g(2, 0, 2, d, e, f,−1,−1,−1,−1), while equation (2.42c) with b = 2

can be used to get g(0, 2, 2, d, e, f,−1,−1,−1,−1).

Then, we can calculate integral g(2, 2, 2, d, e, f,−1,−1,−1,−1) by, for example7, applying
formula (2.42c) with a = 2, b = 2, c = 0 getting

g(2, 2, 2, d, e, f,−1,−1,−1,−1) = g(2, 2, 0, d, e, f,−1,−1,−1, 1)

+
1

2w1

[
10g(2, 2, 0, d, e, f, 0,−1,−1,−1)

+ 2
(
g(0, 2, 0, d, e, f, 0, 1,−1,−1)− g(0, 2, 0, d, e, f, 2,−1,−1,−1)

− 2g(0, 2, 0, d, e+ 2, f, 0,−1,−1,−1) + 2g(0, 2, 2, d, e, f, 0,−1,−1,−1)
)

+ 2
(
g(2, 0, 0, d, e, f, 0,−1, 1,−1)− g(2, 0, 0, d, e, f, 2,−1,−1,−1)

− 2g(2, 0, 0, d, e, f + 2, 0,−1,−1,−1) + 2g(2, 0, 2, d, e, f, 0,−1,−1,−1)
)]
.

(2.51)

Again, all required integrals on the right-hand side of equation (2.51) are readily computed.

The procedure of applying equations (2.42a), (2.42b) and (2.42c) to increase a, b and c by
2 can be continued to arbitrarily large even values. The only requirement is that all possible
combinations of even a, b and c are calculated before the sum a+ b+ c is increased by two. This
ensures that all expressions on the right-hand side of the recurrences given in (2.42) are available
or can be computed via the di�erentiation over the parameters wi.

2.4.5 Di�erential equation for a = −1 and even b, c

Since the nature of the obtained four-electron recurrences (given in equations (2.42)) requires
integrals with indices a, b and c lowered by 2 and 4, to calculate any odd power a of r12 we
need to calculate two speci�c cases a = −1 and a = 1 to start the recurrences for the given
set of {d, e, f}. In order to do so, we developed a technique based on the integration of Poisson
equation with the speci�cally chosen class of functions. It is used to obtain identities that allow
us to �nd the two aforementioned speci�c cases of four-electron Hylleraas integrals. We call
these identities Laplacian identities as they are result of applying Laplacian on the particular
Hylleraas-type functions. Since the full derivation of these identities is rather involved, here

7Alternatively, it can be obtained by applying equation (2.42b) with a = 2, b = 0, c = 2 or equation (2.42a)

with a = 0, b = 2, c = 2.
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we present only the �nal result, while the full derivation is available in the section A.2 of the
Appendix A.

The �rst Laplacian identity (involving a = −1) for four-electron Hylleraas integrals is

w1
2g(−1, b, c, d, e, f, 0,−1,−1,−1)− w1(2 + b+ c)g(−1, b, c, d, e, f,−1,−1,−1,−1)

= −r−1(−1, b, c, d, e, f,−1,−1,−1,−1)
(2.52)

where the four-electron Hylleraas integral g(...) is de�ned as in equation (2.39) while

r−1(−1, b, c, d, e, f,−1,−1,−1,−1;w1, w2, w3, w4)

= (b+ c+ 1)(bg(−1, b− 2, c, d, e, f, 0,−1,−1,−1) + cg(−1, b, c− 2, d, e, f, 0,−1,−1,−1))

− bcg(−1, b− 2, c− 2, d, e, f + 2, 0,−1,−1,−1)

+ w1

(
bg(−1, b− 2, c, d, e, f,−1,−1, 1,−1)− bg(−1, b− 2, c, d, e, f, 1,−1,−1,−1)

+ cg(−1, b, c− 2, d, e, f,−1,−1,−1, 1)− cg(−1, b, c− 2, d, e, f, 1,−1,−1,−1)
)

+ f(b+ d, c+ e, f,−2,−1,−1;w1 + w2, w3, w4)

(2.53)

denotes the the inhomogeneous term that is assumed to be composed of the known functions of
w1, w2, w3, w4 and its exact form depends on the values of the parameters b, c, d, e, f . Using the
fact (coming from the presence of e−w1r1 term in the integral g), that

∂

∂w1
g(a, b, c, d, e, f,−1,−1,−1,−1) = −g(a, b, c, d, e, f, 0,−1,−1,−1), (2.54)

and introducing more compact notation where g(a, ...) = g(a, b, c, d, e, f,−1,−1,−1,−1), we
arrive at the di�erential equation

−w2
1

∂

∂w1
g(−1, ...)− w1(2 + b+ c)g(−1, ...) = −r−1(−1, ...). (2.55)

This equation has to be solved for g(−1, ...). The solution of the equation (2.55) is

g(−1, ...) =
1

w2+b+c
1

�
wb+c
1 r−1(−1, ...) dw1, (2.56)

and the constant of integration is �xed in such a way, that there are no terms of order w−2−b−c
1

in g(−1, ...). The detailed discussion of a method to obtain this solution and the boundary
conditions is given in section A.3 of the Appendix A.

Iterative procedure of �nding r−1 to �nd g(−1, ...)

Although at �rst it may seem, that getting the solution of integral g(−1, ...) using presented
method is impossible, because of presence of the g(−1, ...) integrals in the inhomogeneous term
r−1(−1, ...) (as de�ned in equation (2.53)), it can be obtained using the iterative procedure with
right order of calculation of the integrals. By doing this in a way, that ensures the inhomogeneous
term always consists of already integrated terms, it simply becomes a known function of w1 and
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the equation can be straightforwardly solved. The procedure is relatively simple as it only
requires, that the integrals are calculated starting from lowest possible values of the parameters
b = 0 and c = 0. Then, these values are increased by two (with the condition that both b and c
are increased independently). Cases such as b = 2, c = 4 can be straightforwardly obtained from
b = 4, c = 2 by permuting the indices 2 and 3 of the electrons, but we prefer to calculate both of
these cases independently. Next, we illustrate this procedure for �rst few values of b and c.

First, we start with simplest case, namely when both b = 0 and c = 0 (for a given set of
{d, e, f}). It leads to very simple expression

r−1(−1, 0, 0, d, e, f,−1,−1,−1,−1) = −f(d, e, f,−2,−1,−1;w1 + w2, w3, w4) (2.57)

as we just set b = c = 0 in equation (2.53). The f(b + d, c + e, f,−2,−1,−1;w1 + w2, w3, w4)

is an extended three-electron integral and its evaluation was discussed in section 2.3.6. Thus,
after the integration of this three-electron integral over d3r2,d3r3, d3r4, the inhomogeneous term
becomes an explicit function of w1. Next, by plugging this explicit function into the formula
(2.56) (and ensuring that boundary conditions as given in section A.3.2 in the Appendix A are
ful�lled) we �nally obtain the value of integral g(−1, 0, 0, d, e, f,−1,−1,−1,−1).

Next, we proceed to set b = 2, c = 0 and, again, use equation (2.53) to get

r−1(−1, 2, 0, d, e, f,−1,−1,−1,−1)

= −6g(−1, 0, 0, d, e, f, 0,−1,−1,−1) + 2w1g(−1, 0, 0, d, e, f,−1,−1, 1,−1)

− 2g(−1, 0, 0, d, e, f, 1,−1,−1,−1) + f(2 + d, e, f,−2,−1,−1;w1 + w2, w3, w4).

(2.58)

The f(2 + d, e, f,−2,−1,−1;w1 +w2, w3, w4) is, again, an extended three-electron integral, and
the integral g(−1, 0, 0, d, e, f,−1,−1,−1,−1) is redily obtained by plugging the term obtained
from the eq. (2.57) to the solution of the equation (2.55) given by the formula (2.56). There are
two more terms with increased powers ni that remain to be found. They are straightforwardly
obtained from the term g(−1, 0, 0, d, e, f,−1,−1,−1,−1) via di�erentiation over wi parameters
as given in the equation (2.40). This way we get g(−1, 2, 0, d, e, f,−1,−1,−1,−1) and conse-
quently g(−1, 2, 0, d, e, f, n1, n2, n3, n4) (with arbitrary values of n1, n2, n3, n4), since it can be
immediately obtained via di�erentiation over the respective parameters w1, w2, w3, w4. Integrals
g(−1, 0, 2, d, e, f, n1, n2, n3, n4) are obtained in the similar way.

For b = 2, c = 2 case, the expression (2.53) becomes

r−1(−1, 2, 2, d, e, f,−1,−1,−1,−1)

= 5(2g(−1, 0, 2, d, e, f, 0,−1,−1,−1) + 2g(−1, 2, 0, d, e, f, 0,−1,−1,−1))

− 4g(−1, 0, 0, d, e, f + 2, 0,−1,−1,−1)

+ w1

(
2g(−1, 0, 2, d, e, f,−1,−1, 1,−1)− 2g(−1, 0, 2, d, e, f, 1,−1,−1,−1)

+ 2g(−1, 2, 0, d, e, f,−1,−1,−1, 1)− 2g(−1, 2, 0, d, e, f, 1,−1,−1,−1)
)

+ f(2 + d, 2 + e, f,−2,−1,−1;w1 + w2, w3, w4).

(2.59)

As previously all terms on the right-hand side of the equation (2.59) are already evaluated
previously using equations (2.57), (2.58), and di�erentiation over parameters (as per equation
(2.40)) to increase ni and solved via the formula (2.56).
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From this point the procedure follows analogously for r−1(−1, 4, 2, d, e, f,−1,−1,−1,−1)

and g(−1, 4, 2, d, e, f,−1,−1,−1,−1), r−1(−1, 2, 4, d, e, f,−1,−1,−1,−1) in order to calculate
g(−1, 2, 4, d, e, f,−1,−1,−1,−1), followed by using r−1(−1, 4, 4, d, e, f,−1,−1,−1,−1) to obtain
g(−1, 4, 4, d, e, f,−1,−1,−1,−1) et cetera. Consequently, repeated application of this procedure
yields formula for any8 integral of type g(−1, b, c, d, e, f,−1,−1,−1,−1) with even b and c.

2.4.6 Di�erential equation for a = 1 and even b, c

Similarly to the case of a = −1 we use method of applying Laplacian (described in detail in
section A.2 of Appendix A) to obtain the second Laplacian expression

w1
2g(1, b, c, d, e, f, 0,−1,−1,−1)− w1(2 + b+ c)g(1, b, c, d, e, f,−1,−1,−1,−1)

= −r1(1, b, c, d, e, f,−1,−1,−1,−1)
(2.60)

that leads to the identical form of the di�erential equation as with with a = −1 (see eq. (2.55))
namely

−w1
2 ∂

∂w1
g(1, ...)− w1(2 + b+ c)g(1, ...) = −r(1, ...). (2.61)

with only the (slight) di�erence in the inhomogeneous term

r1(1, b, c, d, e, f,−1,−1,−1,−1;w1, w2, w3, w4)

= (b+ c+ 1)(bg(1, b− 2, c, d, e, f, 0,−1,−1,−1) + cg(1, b, c− 2, d, e, f, 0,−1,−1,−1))

− bcg(1, b− 2, c− 2, d, e, f + 2, 0,−1,−1,−1)

+ w1

(
bg(1, b− 2, c, d, e, f,−1,−1, 1,−1)− bg(1, b− 2, c, d, e, f, 1,−1,−1,−1)

+ cg(1, b, c− 2, d, e, f,−1,−1,−1, 1)− cg(1, b, c− 2, d, e, f, 1,−1,−1,−1)
)

− 2g(−1, b, c, d, e, f,−1,−1,−1,−1).

(2.62)

This di�erential equation is, again, solved (as described in section A.3 of Appendix A) to yield

g(1, ...) =
1

w2+b+c
1

�
wb+c
1 r1(1, ...) dw1. (2.63)

The main di�erence with the integrals with a = −1 is that g(−1, ...) is a part of the inhomo-
geneous term r1(1, ...) (in place of the extended three-electron integral present for the former
case). Thus, it must be solved �rst, in order to solve for g(1, ...). The last term in the right-hand
side of the equation (2.62) requires the integral g(−1, b, c, d, e, f,−1,−1,−1,−1) to be already
calculated. Therefore, in order to calculate the integral with a = 1 for each set of values of
{b, c, d, e, f} the integral with a = −1 must be solved �rst.

8In the case of the singly-linked Hylleraas integrals we are interested in, there would be at most only two odd

values among the parameters {d, e, f}. This makes the integration given in the equation (2.63) simple, as it is

over only elementary functions. In the case of the three odd parameters the integration becomes signi�cantly

more di�cult, since the integrand consists of non-elementary dilogarithmic functions (de�ned in equation (2.20))

which are more di�cult to integrate.
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The rest of the iterative procedure is identical with the one described in the previous section
2.4.5. Application of this procedure allows us to �nd any9 integral with a = 1, even b ≥ 0 and
even c ≥ 0, and (in principle) arbitrary {d, e, f} ≥ −1.

2.4.7 Application of recurrence relation for odd a > 1 and even b, c

When the four-electron Hylleraas-type integrals with a = −1 as well as a = 1 are solved for a
given set of values of {b, c, d, e, f,−1,−1,−1,−1} it is �nally possible to use recurrence relation
to increase a by two to obtain closed-form formulas for the integrals with arbitrary odd values
of a > 1, even b, c and any values of {d, e, f}.

The procedure is rather straightforward since it only requires repeated application of recur-
rence relation (2.42a) and di�erentiation over parameters wi while all necessary integrals are
already obtained using methods described in the previous sections.

In order to illustrate what are required integrals and how they can be calculated using pre-
sented methods here we present application of the recurrence relation to obtain a = 3 for non
negative even b, c and arbitrary {d, e, f} ≥ −1.

The equation (2.42a) with a = 1 takes form

g(3, b, c, d, e, f,−1,−1,−1,−1) = g(1, b, c, d, e, f,−1, 1,−1,−1)

+
1

2w1

[
(3 + b+ c+ 6)g(1, b, c, d, e, f, 0,−1,−1,−1)

+ 1
(
g(−1, b, c, d, e, f, 0, 1,−1,−1)− g(−1, b, c, d, e, f, 2,−1,−1,−1)

)

+ b
(
g(1, b− 2, c, d, e, f, 0,−1, 1,−1)− g(1, b− 2, c, d, e, f, 2,−1,−1,−1)

− 2g(1, b− 2, c, d+ 2, e, f, 0,−1,−1,−1) + 2g(1, b− 2, c, d, e, f, 0,−1,−1,−1)
)

+ c
(
g(1, b, c− 2, d, e, f, 0,−1,−1, 1)− g(1, b, c− 2, d, e, f, 2,−1,−1,−1)

− 2g(1, b, c− 2, d, e+ 2, f, 0,−1,−1,−1) + 2g(1, b, c− 2, d, e, f, 0,−1,−1,−1)
)]
.

(2.64)

It is immediately evident that all integrals appearing on the right-hand side of the equation (2.64)
can be calculated using methods from sections 2.4.5 and 2.4.6 and using the di�erentiation over
parameters wi to increase ni (as given in the equation (2.40)). The di�erentiation can also be
used to increase last four indices of g(3, b, c, d, e, f,−1,−1,−1,−1), so more general integrals of
form g(3, b, c, d, e, f, n1, n2, n3, n4) are straightforwardly obtained.

From this point, the repeated application of (2.42a) can be used to increase a further, up
to the arbitrarily high odd values. This way, we complete the method of obtaining closed-form
analytic formulas for singly-linked Hylleraas integrals with odd a ≥ −1, even non negative b, c
and arbitrary d, e, f ≥ −1. The �nal remaining task is to show how to get remaining integrals,
such as the ones with odd b, even a, c and arbitrary d, e, f .

9Again, with the disclaimer that the integrand with three odd parameters d, e, f makes integration (2.63)

signi�cantly more di�cult than the case of one or two odd parameters.
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2.4.8 Remaining singly-linked Hylleraas integrals obtained via symmetry

Although in principle the same methods that were presented in previous sections, namely using
recurrence relations or Laplacian identities followed by solution of di�erential equations and
applying recurrences, could be used to obtain the remaining integrals, there exists a much simpler
way to do so. The task of obtaining the remaining integrals, namely the ones where either b
is odd and a, c are even or c is odd and a, b are even is straightforward if we use symmetry
properties of four-electron Hylleraas integrals. For example we can permute electrons 2 and 3
which results in the permutation of electron indices {1 → 1, 2 → 3, 3 → 2, 4 → 4} directly to the
de�nition of the Hylleraas integral eq. (2.39) to obtain

g(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

exp(−w1r1−w2r2−w3r3−w4r4)

r−n1
1 r−n2

2 r−n3
3 r−n4

4 r−a
12 r

−b
13 r

−c
14 r

−d
23 r

−e
24 r

−f
34

=

�
d3r1
4π

d3r2
4π

d3r3
4π

d3r4
4π

exp(−w1r1−w3r3−w2r2−w4r4)

r−n1
1 r−n2

3 r−n3
2 r−n4

4 r−a
13 r

−b
12 r

−c
14 r

−d
32 r

−e
34 r

−f
24

= g(b, a, c, d, f, e, n1, n3, n2, n4;w1, w2, w3, w4).

(2.65)

Similarly, electrons 3 and 4 can be changed, resulting in the following permutation of the electron
indices {1 → 1, 4 → 2, 3 → 3, 2 → 4} to yield

g(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4) = g(c, b, a, f, e, d, n1, n4, n3, n2;w1, w2, w3, w4).

(2.66)
This way, the integrals with odd b or c can be calculated using formulas for integrals with odd
a. For example, using formula (2.65) we can easily get

g(2, 1, 4, 1, 0,−1, 1, 2, 3, 4;w1, w2, w3, w4) = g(1, 2, 4, 1,−1, 0, 1, 3, 2, 4;w1, w2, w3, w4). (2.67)

Finally, we note that in the numerical evaluation of four-electron singly-linked Hylleraas
integrals it is far more e�cient to permute values of the nonlinear parameters w1, w2, w3, w4 in
such a way, that formulas with odd a and even b, c are used for numerical evaluation, rather
than to explicitly implement formulas for cases with odd b and c. This signi�cantly reduces the
number of equations that has to be implemented in the code. Furthermore, additional reduction
of the number of the formulas for the integrals is possible for even a, b, c via the assumption that
a ≥ b ≥ c and subsequent use of suitable permutations for the remaining cases.

37

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Chapter 3

Results

3.1 Simpli�cation of the analytic formulas

While method developed in the previous chapter allows us to obtain all closed-form analytic
formulas for the singly-linked Hylleraas integrals, direct application of the method results in
quick growth of the expression size. Naive application of the recurrences leads to sizable formulas
after only few iterations. Such long formulas are unfavourable in the numerical implementations.
In order to circumvent expression growth we have developed strategy to simplify and shorten the
expressions using mathematical transformations. The expression growth starts already with the
three-electron Hylleraas integrals, which serve as input for the four-electron integrals, so �rst we
show how to put them in the maximally compact form. Next, we progress to the singly-linked
four-electron Hylleraas integrals.

In order to keep the expressions for integrals within the reasonable length, we introduce the
following function

l(w1, w2, w3) =

= −1

2

{
ln

(
w3

w1 + w2

)
ln

(
1 +

w3

w1 + w2

)
+ Li2

(
− w3

w1 + w2

)
+ Li2

(
1− w3

w1 + w2

)

+ ln

(
w2

w3 + w1

)
ln

(
1 +

w2

w1 + w3

)
+ Li2

(
− w2

w1 + w3

)
+ Li2

(
1− w2

w1 + w3

)

+ ln

(
w1

w2 + w3

)
ln

(
1 +

w1

w1 + w2

)
+ Li2

(
− w1

w2 + w3

)
+ Li2

(
1− w1

w2 + w3

)}
.

(3.1)

It contains the dilogarithmic functions along with some logarithm expressions. Using it allows
us to compactly express, for example, the three-electron integral de�ned in equation (2.19) as

f(−1,−1,−1,−1,−1,−1;w1, w2, w3) =
l(w1, w2, w3)

w1w2w3
. (3.2)

Using l(w1, w2, w3) to write the formulas for the integrals has three advantages. It separates
out the part of the expression that has the special function, it allows to separate out and com-
pactly write the derivatives of l(w1, w2, w3), and it permits computation of l(w1, w2, w3) and its
derivatives as a separate procedure in the numerical implementation.
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3.1.1 Illustration of the expression growth

In order to show the problem of expression growth we will start with the simple example.
Simple application of the three-electron recurrence relation as given in the equation (2.28),

modi�ed using the symmetry of the three-electron Hylleraas integrals to increase the �rst index
by two

f(−1,−1, 1,−1,−1,−1;w1, w2, w3)

=
l (w1, w2, w3)

w1w3
2w3

+
l (w1, w2, w3)

w1w2w3
3

− w1l (w1, w2, w3)

w3
2w

3
3

− 1

w2
2w

2
3 (w1 + w3)

− 1

w2
2 (w1 + w2)w2

3

+
log (w2)

w1w2
2w

2
3

− log (w1 + w2)

w1w2
2w

2
3

+
log (w3)

w1w2
2w

2
3

− log (w1 + w3)

w1w2
2w

2
3

− log (w1)

w3
2w

2
3

+
log (w1 + w2)

w3
2w

2
3

− log (w3)

w3
2w

2
3

+
log (w2 + w3)

w3
2w

2
3

− log (w1)

w2
2w

3
3

− log (w2)

w2
2w

3
3

+
log (w1 + w3)

w2
2w

3
3

+
log (w2 + w3)

w2
2w

3
3

.

(3.3)

The only simpli�cation for this case involves collecting terms with function l and logarithms
resulting in slightly more compact expression

f(−1,−1, 1,−1,−1,−1;w1, w2, w3)

=

(
− w1

w3
2w

3
3

+
1

w3
2w3w1

+
1

w2w3
3w1

)
l(w1, w2, w3)

− 1

w2
2w

2
3 (w1 + w3)

− 1

w2
2 (w1 + w2)w2

3

+

(
1

w3
3w

2
2

+
1

w2
3w

3
2

)
log

(
w2 + w3

w1

)
+

(
1

w2
2w

3
3

− 1

w1w2
2w

2
3

)
log

(
w1 + w3

w2

)
+

(
1

w3
2w

2
3

− 1

w1w2
2w

2
3

)
log

(
w1 + w2

w3

)
.

(3.4)

The di�erence becomes much more pronounced for simply calculated

f(−1, 0, 1,−1,−1,−1;w1, w2, w3)

= − 1

2w2
2w

3
3 (w2 + w3)

+
3

2w1w2
2 (w1 + w2)w2

3

+
1

2w1w2 (w1 + w2) 2w2
3

− 1

2w2
2 (w1 + w2) 2w2

3

+
1

2w2
2w

2
3 (w2 + w3) 2

+
1

2w2w3
3 (w2 + w3) 2

+
3 log (w2)

2w2
1w

2
2w

2
3

− 3 log (w2)

2w2
2w

4
3

− 3 log (w1 + w2)

2w2
1w

2
2w

2
3

− 3 log (w2 + w3)

2w2
1w

2
2w

2
3

+
3 log (w1 + w2 + w3)

2w2
1w

2
2w

2
3

−
3 log

(
w2(w1+w2+w3)
(w1+w2)(w2+w3)

)

2w2
1w

2
2w

2
3

−
2 log

(
w2(w1+w2+w3)
(w1+w2)(w2+w3)

)

w2
1w

4
3

+
3 log (w1 + w2)

2w2
2w

4
3

+
3 log (w2 + w3)

2w2
2w

4
3

− 3 log (w1 + w2 + w3)

2w2
2w

4
3

+
3 log

(
w2(w1+w2+w3)
(w1+w2)(w2+w3)

)

2w2
2w

4
3

,

(3.5)
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which after performing partial fraction decomposition with respect to w1, collecting the loga-
rithms and using their properties results in very compact expression

f(−1, 0, 1,−1,−1,−1;w1, w2, w3)

=
1

w2
1w

2
2w

2
3

− 1

w2
1 (w1 + w2)

2w2
3

−
2 log

(
w2(w1+w2+w3)
(w1+w2)(w2+w3)

)

w2
1w

4
3

.
(3.6)

Therefore, we have developed a systematic way to simplify integral expressions. The simpli�-
cation is performed for each integral and the optimised expression is used as an input in the
recurrences and Laplacian expressions.

3.1.2 Three-electron Hylleraas integrals simpli�cation

The resulting formulas for the three-electron Hylleraas integrals can be grouped into the four
main categories. This separation depends on the number of odd and even parameters among the
a, b, c in the integral f(a, b, c,−1,−1,−1;w1, w2, w3). This follows from the fact, that di�erent
kind of master integral corresponds to each of this situation. The most complicated one occurs
when there are three odd parameters, simpler one with the two and one odd parameter, and the
simplest one is the case of three even parameters.

In general there are three kinds of expressions to simplify: the ones with the function
l(w1, w2, w3), the logarithms and the rational functions of w1, w2, w3. In order to simplify the
rational functions, we �rst perform partial fraction decomposition three times one after another.
Once over w1, then w2 and �nally w3. Next, we perform partial fraction decomposition over
each of them once again and choose expression with the shortest length. We have found this
procedure to e�ciently reduce the length of the rational expressions. In case of the expressions
with the function l(w1, w2, w3) the only operation we perform is to collect together the factors
that multiply the function l and its derivatives. In case of the logarithms we try to collect as
many factors wi (where i = 1, 2, 3) under the single logarithm and collect all factors multiplying
these collected logarithms. We have found that this procedure allows for signi�cant cancellations
among these factors.

Application of these aforementioned techniques is applied depending on what number of
powers of rij are odd. In case of the three odd powers, all techniques are applied, in case of two
odd powers the techniques for reducing logarithms and partial fraction decomposition. Finally
when there is only one or there are none even powers we use only partial fractions decomposition.
In case of the derivatives applied simpli�cation techniques are practically identical to the case
of f(a, b, c,−1,−1,−1;w1, w2, w3) with the only di�erence lying in the fact that with three odd
powers of rij there are extra terms coming from the derivatives of the function l.

In order to illustrate e�ciency of these simpli�cation techniques, below we attach Table 3.1
that presents the expression length, counted as the number of the terms in the sum, of the several
three-electron Hylleraas integrals. For example, the length of the formula (3.3) is 17, while for
its simpli�ed counterpart given in the equation (3.4) it is 11. For equations (3.5) and (3.6) it is
17 and 3 respectively.

40

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 3.1: The length of the expressions for the selected three-electron Hylleraas integrals before
and after the reduction of the expression length. Columns Integral, Naive, Simpli�ed, and Ratio
contain the type of the integral, the number of the terms in the naive application of the recurrence
formulas and di�erentiation, the number of the terms after the simpli�cation and ratio of the
non-simpli�ed to the simpli�ed expression.

Integral Naive Simpli�ed Ratio

f(1, 1,−1,−1,−1,−1) 59 33 1.8
f(1, 1, 1,−1,−1,−1) 124 54 2.3
f(2,−1,−1,−1,−1,−1) 18 8 2.2
f(2, 0,−1,−1,−1,−1) 19 4 4.8
f(2, 2,−1,−1,−1,−1) 65 11 5.9
f(3, 1,−1,−1,−1,−1) 147 69 2.1
f(2, 2, 2,−1,−1,−1) 205 7 29.3
f(4, 2, 0,−1,−1,−1) 202 6 33.7
f(3, 3, 3,−1,−1,−1) 832 239 3.5
f(4, 4, 4,−1,−1,−1) 989 19 52.1
f(1,−1,−1, 0,−1,−1) 37 13 2.8
f(1, 1,−1, 0,−1,−1) 95 36 2.6
f(1, 1, 1, 0,−1,−1) 197 60 3.3
f(1,−1,−1, 1,−1,−1) 69 20 3.5
f(1, 1,−1, 1,−1,−1) 171 55 3.1
f(1, 1, 1, 1,−1,−1) 378 94 4.0
f(1,−1,−1, 2,−1,−1) 159 25 6.4
f(1, 1,−1, 2,−1,−1) 314 66 4.8
f(1, 1, 1, 2,−1,−1) 696 112 6.2
f(1,−1,−1, 0, 0,−1) 28 20 1.4
f(1, 1,−1, 0, 0,−1) 88 50 1.8
f(1, 1, 1, 0, 0,−1) 180 89 2.0
f(1,−1,−1, 0, 1,−1) 35 27 1.3
f(1, 1,−1, 0, 1,−1) 110 66 1.7
f(1, 1, 1, 0, 1,−1) 214 113 1.9
f(1,−1,−1, 1, 0,−1) 35 29 1.2
f(1, 1,−1, 1, 0,−1) 109 64 1.7
f(1, 1, 1, 1, 0,−1) 222 113 2.0
f(1,−1,−1, 1, 1,−1) 47 38 1.2
f(1, 1,−1, 1, 1,−1) 137 88 1.6
f(1, 1, 1, 1, 1,−1) 265 155 1.7
f(1,−1,−1, 2, 0,−1) 42 36 1.2
f(1, 1,−1, 2, 0,−1) 130 80 1.6
f(1, 1, 1, 2, 0,−1) 264 143 1.8
f(1,−1,−1, 2, 1,−1) 57 47 1.2
f(1, 1,−1, 2, 1,−1) 164 103 1.6
f(1, 1, 1, 2, 1,−1) 316 183 1.7
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3.1.3 Four-electron Hylleraas integrals simpli�cation

For the four-electron Hylleraas the situation with expression length is similar to the three-electron
integrals. First, all input three-electron integrals are taken simpli�ed. Then, we perform partial
fraction decomposition and collect logarithms, function l and its derivatives. The procedure,
especially partial fraction decomposition can be quite time consuming, but since the resulting
expressions are shorter it makes the calculation of the higher powers of rij signi�cantly faster
and results in more compact �nal expression.

Table 3.2: The length of the expressions for the selected four-electron Hylleraas integrals before
and after the reduction of the expression length. Columns Integral, Naive, Simpli�ed, and Ratio
contain the type of the integral, the number of the terms in the naive application of the recurrence
formulas and di�erentiation, the number of the terms after the simpli�cation and ratio of the
non-simpli�ed to the simpli�ed expression.

Integral Naive Simpli�ed Ratio

g(-1, 0, 0, 0, 1, 1, -1, -1, -1, -1) 30 17 2.2
g(-1, 0, 0, 0, 3, -1, -1, -1, -1, -1) 36 20 1.7
g(-1, 2, 0, 0, 0, 0, -1, -1, -1, -1) 8 4 0.0
g(-1, 4, 0, 0, 0, 0, -1, -1, -1, -1) 18 6 0.0
g(-1, 2, 2, 0, 0, 0, -1, -1, -1, -1) 35 14 0.0
g(-1, 2, 0, -1, 0, -1, -1, -1, -1, -1) 247 20 0.0
g(-1, 2, 0, -1, -1, 0, -1, -1, -1, -1) 491 51 0.0

3.2 Explicit formulas for the �rst few four-electron Hylleraas in-

tegrals

In general there are three main types of singly-linked Hylleraas integrals. The �rst type, we will
call "triangle" integral involves three linked odd powers of rij . This means that two indices of the
three electron are present in each rij with odd power. The example of this type of the integrals
we will present are integrals with odd r23, r24 and r34 and consequently even r12, r13, r14. The
second distinct type of the singly-linked Hylleraas integrals involves a single electron index that
is repeated in all odd powers of distances between the electrons. An example of such integrals
would be integral with odd powers r12, r23, r24 and even remaining powers. This type of integral
is called "star" integral, since there is single electron (electron 2 in the given example) that
"connects" to the rest of the electron with the odd powers of rij . The last, third type is a singly-
linked Hylleraas integral called "chain" integral. It consists of expressions where each electron
index is repeated at most twice. Example of such integral would be the one with odd r12, r23
and r24. The name comes from the fact that each electron is sequentially "chained" to the next
one via odd power of rij . These are possible types of singly-linked Hylleraas integrals with three
odd powers of interelectronic distances. Integrals with less that three odd powers are easily
represented as products of three-, two- and one-electron integrals and are much simpler so they

42

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


do not have separate names. Finally it is worth emphasizing, that for singly-linked Hylleraas
integrals there exist only these three classes of integrals for any number of electrons. This is
a consequence of the simple simple geometric fact, that the aforementioned types are the only
possible connected line segments independently on how many edges are present.

1

2 3

4

b

c

d

a

e

f

1

2 3

4

b

c

d

a

e

f

1

2 3

4

b

c

d

a

e

f

(A) (B) (C)

Figure 3.1: Classi�cation of the four-electron singly-linked Hylleraas integrals. Dots with the
electrons schematically represented by dots with numbers, dashed lines representing the even and
solid lines odd powers of the distances between the electrons with small letters (a-e) corresponding
to parameters in the de�nition of singly-lined. Each of the three cases of triangle (A), star (B),
and chain (C) integral corresponds to a di�erent integral topology and cannot be obtained by
permuting di�erent cases.

Since as mentioned in section 2.4.8 it is possible to obtain remaining singly-linked Hylleraas
integrals via permutations here we only present the analytic formulas for some example integrals
of the types mentioned in the previous paragraph. Furthermore, we restrict ourselves to lowest
powers of rij as the expressions become increasingly long with for larger powers.

3.2.1 Triangle integrals

In order to keep the expression for triangle integrals within reasonable length, we introduce the
following compact notation for the derivatives of the function l

(
∂

∂w2

)i( ∂

∂w3

)j ( ∂

∂w4

)k

l(w2, w3, w4) = l(i,j,k) (w2, w3, w4) . (3.7)

The simplest triangle integral with even powers of the remaining rij 's is

g(2, 0, 0,−1,−1,−1,−1,−1,−1,−1)

=

(
3

w4
1w2w3w4

+
2

w2
1w

3
2w3w4

)
l (w2, w3, w4)

− 2l(1,0,0) (w2, w3, w4)

w2
1w

2
2w3w4

+
l(2,0,0) (w2, w3, w4)

w2
1w2w3w4

(3.8)
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with the next two being

g(4, 0, 0,−1,−1,−1,−1,−1,−1,−1)

=

(
71

w6
1w2w3w4

+
32

w4
1w

3
2w3w4

+
24

w2
1w

5
2w3w4

)
l (w2, w3, w4)

+

(
− 32

w4
1w

2
2w3w4

− 24

w2
1w

4
2w3w4

)
l(1,0,0) (w2, w3, w4)

+

(
16

w4
1w2w3w4

+
12

w2
1w

3
2w3w4

)
l(2,0,0) (w2, w3, w4)

− 4l(3,0,0) (w2, w3, w4)

w2
1w

2
2w3w4

+
l(4,0,0) (w2, w3, w4)

w2
1w2w3w4

(3.9)

and

g(2, 2, 0,−1,−1,−1,−1,−1,−1,−1)

=
2

w4
1w

2
3 (w2 + w3)w2

4

+
2

w4
1w

2
3w

2
4 (w2 + w4)

+

(
2w2

w4
1w

3
3w

3
4

+
71

w6
1w3w4w2

+
16

w4
1w

3
3w4w2

− 2

w4
1w3w3

4w2
+

14

w4
1w3w4w3

2

+
4

w2
1w

3
3w4w3

2

)
l (w2, w3, w4)

+

(
2

w4
1w2w2

3w
2
4

− 2

w4
1w

3
3w

2
4

)
log

(
w2 + w3

w4

)
+

(
2

w4
1w2w2

3w
2
4

)

−
(

2

w4
1w

2
3w

3
4

)
log

(
w2 + w4

w3

)
+

(
− 2

w4
1w

3
4w

2
3

− 2

w4
1w

2
4w

3
3

)
log

(
w3 + w4

w2

)

+

(
− 18

w4
1w2w2

3w4
− 4

w2
1w

3
2w

2
3w4

)
l(0,1,0) (w2, w3, w4) +

(
9

w4
1w2w3w4

+
2

w2
1w

3
2w3w4

)
l(0,2,0) (w2, w3, w4) +

(
− 14

w4
1w

2
2w3w4

− 4

w2
1w

2
2w

3
3w4

)
l(1,0,0) (w2, w3, w4)

+
4l(1,1,0) (w2, w3, w4)

w2
1w

2
2w

2
3w4

− 2l(1,2,0) (w2, w3, w4)

w2
1w

2
2w3w4

+

(
7

w4
1w2w3w4

+
2

w2
1w2w3

3w4

)
l(2,0,0) (w2, w3, w4)−

2l(2,1,0) (w2, w3, w4)

w2
1w2w2

3w4
+
l(2,2,0) (w2, w3, w4)

w2
1w2w3w4

.

(3.10)
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3.2.2 Star integrals

The �rst, most fundamental integral of star type is given by

g (−1, 0, 0,−1,−1, 0,−1,−1,−1,−1)

=

(
w2

w2
1w

2
3w

2
4

+
1

w2
1w3w2

4

)
log

(
w2 (w1 + w2 + w3)

(w1 + w2) (w2 + w3)

)

+

(
w2

w2
1w

2
3w

2
4

+
1

w2
1w

2
3w4

)
log

(
w2 (w1 + w2 + w4)

(w1 + w2) (w2 + w4)

)

+−
log
(
(w1+w2)(w1+w2+w3+w4)
(w1+w2+w3)(w1+w2+w4)

)

w1w2
3w

2
4

+

(
− w2

w2
1w

2
3w

2
4

− 1

w2
1w

2
3w4

− 1

w2
1w3w2

4

)
log

(
w2 (w1 + w2 + w3 + w4)

(w1 + w2) (w2 + w3 + w4)

)

(3.11)

while the next one is

g (1, 0, 0,−1,−1, 0,−1,−1,−1,−1)

=
3

w2
1w2w2

3w
2
4

− 1

w2
1w

2
3 (w2 + w3)w2

4

− 1

w2
1w

2
3w

2
4 (w2 + w4)

− 1

w2
1w

2
3w

2
4 (w2 + w3 + w4)

+

(
2w2

w4
1w

2
3w

2
4

+
2

w4
1w3w2

4

+
2

w3
1w

2
3w

2
4

)
log

(
w2 (w1 + w2 + w3)

(w1 + w2) (w2 + w3)

)

+

(
2w2

w4
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2
3w

2
4

+
2

w4
1w

2
3w4

+
2

w3
1w

2
3w

2
4

)
log

(
w2 (w1 + w2 + w4)

(w1 + w2) (w2 + w4)

)

+
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2

w2
1w

2
3w

2
4 (w2 + w3 + w4)

− 2

w2
1w2w2

3w
2
4

)
log

(
w1 + w2 + w3 + w4

(w2 + w3) (w2 + w4)

)

+

(
− 2w2

w4
1w

2
3w

2
4

− 2

w4
1w

2
3w4

+
2

w2
1w

2
3w

2
4 (w2 + w3 + w4)

− 2

w4
1w3w2

4

)
log

(
w2 (w1 + w2 + w3 + w4)

(w1 + w2) (w2 + w3 + w4)

)
.

(3.12)

Integral with increased e is

g(−1, 0, 0,−1, 1, 0,−1,−1,−1,−1)

=
1

w2
1w2w2

3w
2
4

− 1

w2
1 (w1 + w2)w2

3w
2
4

− 1

w2
1w

2
3 (w2 + w3)w2

4

+
1

w2
1w

2
3 (w1 + w2 + w3)w2

4

+

(
2w2

w2
1w

2
3w

4
4

+
2

w2
1w3w4

4

)
log

(
w2 (w1 + w2 + w3)

(w1 + w2) (w2 + w3)

)

+

(
2w2

w2
1w

2
3w

4
4

+
2

w2
1w

2
3w

3
4

)
log

(
w2 (w1 + w2 + w4)

(w1 + w2) (w2 + w4)

)

−
2 log

(
(w1+w2)(w1+w2+w3+w4)
(w1+w2+w3)(w1+w2+w4)

)

w1w2
3w

4
4

+

(
− 2w2

w2
1w

2
3w

4
4

− 2

w2
1w

2
3w

3
4

− 2

w2
1w3w4

4

)
log

(
w2 (w1 + w2 + w3 + w4)

(w1 + w2) (w2 + w3 + w4)

)

(3.13)
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while the increased d results in

g(−1, 0, 0, 1,−1, 0,−1,−1,−1,−1)

=
1

w2
1w2w2

3w4 (w2 + w4)
− 1

w2
1 (w1 + w2)w2

3w4 (w1 + w2 + w4)

+

(
2w2

w2
1w

4
3w

2
4

+
2

w2
1w

3
3w

2
4

)
log

(
w2 (w1 + w2 + w3)

(w1 + w2) (w2 + w3)

)

+

(
2w2

w2
1w

4
3w

2
4

+
2

w2
1w

4
3w4

)
log

(
w2 (w1 + w2 + w4)
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(3.14)

To show the star integral with the increased b we present
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(3.15)

46

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3.2.3 Chain integrals

The most fundamental chain integral is

g (−1, 0, 0,−1, 0,−1,−1,−1,−1,−1)
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+
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(3.16)

The index increase leads to
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(3.17)

and
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(3.18)

as well as

g (−1, 0, 0,−1, 0, 1,−1,−1,−1,−1)

= − 1

w2
1w

2
3 (w2 + w3)w2

4

+
1

w2
1w

2
3 (w1 + w2 + w3)w2

4

+

(
− 2

w2
1w

4
4w3

− 2

w2
1w

2
4w

3
3

)
log

(
w2 (w1 + w2 + w3)

(w1 + w2) (w2 + w3)

)

−
2 log

(
w3(w2+w3+w4)
(w2+w3)(w3+w4)

)

w2
1w2w4

4

+
2 log

(
w3(w1+w2+w3+w4)
(w1+w2+w3)(w3+w4)

)

w2
1 (w1 + w2)w4

4

+
2 log

(
w2(w1+w2+w3+w4)
(w1+w2)(w2+w3+w4)

)

w2
1w

4
4 (w3 + w4)

.

(3.19)
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With b = 2 the chain integral has form
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(3.20)

while for e = 2 we get
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(3.21)
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3.3 Comparison with the existing results

3.3.1 Comparison of analytical formulas

First, we compare our formulas against those most recently derived by King [126]. We report
that our formulas agree (after rescaling by (4π)4) with formulas (24), (30), (42), (54) of King.
However, despite the agreement between (42) of King and our equation (3.16) we did not manage
to reproduce the value in equation (43). We suppose that there is some kind of mistake in this
value. Next, we look at the earlier work of King [121], where we con�rm agreement of our
results with his formulas (37), (40) (which is equal to (42) form [126] and our equation (3.16)).
Interestingly we con�rm (41) from [121] which is in disagreement with his latter value of (43)
form [126].

3.3.2 Numerical values of integrals

Next, we compare our values with the ones available from King [126]. First, we note that there
is a misprint in King's Table 1 where the value of p should be equal to −1, not 1. When taking
this (and rescaling of our integrals by (4π)4) into account, our results agree with King's values
for all 41 digits given in Table 1 and Table 2 of [126]. As an example, we show in Table 3.3 our
results of the integral g(1, 0, 0, 1, 0,−1, n1, n2, 0, 0;w1, w2, w3, w4).

Table 3.3: Present numerical values for selected values of the singly-linked Hylleraas integral g
with a = 1, b = 0, c = 0, d = 1, e = 0, f = −1, n3 = 0, n4 = 0.

n1 n2 w1 w2 w3 w4 Value of integral g(1, 0, 0, 1, 0, -1, n1, n2, 0, 0;w1, w2, w3, w4)

-1 -1 1.0 1.0 1.0 1.0 3.4553924355488356174760578385009478547888 ×105

-1 -1 1.1 1.1 1.1 1.1 1.2110939689740175952300900736535233573747 ×105

-1 -1 1.10 1.85 2.37 2.91 2.2399251764521981887632798244478194342854 ×102

0 0 1.0 1.0 1.0 1.0 2.4131839593234774164104657085980726616233 ×106

0 0 1.1 1.1 1.1 1.1 6.9901343476796004567999755497809669560957 ×105

0 0 1.10 1.85 2.37 2.91 8.0393101779695602061205053725304366496571 ×102

Next, we have checked the values from earlier work of King [121], where we have 40 digit
agreement between values from table Table 1 and Table 2 therein and using our formulas.
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Chapter 4

Conclusions

4.1 Summary

We have been able to successfully derive general method to obtain all singly-linked Hylleraas
integrals in terms of closed-form analytic formulas. In order to develop the method of their
calculation new theoretical tools have been developed: recurrences for the four-electron Hylleraas
functions, Laplacian identities that have allowed us to obtain integrals necessary to start the
derived recurrences, and the method that has allowed to solve the Laplacian identities using the
three-electron Hylleraas integrals. A program to compute closed-form analytical expressions for
both the three- and the four-electron integrals has been developed. Since the expression length
becomes signi�cant, procedures to simplify and keep the formulas as compact as possible have
been developed. Excellent agreement, reaching forty signi�cant digits, was obtained with the
existing results for the four-electron Hylleraas in was con�rmed, including both the numerical
and analytical veri�cation.

We believe, that this contribution is a �rst step towards the construction of the accurate
method for evaluating of the properties and energy levels of the light atomic systems beyond
a few electrons. We plan to apply obtained results in order to develop an e�cient method
for numerical evaluation of the analytic formulas. While existing formulas provide accurate
benchmark for other implementations, the practical numerical program must inevitably deal
with �nite-precision arithmetics. Therefore, it remains to be seen whether the method we have
developed will be widely adopted in the calculations of atomic systems.

In summary, we claim, that we have ful�lled the thesis statement presented at the beginning of
this thesis and developed a method to obtain closed-form analytic expressions for all singly-linked
Hylleraas integrals. While the lengthy expressions for higher powers of the distances between
the electrons in the integrals cause the method to slow down, it in principle works for arbitrary
values of these powers. Furthermore, since the calculation of the derivatives is a relatively simple
procedure, a mixed symbolic-numerical approach can be adopted for this case.
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4.2 Possible extensions of the present work

4.2.1 Large scale calculations of the energy levels of the four-electron systems

The �rst and most natural extension of the present work is of course the preparation of a
program to evaluate matrix elements in singly-linked Hylleraas basis that utilises the developed
formulas. While care must be taken in order to avoid loss of numerical accuracy, the analytical
expressions allow for extensive tests and manipulations in order to transform them into a more
robust method. The highly accurate calculation in a large basis would be the ultimate tests of
the strength and correctness of the obtained results. While the properties of the four-electron
atoms are calculated quite extensively, methods that yield highly-accurate wave functions allow
to improve the accuracy of second-order properties that strongly depend on the quality of the
wave function.

4.2.2 Doubly-and fully-linked Hylleraas method for four electron systems

Another worthwhile direction of extending the present work would be to try to generalise the
method to the Hylleraas integrals with functions involving more than the odd powers of dis-
tances between the electron. On the other hand, the present accuracy of the explicitly correlated
Gaussians seem to be su�cient in four-electron systems appear to be su�cient for any practical
purposes. Therefore such pursuit would have mostly purely intellectual value, since the perspec-
tives to extend the doubly-linked method beyond the systems with more than four electrons seem
limited.

4.2.3 Extensions of the developed integration techniques towards more elec-

trons

While the method to deal with singly-linked Hylleraas functions with more electrons has been
sketched in section 1.2.3 of the appendix, the practical implementation of a such method has
many challenges. E�cient algorithm that scales well with the number of the electrons in the
system must be developed if the method is extended beyond the few electrons. Furthermore, the
antisymmetrization of a wave function becomes a formidable challenge when explicitly correlated
functions are used. Promising direction to deal with this problem has been shown by Nakashima
[136].

4.2.4 Beyond non-relativistic energy

Yet another line of work is to extend the current method of integral evaluation to include inte-
grals that is necessary in calculations beyond solving the non-relativistic Schrodinger equation.
Such calculations include computations of the relativistic and QED e�ects, recoil corrections,
dipole and quadrupole moments, upper bound to energy and many others. For these types of
calculations additional matrix elements must be calculated, some of which are not expressed as
integrals considered in this thesis. For the inclusion of the relativistic e�ects it seems, that the
approach taken with the Hylleraas functions in lithium [130] should be possible to apply to the
singly-linked Hylleraas four-electron integrals.
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Appendix A

Mathematical details and derivations

A.1 Derivation of the recurrence relations

A.1.1 Integration by parts identities in coordinate space representation

Integration by parts (IBP) identities is a technique, developed for computing Feynman integrals
in quantum �eld theory [133, 134], that allows to derive useful relations between certain kinds
of multi-dimensional integrals, and subsequently form a di�erential equation satis�ed by master
integrals. In our work, we use IBPs to derive the recurrence relations for the increasing powers
of rij in many-electron integrals with the Hylleraas-type functions. The coordinate space IBP
relations derived here can be generalised to the Hylleraas type integrals with arbitrary number
of electrons.

Vanishing integral of the divergence of electron's position vector with Hylleraas-type

spherically-symmetric two-electron function

We show below, that for −1 ≤ {l, n,m} ∈ Z∧{α, β} ∈ R+ the following integral is equal to zero

�
d3r1 d

3r2∇1 · r2 exp(−αr1−βr2)rl1rm2 rn12 = 0. (A.1)

Using the divergence theorem we transform the triple integral over d3r1 to the surface integral
over the boundary of the in�nite sphere (with r̂1 as the outward pointing unit vector on the
spherical surface)

�
d3r1 d

3r2∇1 · r2 exp(−αr1−βr2)rl1rm2 rn12

=

�
d3r2 exp(−βr2)rm2 r2 · lim

r1→∞

"
d2r̂1 exp(−αr1)rl1rn12

(A.2)

expanding rn12 using cosine law and factoring r1 outside the square root we get

�
d3r2 exp(−βr2)rm2 r2 · lim

r1→∞

"
d2r̂1 exp(−αr1)rl+n

1

(
1 +

r22
r21

+ 2
r2
r1

cos(θ12)

)n/2

. (A.3)
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In the surface integral, we integrate only over the angles, so the limit can be taken under the
surface integral which results in

"
d2r̂1 lim

r1→∞
exp(−αr1)rl+n

1

(
1 +

r22
r21

+ 2
r2
r1

cos(θ12)

)n/2

= 0, (A.4)

as the limit under the integral goes to 0 (since cos(θ12) is in range [−1, 1] and at the in�nity
exponential function vanishes faster than any polynomial of r1). Therefore the relation (A.1) is
proven.

General result for bound many-electron functions

The analogous result holds for a larger number of electrons and other combinations of the indices
of ∇i and rj , including i = j (which can be shown in the similar way as above). The only
di�erence in the case of more electrons is in the additional powers of rj coming from more rjk
factors, which does not change the �nal result.

Therefore, the general result which can be written in the following way



d3ri d

3rj d
3rk . . .∇i · rjg(ri, rj , rk, rij , rik, rjk, . . .) = 0, (A.5)

which holds for any scalar, many-electron, square-integrable function g that is su�ciently smooth
(speci�cally Lipschitz continuous1) and vanishes at the in�nity. Commonly used atomic Slater-
and Gaussian-type functions, whether they include (su�ciently well-behaved) explicit correlation
factors or not, ful�ll these conditions. Furthermore, this relation can be rather straightforwardly
extended to two- and many-centre problems after slight modi�cation. Additionally, it's possible
to �nd more analogous relations by �nding second Green's identity analogue to the equation
(A.5).

A.1.2 Derivation of the four-electron recurrence relations

We now proceed to derive the recurrence relations for the case of our interest, namely the four-
electron Hylleraas-type integrals. We write equation (A.5) with four-electron Hylleraas-type
functions. This leads to set of sixteen identities that have the following form

0 = id(i, j) =

�
d3r1 d

3r2 d
3r3r2 d

3r4∇i · rj exp(−r1w1 − r2w2 − r3w3 − r4w4)

× rn1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

(A.6)

1Function f : Rn → R is (globally) Lipschitz continuous if for every two points x, y ∈ Rn : x ̸= y there exists a

constant L ≥ 0 such that |f(x)− f(y)| ≤ L |x− y|.
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Next, we focus on applying nabla to the expression under the integral.

∇1 ·
(
r1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

= (∇1 · r1) exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ r1 ·
(
∇1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

= (∇1 · r1)
(
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

+ r1 ·
[
(∇1 exp(−r1w1 − r2w2 − r3w3 − r4w4)) r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (∇1r
n1
1 ) exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n2
2 rn3

3 rn4
4 ra1,2r

b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+
(
∇1r

a
1,2

)
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 rb1,3r
c
1,4r

d
2,3r

e
2,4r

f
3,4

+
(
∇1r

b
1,3

)
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
c
1,4r

d
2,3r

e
2,4r

f
3,4

+
(
∇1r

c
1,4

)
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

d
2,3r

e
2,4r

f
3,4

]
.

(A.7)

Let us remind the de�nition of function h (as de�ned �rst in the equation (2.45))

h(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4) =

exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4.

(A.8)

Then, we apply rules of vector calculus2 to obtain equation (A.7) in form

∇1 · r1h(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4) =

3 exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4+

r1 ·
[
−r1w1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1−1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ r1n1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1−2
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (r1 − r2) a exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra−2
1,2 r

b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (r1 − r3) b exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b−2
1,3 r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (r1 − r4) c exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c−2
1,4 r

d
2,3r

e
2,4r

f
3,4

]
,

(A.9)

which after multiplying both sides of the equation (A.9) by 2, carrying out all vector products,
and using the de�nition of scalar product ri · rj = (r2i + r2j − ri,j)/2 to write the mixed products

2Such as ∇i exp(−r1w1 − r2w2 − r3w3 − r4w4) = −wi
ri
ri

exp(−r1w1 − r2w2 − r3w3 − r4w4), ∇i · ri = 3,

∇iri
n = ri

n−2 n and ∇iri,j
n = (ri − rj)ri,j

n−2 n.
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as the inter-particle distances and absorbing the results into the powers, leads to expression

2∇1 · r1h(a, b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

= 6 exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

− 2w1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r
1+n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ 2n1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ a
(
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

2+n1
1 rn2

2 rn3
3 rn4

4 r−2+a
1,2 rb1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

− exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 r2+n2

2 rn3
3 rn4

4 r−2+a
1,2 rb1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ b
(
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

2+n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
−2+b
1,3 rc1,4r

d
2,3r

e
2,4r

f
3,4

− exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 r2+n3
3 rn4

4 ra1,2r
−2+b
1,3 rc1,4r

d
2,3r

e
2,4r

f
3,4

+ exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

+ c
(
exp(−r1w1 − r2w2 − r3w3 − r4w4)r

2+n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

−2+c
1,4 rd2,3r

e
2,4r

f
3,4

− exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 r2+n4

4 ra1,2r
b
1,3r

−2+c
1,4 rd2,3r

e
2,4r

f
3,4

+ exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)
.

(A.10)

We observe, that we can utilise the de�nition of function h (equation (A.8)) and transform the
right-hand side of equation (A.10) by collecting h(a, b, c, d, e, f, n1, n2, n3, n4) to get the following
linear combination

2∇1 · r1h(a, b, c, d, e, f, n1, n2, n3, n4)
= (6 + a+ b+ c+ 2n1)h(a, b, c, d, e, f, n1, n2, n3, n4)− 2w1h(a, b, c, d, e, f, 1 + n1, n2, n3, n4)

+ a
[
h(−2 + a, b, c, d, e, f, 2 + n1, n2, n3, n4)− h(−2 + a, b, c, d, e, f, n1, 2 + n2, n3, n4)

]

+ b
[
h(a,−2 + b, c, d, e, f, 2 + n1, n2, n3, n4)− h(a,−2 + b, c, d, e, f, n1, n2, 2 + n3, n4)

]

+ c
[
h(a, b,−2 + c, d, e, f, 2 + n1, n2, n3, n4)− h(a, b,−2 + c, d, e, f, n1, n2, n3, 2 + n4)

]

(A.11)

in which we omit arguments wi of the h for brevity. Therefore, we have obtained a result that
would become the id(1, 1) after the integration of the both sides of the equation (A.11) over
the coordinates of four electrons (multiplicative constant 2 does not change this result, since the
left-hand side of equation (A.6) is zero).

Next, we proceed to calculate the expression in the mixed identity id(1, 2) starting with

∇1 ·
(
r2 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

= (∇1 · r2) exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ r2 ·
(
∇1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)
,

(A.12)

which is rather straightforwardly calculated, as the �rst term on the right-hand side vanishes3

3Since ∇1 · r2 = 0.
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and we already calculated ∇1h in equation (A.9), resulting in

∇1 ·
(
r2 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

= r2 ·
[
r1

(
n1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1−2
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

− r1w1 exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1−1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (r1 − r2) a exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra−2
1,2 r

b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (r1 − r3) b exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b−2
1,3 r

c
1,4r

d
2,3r

e
2,4r

f
3,4

+ (r1 − r4) c exp(−r1w1 − r2w2 − r3w3 − r4w4)r
n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c−2
1,4 r

d
2,3r

e
2,4r

f
3,4.

(A.13)

Performing the same operations that lead us to id(1, 1) results in

∇1 ·
(
r2 exp(−r1w1 − r2w2 − r3w3 − r4w4)r

n1
1 rn2

2 rn3
3 rn4

4 ra1,2r
b
1,3r

c
1,4r

d
2,3r

e
2,4r

f
3,4

)

= n1 [h(a, b, c, d, e, f,−2 + n1, 2 + n2, n3, n4) + h(a, b, c, d, e, f, n1, n2, n3, n4)

− h(2 + a, b, c, d, e, f,−2 + n1, n2, n3, n4)]

− w1 [h(a, b, c, d, e, f,−1 + n1, 2 + n2, n3, n4) + h(a, b, c, d, e, f, 1 + n1, n2, n3, n4)

− h(2 + a, b, c, d, e, f,−1 + n1, n2, n3, n4)]

− a [h− 2 + a, b, c, d, e, f, n1, 2 + n2, n3, n4)− h(−2 + a, b, c, d, e, f, 2 + n1, n2, n3, n4)

+ h(a, b, c, d, e, f, n1, n2, n3, n4)]

+ b [−h(a,−2 + b, c, d, e, f, n1, n2, 2 + n3, n4) + h(a,−2 + b, c, d, e, f, 2 + n1, n2, n3, n4)

+ h(a,−2 + b, c, 2 + d, e, f, n1, n2, n3, n4)− h(2 + a,−2 + b, c, d, e, f, n1, n2, n3, n4)]

+ c [−h(a, b,−2 + c, d, e, f, n1, n2, n3, 2 + n4) + h(a, b,−2 + c, d, e, f, 2 + n1, n2, n3, n4)

+ h(a, b,−2 + c, d, 2 + e, f, n1, n2, n3, n4)− h(2 + a, b,−2 + c, d, e, f, n1, n2, n3, n4)] ,

(A.14)

which again, after integration over the spatial coordinates of all four electrons is equal to id(1, 2).

Now, there are two ways to proceed. The �rst would be to directly attack the problem by
performing the same operations for all combinations of i, j = 1, 2, 3, 4 and obtain a set of sixteen
linear equations of type id(i, j) = 0. These equations have to be solved for appropriate integrals
in order to obtain useful recurrence relations. We could solve this system of equations for sixteen
variables - integrals g that have the highest sum of all powers (namely a+ b+ c+d+e+f +n1+
n2+n3+n4) via brute force in order to obtain sixteen expressions which increase the sum of the
powers of ri's and rij 's. However, since we are not directly interested in increasing powers of the
ni, as they can be increased via di�erentiation over the parameters wi (equation (2.40)) we can
proceed slightly more cleverly. For reasons explained in section 2.4.8 we only need to be able to
have three recurrence relations � speci�cally for a+2, b+2 and c+2. By examining the equation
(A.14) we immediately see, that id(1, 2) should be solved for integrals corresponding to either
h(2 + a, b, c, d, e, f,−2 + n1, n2, n3, n4) or h(2 + a, b, c, d, e, f,−1 + n1, n2, n3, n4). After further
inspection we see, that if we set n1 = 0, we can eliminate the �rst of these two terms (along with
some others) as they are multiplied by n1. Furthermore, we can set n2 = n3 = n4 = −1 since, as
mentioned previously, we can always increase powers of ri via di�erentiation over parameters.
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Integrating (A.14) over the spacial coordinates of four electrons, setting n1 = 0, n2 = n3 =

n4 = 0 and remembering the de�nitions of h (eq. (A.8)) and g (eq. (2.39)) leads us to the
expression

0 = id(1, 2)

= −w1 [g(a, b, c, d, e, f,−1, 1,−1,−1) + g(a, b, c, d, e, f, 1,−1,−1,−1)

− g(2 + a, b, c, d, e, f,−1,−1,−1,−1)]

− a [h− 2 + a, b, c, d, e, f, 0, 1,−1,−1)− g(−2 + a, b, c, d, e, f, 2,−1,−1,−1)

+ g(a, b, c, d, e, f, 0,−1,−1,−1)]

+ b [−g(a,−2 + b, c, d, e, f, 0,−1, 1,−1) + g(a,−2 + b, c, d, e, f, 2,−1,−1,−1)

+ g(a,−2 + b, c, 2 + d, e, f, 0,−1,−1,−1)− g(2 + a,−2 + b, c, d, e, f, 0,−1,−1,−1)]

+ c [−g(a, b,−2 + c, d, e, f, 0,−1,−1, 1) + g(a, b,−2 + c, d, e, f, 2,−1,−1,−1)

+ g(a, b,−2 + c, d, 2 + e, f, 0,−1,−1,−1)− g(2 + a, b,−2 + c, d, e, f, 0,−1,−1,−1)] ,

(A.15)

which can be solved for g(2 + a, b, c, d, e, f,−1,−1,−1,−1) yielding

g(a+ 2, b, c, d, e, f,−1,−1,−1,−1)

= g(a, b, c, d, e, f,−1, 1,−1,−1) + g(a, b, c, d, e, f, 1,−1,−1,−1)

+
1

w1

[
a
(
g(a− 2, b, c, d, e, f, 0, 1,−1,−1)− g(a− 2, b, c, d, e, f, 2,−1,−1,−1)

+g(a, b, c, d, e, f, 0,−1,−1,−1)
)

+ b
(
g(a, b− 2, c, d, e, f, 0,−1, 1,−1)− g(a, b− 2, c, d, e, f, 2,−1,−1,−1)

−g(a, b− 2, c, d+ 2, e, f, 0,−1,−1,−1) + g(a+ 2, b− 2, c, d, e, f, 0,−1,−1,−1)
)

+ c
(
g(a, b, c− 2, d, e, f, 0,−1,−1, 1)− g(a, b, c− 2, d, e, f, 2,−1,−1,−1)

−g(a, b, c− 2, d, e+ 2, f, 0,−1,−1,−1) + g(a+ 2, b, c− 2, d, e, f, 0,−1,−1,−1)
)]
.

(A.16)

This expression can be further simpli�ed. In order to do so, we solve integrated form of equation
(A.11) for g(a, b, c, d, e, f, 1,−1,−1,−1) by setting n1 = 0, n2 = n3 = n4 = −1. This leads to

g(a, b, c, d, e, f, 1,−1,−1,−1) =
1

2w1
(6 + a+ b+ c)g(a, b, c, d, e, f, 0,−1,−1,−1)

+ a
[
g(−2 + a, b, c, d, e, f, 2,−1,−1,−1)− g(−2 + a, b, c, d, e, f, 0, 1,−1,−1)

]

+ b
[
g(a,−2 + b, c, d, e, f, 2,−1,−1,−1)− g(a,−2 + b, c, d, e, f, 0,−1, 1,−1)

]

+ c
[
g(a, b,−2 + c, d, e, f, 2,−1,−1,−1)− g(a, b,−2 + c, d, e, f, 0,−1,−1, 1)

]
.

(A.17)

By plugging the right-hand side of equation (A.17) into the equation (A.16) (and therefore
eliminating the g(a, b, c, d, e, f, 1,−1,−1,−1) term) and after collecting common factors together
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we obtain

g(a+ 2, b, c, d, e, f,−1,−1,−1,−1) = g(a, b, c, d, e, f,−1, 1,−1,−1)

+
1

2w1

[
(3a+ b+ c+ 6)g(a, b, c, d, e, f, 0,−1,−1,−1)

+ a
(
g(a− 2, b, c, d, e, f, 0, 1,−1,−1)− g(a− 2, b, c, d, e, f, 2,−1,−1,−1)

)

+ b
(
g(a, b− 2, c, d, e, f, 0,−1, 1,−1)− g(a, b− 2, c, d, e, f, 2,−1,−1,−1)

− 2g(a, b− 2, c, d+ 2, e, f, 0,−1,−1,−1) + 2g(a+ 2, b− 2, c, d, e, f, 0,−1,−1,−1)
)

+ c
(
g(a, b, c− 2, d, e, f, 0,−1,−1, 1)− g(a, b, c− 2, d, e, f, 2,−1,−1,−1)

− 2g(a, b, c− 2, d, e+ 2, f, 0,−1,−1,−1) + 2g(a+ 2, b, c− 2, d, e, f, 0,−1,−1,−1)
)]
,

(A.18)

which is our recurrence relation as given in equation (2.42a). We can get the recurrence relations
given in equations (2.42b) and (2.42c) in analogous manner, by plugging id(1, 1) into id(1, 3)
and id(1, 4) respectively and performing akin manipulations. Similar recurrence relations could
be derived using remaining identities. This completes the derivation of four-electron recurrence
relations.

A.2 Laplacian identities

We derive two identities that connect four-electron integrals to three-electron integrals, as well
as lead to the di�erential equation that allows �nding four electron integrals with powers of r12
equal to −1 and 1.

A.2.1 Three-dimensional Poisson equation with Dirac delta

The three dimensional Poisson equation with the right-hand side equal to δ(3)(r1 − r2) de�nes
the Green's function G

∇2
1G(r1, r2) = δ(3)(r1 − r2) (A.19)

where δ(3)(r1 − r2) is the three-dimensional Dirac delta and ∇2
1 is the Laplacian of the 1-st

particle. The solution that satis�es this equation under boundary conditions G(r1, r2) → 0, as
|r1 − r2| → ∞ is

G(r1, r2) = − 1

4π |r1 − r2|
. (A.20)

A.2.2 Integral of Green's function

We de�ne a speci�c variant of Hylleraas-type function of four electrons ha with {w1, w2, w3, w4} ∈
R+ and−1 ≤ {b, c, d, e, f, n1, n2, n3, n4} ∈ Z such that (we omit the parameters of ha until further
notice)

ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

= exp(−w1r1−w2r2−w3r3−w4r4)r
n1
1 rn2

2 rn3
3 rn4

4 rb13r
c
14r

d
23r

e
24r

f
34.

(A.21)
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Multiplying both sides of the equation (A.19) by ha and writing |r1 − r2| as r12 we get

haδ
(3)(r1 − r2) = − 1

4π
ha∇2

1

1

r12
. (A.22)

Next, we integrate both sides of the equation (A.22) with respect to r1, r2 over their whole
respective spaces, R3

r1 ,R
3
r2 and multiply by 4π to obtain

4π

�
d3r1 d

3r2haδ
(3)(r1 − r2) = −

�
d3r1 d

3r2ha∇2
1

1

r12
. (A.23)

On the left-hand side of the above equation, the integration over d3r1 can be straightforwardly
done to yield

4π

�
d3r1 d

3r2haδ
(3)(r1 − r2) = 4π

�
d3r2e

(−(w1+w2)r2−w3r3−w4r4)rn1+n2
2 rn3

3 rn4
4 rb+d

23 rc+e
24 rf34.

(A.24)
In the next section, we integrate by parts the right-hand side of equation (A.23) to obtain
Laplacian acting on ha.

A.2.3 Application of Green's identity

Using the Green's �rst identity4�

U

dV ψ∇2
1ϕ = −

�

U

dV∇1ψ · ∇1ϕ+

�

∂U

dS1 · ψ∇1ϕ, (A.25)

on the right-hand side of equation (A.22), multiplying by −4π and taking ψ = ha, ϕ = 1
r12

results
in �

d3r1 d
3r2ha∇2

1

1

r12
= −
�

d3r1 d
3r2∇1ha · ∇1

1

r12
+

�
d3r2

�
d2r̂1 · ha∇1

1

r12
(A.26)

We choose the surface integral to be over the boundary of in�nite sphere and it vanishes (similarly
as in equation (A.4), since ha decreases exponentially with r1), so as a consequence of

lim
r1→∞

"
d2nr1ha∇1

1

r12
· nr1 = 0 (A.27)

equation (A.26) takes the following form�
d3r1 d

3r2ha∇2
1

1

r12
= −
�

d3r1 d
3r2∇1ha · ∇1

1

r12
. (A.28)

Then, we can again apply Green's identity, this time with ψ = 1
r12
, ϕ = ha and in the opposite

way, to get the right side of (A.28) into

−
�

d3r1 d
3r2∇1ha · ∇1

1

r12
=

�
d3r1 d

3r2
1

r12
∇2

1ha −
�

d3r2

�
d2nr2 · ha∇1

1

r12
(A.29)

where, again, the surface integral vanishes yielding the result�
d3r1 d

3r2ha∇2
1

1

r12
=

�
d3r1 d

3r2
1

r12
∇2

1ha. (A.30)

4Which can be straightforwardly obtained by applying divergence theorem to the �eld of form ψ∇1ϕ).
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A.2.4 Connection of the Green's function with integrals over the Hylleraas-

type functions

Transforming equation (A.23) using equations (A.24) and (A.30) and integrating both sides w.r.t
the third and fourth electron's coordinates d3r3, d3r4 over R3

r3 and R3
r4 of we get

4π

�
d3r2 d

3r3 d
3r4 e

(−(w1+w2)r2−w3r3−w4r4)rn1+n2
2 rn3

3 rn4
4 rb+d

23 rc+e
24 rf34

=

�
d3r1 d

3r2 d
3r3 d

3r4
1

r12
∇2

1ha.

(A.31)

Since the three-electron Hylleraas-type integrals are de�ned as

f(a, b, c, n1, n2, n3;w1, w2, w3)

=

�
d3r1
4π

d3r2
4π

d3r3
4π

exp(−w1r1−w2r2−w3r3)r
a
12r

b
13r

c
23r

n1
1 rn2

2 rn3
3 ,

(A.32)

by dividing the equation (A.31) by (4π)4 we �nally obtain (we now return to writing the param-
eters and variables of ha explicitly)

f(b+ d, c+ e, f, n1 + n2, n3, n4, w1 + w2, w3, w4)

= −
�

d3r1
4π

d3r2
4π

d3r4
4π

d3r4
4π

1

r12
∇2

1ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4).
(A.33)

The left-hand side of equation (A.33) is a three-electron integral, while the right-hand side
corresponds to a linear combination of integrals of ha multiplied by r−1

12 .

A.2.5 Three-dimensional Poisson equation with 2r−1
12

Analogous procedure can be now straightforwardly performed for the equation analogous to
(A.19), but with a di�erent right-hand side, namely

∇2
1H(r1, r2) =

2

r12
. (A.34)

The solution of this equation is5

H(r1, r2) = |r1 − r2| = r12. (A.35)

Following the transformations analogous to the ones in the previous paragraphs, we arrive at

2

�
d3r1
4π

d3r2
4π

d3r4
4π

d3r4
4π

1

r12
ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4) =

�
d3r1
4π

d3r2
4π

d3r4
4π

d3r4
4π

r12∇2
1ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

(A.36)

Since the right-hand side (again) becomes a linear combination of integrals of ha, but this time
multiplied by r12, it allows us to connect such expressions with the integral with 1

r12
that appears

on the left-hand side of equation (A.36).
5It can be straightforwardly checked via the simple calculation:

∇2
1r12 = ∇1 · ∇1r12 = ∇1 · r12

r12
=

(
∇1

1

r12

)
r12 +

1

r12
∇1r12 =

−1

r212
r̂12 · r12 + 3

r12
=

2

r12
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A.2.6 Application of the Laplacian on function ha

The �nal step in the derivation of the Laplacian integral identities is application of the Laplacian
on the function ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4), which appears both in the equation
(A.33), as well as in the equation (A.36). Since the function ha is spherically symmetric for any
choice of the parameters, application of the the Laplacian comes down to simple (albeit tedious)
di�erentiation applying the rules of vector calculus6. This results in (dependence of ha's on wi's
is omitted for brevity)

∇2
1ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

= (b+ c+ n1 + 1) (bha(b− 2, c, d, e, f, n1, n2, n3, n4) + cha(b, c− 2, d, e, f, n1, n2, n3, n4)

+n1ha(b, c, d, e, f, n1 − 2, n2, n3, n4))− bch(0, b− 2, c− 2, d, e, f + 2, n1, n2, n3, n4)

− n1 (bha(b− 2, c, d, e, f, n1 − 2, n2, n3 + 2, n4) + cha(b, c− 2, d, e, f, n1 − 2, n2, n3, n4 + 2))

+ w1 (bha(b− 2, c, d, e, f, n1 − 1, n2, n3 + 2, n4)− bha(b− 2, c, d, e, f, n1 + 1, n2, n3, n4)

+ cha(b, c− 2, d, e, f, n1 − 1, n2, n3, n4 + 2)− cha(b, c− 2, d, e, f, n1 + 1, n2, n3, n4))

− w1(b+ c+ 2n1 + 2)ha(b, c, d, e, f, n1 − 1, n2, n3, n4) + w2
1ha(b, c, d, e, f, n1, n2, n3, n4)

(A.37)

Since higher powers of each ni can be obtained via the di�erentiation of ha over the respective
wi, we set n1 = 0 and n2, n3, n4 = −1 thus the expression (A.37) simpli�es to

∇2
1ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

= (b+ c+ 1)(bha(b− 2, c, d, e, f, 0,−1,−1,−1) + cha(b, c− 2, d, e, f, 0,−1,−1,−1))

− bcha(b− 2, c− 2, d, e, f + 2, 0,−1,−1,−1)

+ w1

(
bha(b− 2, c, d, e, f,−1,−1, 1,−1)− bha(b− 2, c, d, e, f, 1,−1,−1,−1)

+ cha(b, c− 2, d, e, f,−1,−1,−1, 1)− cha(b, c− 2, d, e, f, 1,−1,−1,−1)
)

− w1(b+ c+ 2)ha(b, c, d, e, f,−1,−1,−1,−1) + w2
1ha(b, c, d, e, f, 0,−1,−1,−1).

(A.38)

Finally, for b, c = 0 the equation (A.38) becomes very simple

∇2
1ha(b, c, d, e, f, n1, n2, n3, n4;w1, w2, w3, w4)

= −2w1ha(b, c, d, e, f,−1,−1,−1,−1) + w2
1ha(b, c, d, e, f, 0,−1,−1,−1).

(A.39)

This serves as a starting point for �nding the integrals of ha(b, c, d, e, f,−1,−1,−1,−1)multiplied
by r−1

12 (using equation (A.33)) or by r12 (via equation (A.36)) by transforming this expression
to the di�erential equation form and �nding its solution.

A.3 Di�erential equation

A.3.1 General solution of the di�erential equation

Since both the equations (2.55) and (2.61) have the same form, we will solve the equation

−w2
1

∂g(w1)

∂w1
− w1(2 + b+ c)g(w1) = −r(w1). (A.40)

6The calculations are very similar to the ones performed in section A.1.2 of this Appendix.
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After dividing its both sides by 1/w2
1 we get

∂g(w1)

∂w1
+

(2 + b+ c)

w1
g(w1) =

1

w2
1

r(w1). (A.41)

This type of equation can be solved using integration factor which takes the following form

exp

(
(2 + b+ c)

�
1

w1
dw1

)
= exp

(
(2 + b+ c) ln (w1)

)
= w2+b+c

1 . (A.42)

After multiplying both sides of the equation (A.40) by this factor we get

w2+b+c
1

(
∂g

∂w1
+

2 + b+ c

w1
g

)
= wb+c

1 r(w1). (A.43)

Noticing, that the left side can be rewritten, equation (A.43) takes form

∂

∂w1

(
w2+b+c
1 g

)
= wb+c

1 r(w1). (A.44)

We can integrate both sides over dw1 giving

g =
1

w2+b+c
1

�
wb+c
1 r(w1) dw1 =

F (w1)

w2+b+c
1

, (A.45)

where F ′(w1) = wb+c
1 f(w1). The solution is obtained up to the constant of integration. The

remaining task is to �nd this constant. Next, we �x the constant using asymptotic analysis of g.

A.3.2 Constant of integration

The constant of integration for the equation (A.45) can be found by analysing the asymptotic
behaviour of the integral g(a, b, c, d, e, f,−1,−1,−1,−1) at small w1. The asymptotic analy-
sis reveals that the Laurent expansion of both the integral g(−1, b, c, d, e, f, 0,−1,−1,−1) and
g(1, b, c, d, e, f, 0,−1,−1,−1) around w1 = 0 does not contain terms of order w−2−b−c

1 .

As proven in the section A.4.1 of the Appendix A, the lowest order of w1 in g are

g(a, b, c, d, e, f,−1,−1,−1,−1) ∼ 1

w2+a+b+c
1

+O(
1

wa+b+c
1

) (A.46)

and for a = −1 the lowest terms in w1 are w
−1−b−c
1 . Therefore, F (w1)must not have any constant

terms (of order O(w0
1)) so the constant of integration in (A.45) is �xed by this requirement.

In the case of a = 1 the next order of w1 has to be considered, since the lowest order terms
of w1 in that case are w−3−b−c

1 . However, the analysis of the next-to-leading order of w1 reveals
that there are no terms of order w−1−a−b−c

1 in the integral g, as shown in section A.4.1 of the
Appendix A. Consequently, also for a = 1 there are no terms of w−2−b−c

1 and the constant is
�xed.
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A.4 Asymptotic behaviour of integral g as a function of w1

A.4.1 Behaviour of four-electron integral g at small w1

In order to analyse behaviour of the integral g at small w1, we use the following variable substi-
tution r1 = R1/w1. After that substitution the integral has the following form

g(a, b, c, d, e, f,−1,−1,−1,−1;w1, w2, w3, w4)

=

�
d3R1

4π

d3r2
4π

d3r4
4π

d3r4
4π

exp(−R1 − w2r2 − w3r3 − w4r4)
1

w2
1

× rd23r
e
24r

f
34

R1r2r3r4

|R1 − w1r2|a |R1 − w1r3|b |R1 − w1r4|c
wa
1w

b
1w

c
1

.

(A.47)

Using the identity

|R1 − w1r1| =
√
R2

1 + w2
1r

2
1 − 2w1R1 · r2 = R1

√
1− 2w1

R1 · r2
R2

1

+ w2
1

r21
R2

1

(A.48)

the term (A.48) can be expanded expanded in w1 around 0 up to linear term leading to

|R1 − w1r1|a =

(
R1

√
1− 2w1

R1 · r2
R2

1

+ w2
1

r21
R2

1

)a

= Ra
1

(
1− w1a

R1 · r2
R2

1

+ . . .

)
. (A.49)

The integrand of (A.47) can therefore be expanded for small w1 up to the second (linear) term
in w1 to arrive at

g(a, b, c, d, e, f,−1,−1,−1,−1;w1, w2, w3, w4)

≈
�

d3R1

4π

d3r2
4π

d3r4
4π

d3r4
4π

exp(−w2r2 − w3r3 − w4r4)
rd23r

e
24r

f
34

r2r3r4

× e−R1
Ra+b+c

1

w2+a+b+c
1

(
1− w1

R1 · (ar2 + br3 + cr4)

R2
1

)
(A.50)

where terms of order O(w2
1) and higher were omitted. The right-hand side of the equation (A.50)

can be straightforwardly integrated over R1 resulting in

Γ(3 + a+ b+ c)

w2+a+b+c
1

�
d3r2
4π

d3r3
4π

d3r4
4π

exp(−w2r2 − w3r3 − w4r4)
rd23r

e
24r

f
34

r2r3r4
, (A.51)

since the angular integral over R1 · r2 is equal to 0 and thus the second term of integral
(A.50) (linear in w1) vanishes. As a consequence, w−2−a−b−c

1 is the most negative power of
w1, and there aren't any terms of order w−1−a−b−c

1 in the small w1 expansion of the integral
g(a, b, c, d, e, f,−1,−1,−1,−1) de�ned in equation (A.47). Therefore, w−2−a−b−c

1 must be the
most negative power of w1 and there are no terms of order w−1−a−b−c

1 in the integral g.
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Appendix B

Code with the implementation of the

method

Below we present the code that implements the method developed in this thesis. It allows
to obtain analytic formulas for singly-linked Hylleraas integrals. The code is implemented in
Wolfram Language code and can be run using Wolfram Mathematica and was developed and
run in Mathematica version 11.2 [137]. The four-electron integral code calculates the singly-
linked Hylleraas integrals with either odd or even a and even b, c with either three d, e, f (in the
case of even a) or two odd d, e, f (in case of odd a). The code given below is available as the
source code from the author upon the email (tymon.kilich@pg.edu.pl) or personal request.

B.1 Three-electron integrals code

To use the code user simply has to load the �le into the Mathematica. It requires the �le with
the three-electron code to be present in the same folder where the �le is loaded. To calculate
the required three-electron Hylleraas integral simply write the function hy3el[a,b,c,n1,n2,n3]

with the ten integer arguments corresponding to the powers of the rij and ri. The code is required
to be present in the same path that the four-electron code is used in order for it to work.

delta[0] = 1;

delta[n_Integer] :=0/; (n!=0);

f[0,0,0,0,0,0] = l[w1,w2,w3]/(w1 w2 w3);

f[1,0,0,0,0,0] = -1/(w2^2 w3^2) Log[w1(w1+w2+w3)/(w1+w2)/(w1+w3)];

f[0,1,0,0,0,0] = -1/(w1^2 w3^2) Log[w2(w1+w2+w3)/(w2+w1)/(w2+w3)];

f[0,0,1,0,0,0] = -1/(w1^2 w2^2) Log[w3(w1+w2+w3)/(w3+w1)/(w3+w2)];

f[1,1,0,0,0,0] = 1/(w1 w2 (w1+w2) w3^2);

f[1,0,1,0,0,0] = 1/(w1 w3 (w1+w3) w2^2);

f[0,1,1,0,0,0] = 1/(w2 w3 (w2+w3) w1^2);

f[1,1,1,0,0,0] = 1/(w1^2 w2^2 w3^2);

repl = {l[w1_,w2_,w3_] -> -1/2(Log[w3/(w1+w2)] Log[1+w3/(w1+w2)]
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+ PolyLog[2,-w3/(w1+w2)]+PolyLog[2,1-w3/(w1+w2)]

+ Log[w2/(w1+w3)] Log[1+w2/(w1+w3)]

+ PolyLog[2,-w2/(w1+w3)]+PolyLog[2,1-w2/(w1+w3)]

+ Log[w1/(w3+w2)] Log[1+w1/(w3+w2)]

+ PolyLog[2,-w1/(w3+w2)]+PolyLog[2,1-w1/(w3+w2)])};

f[x,n2_,n3_,n4_,n5_,n6_] = G[n5+n6-1,n4,n3+n2-1,w2+w3,w1,0];

f[n1_,x,n3_,n4_,n5_,n6_] = G[n4+n6-1,n5,n1+n3-1,w1+w3,w2,0];

f[n1_,n2_,x,n4_,n5_,n6_] = G[n4+n5-1,n6,n1+n2-1,w1+w2,w3,0];

f[n1_,n2_,n3_,x,0,0] = G[n3-1,n2-1,n1,w2,w3,0];

f[n1_,n2_,n3_,0,x,0] = G[n1-1,n3-1,n2,w3,w1,0];

f[n1_,n2_,n3_,0,0,x] = G[n2-1,n1-1,n3,w1,w2,0];

G[n1_,n2_,n3_,u1_,u2_,u3_] := ((-1)^(n1+n2+n3)

D[1/(x1+x2)/(x2+x3)/(x1+x3),{x1,n1},{x2,n2},{x3,n3}] /. {x1->u1,

x2->u2,x3->u3})/; (n1>-1&&n2>-1&&n3>-1);

G[-1,n2_,n3_,u1_,u2_,u3_] := ((-1)^(n2+n3)

D[(Log[x1+x2]-Log[x1+x3])/((x2-x3)(x2+x3)),

{x2,n2},{x3,n3}]/.{x1->u1,x2->u2,x3->u3})/; (n2>-1&&n3>-1);

G[n1_,-1,n3_,u1_,u2_,u3_] := ((-1)^(n1+n3)

D[(Log[x2+x1]-Log[x2+x3])/((x1-x3)(x1+x3)),

{x1,n1},{x3,n3}]/.{x1->u1,x2->u2,x3->u3})/; (n1>-1&&n3>-1);

G[n1_,n2_,-1,u1_,u2_,u3_] := ((-1)^(n1+n2)

D[(Log[x3+x1]-Log[x3+x2])/((x1-x2)(x1+x2)),

{x1,n1},{x2,n2}]/.{x1->u1,x2->u2,x3->u3})/; (n1>-1&&n2>-1);

rec1 = {f[n1_Integer, n2_Integer, n3_Integer, 0, 0, 0] ->

((-1 + n1)*((w1^2*(((3 - n1)*(-2 + n1)*f[-4 + n1, n2, 2 + n3, 0, 0, 0])/(1 + n3) +

((3 - n1)*(-2 + n1)*f[-4 + n1, 2 + n2, n3, 0, 0, 0])/(1 + n2)

+ (-2 - 2*(-2 + n1) - n2 - n3)*f[-2 + n1, n2, n3, 0, 0, 0] +

delta[-2 + n1]*(G[-1, 0, 1 + n2 + n3, w2 + w3, w1, 0]/(1 + n2) +

G[-1, 0, 1 + n2 + n3, w2 + w3, w1, 0]/(1 + n3)) -

G[-3 + n1, 1 + n3, n2, w3, w1, 0]/(1 + n3) -

G[1 + n2, -3 + n1, n3, w1, w2, 0]/(1 + n2)))/(w2^2*w3^2)

+ ((n1 + n2 + 2*n3)*f[-2 + n1, n2, n3, 0, 0, 0] +

((-1 + n3)*n3*f[-2 + n1, 2 + n2, -2 + n3, 0, 0, 0])/(1 + n2) +

((-1 + n3)*n3*f[n1, n2, -2 + n3, 0, 0, 0])/(-1 + n1) +

delta[n3]*(-(G[-1, 0, -1 + n1 + n2, w1 + w2, w3, 0]/(-1 + n1)) -

G[-1, 0, -1 + n1 + n2, w1 + w2, w3, 0]/(1 + n2)) +
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G[-1 + n1, -1 + n3, n2, w3, w1, 0]/(-1 + n1) +

G[-1 + n3, 1 + n2, -2 + n1, w2, w3, 0]/(1 + n2))/w2^2 +

(((-1 + n2)*n2*f[-2 + n1, -2 + n2, 2 + n3, 0, 0, 0])/(1 + n3) +

(n1 + 2*n2 + n3)*f[-2 + n1, n2, n3, 0, 0, 0] +

((-1 + n2)*n2*f[n1, -2 + n2, n3, 0, 0, 0])/(-1 + n1) +

delta[n2]*(-(G[-1, 0, -1 + n1 + n3, w1 + w3, w2, 0]/(-1 + n1)) -

G[-1, 0, -1 + n1 + n3, w1 + w3, w2, 0]/(1 + n3)) +

G[-1 + n2, -1 + n1, n3, w1, w2, 0]/(-1 + n1) +

G[1 + n3, -1 + n2, -2 + n1, w2, w3, 0]/(1 + n3))/w3^2))/2};

rec2 = {f[n1_Integer, n2_Integer, n3_Integer, 0, 0, 0] ->

((-1 + n2)*((((-1 + n1)*n1*f[-2 + n1, -2 + n2, 2 + n3, 0, 0, 0])/(1 + n3) +

((-1 + n1)*n1*f[-2 + n1, n2, n3, 0, 0, 0])/(-1 + n2) +

(2*n1 + n2 + n3)*f[n1, -2 + n2, n3, 0, 0, 0] +

delta[n1]*(-(G[-1, 0, -1 + n2 + n3, w2 + w3, w1, 0]/(-1 + n2)) -

G[-1, 0, -1 + n2 + n3, w2 + w3, w1, 0]/(1 + n3)) +

G[-1 + n1, 1 + n3, -2 + n2, w3, w1, 0]/(1 + n3) +

G[-1 + n2, -1 + n1, n3, w1, w2, 0]/(-1 + n2))/w3^2 +

((n1 + n2 + 2*n3)*f[n1, -2 + n2, n3, 0, 0, 0] +

((-1 + n3)*n3*f[n1, n2, -2 + n3, 0, 0, 0])/(-1 + n2) +

((-1 + n3)*n3*f[2 + n1, -2 + n2, -2 + n3, 0, 0, 0])/(1 + n1) +

delta[n3]*(-(G[-1, 0, -1 + n1 + n2, w1 + w2, w3, 0]/(1 + n1)) -

G[-1, 0, -1 + n1 + n2, w1 + w2, w3, 0]/(-1 + n2)) +

G[1 + n1, -1 + n3, -2 + n2, w3, w1, 0]/(1 + n1) +

G[-1 + n3, -1 + n2, n1, w2, w3, 0]/(-1 + n2))/w1^2 +

(w2^2*(((3 - n2)*(-2 + n2)*f[n1, -4 + n2, 2 + n3, 0, 0, 0])/(1 + n3) +

(-2 - n1 - 2*(-2 + n2) - n3)*f[n1, -2 + n2, n3, 0, 0, 0] -

((-3 + n2)*(-2 + n2)*f[2 + n1, -4 + n2, n3, 0, 0, 0])/(1 + n1) +

delta[-2 + n2]*(G[-1, 0, 1 + n1 + n3, w1 + w3, w2, 0]/(1 + n1) +

G[-1, 0, 1 + n1 + n3, w1 + w3, w2, 0]/(1 + n3)) -

G[-3 + n2, 1 + n1, n3, w1, w2, 0]/(1 + n1) -

G[1 + n3, -3 + n2, n1, w2, w3, 0]/(1 + n3)))/(w1^2*w3^2)))/2};

rec3 = {f[n1_Integer, n2_Integer, n3_Integer, 0, 0, 0] ->

((-1 + n3)*((((-1 + n1)*n1*f[-2 + n1, n2, n3, 0, 0, 0])/(-1 + n3) +

((-1 + n1)*n1*f[-2 + n1, 2 + n2, -2 + n3, 0, 0, 0])/(1 + n2) +

(2*n1 + n2 + n3)*f[n1, n2, -2 + n3, 0, 0, 0] +

delta[n1]*(-(G[-1, 0, -1 + n2 + n3, w2 + w3, w1, 0]/(1 + n2)) -

G[-1, 0, -1 + n2 + n3, w2 + w3, w1, 0]/(-1 + n3)) +

G[-1 + n1, -1 + n3, n2, w3, w1, 0]/(-1 + n3) +

G[1 + n2, -1 + n1, -2 + n3, w1, w2, 0]/(1 + n2))/w2^2 +

(w3^2*((-2 - n1 - n2 - 2*(-2 + n3))*f[n1, n2, -2 + n3, 0, 0, 0] -
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((-3 + n3)*(-2 + n3)*f[n1, 2 + n2, -4 + n3, 0, 0, 0])/(1 + n2) -

((-3 + n3)*(-2 + n3)*f[2 + n1, n2, -4 + n3, 0, 0, 0])/(1 + n1) +

delta[-2 + n3]*(G[-1, 0, 1 + n1 + n2, w1 + w2, w3, 0]/(1 + n1) +

G[-1, 0, 1 + n1 + n2, w1 + w2, w3, 0]/(1 + n2)) -

G[1 + n1, -3 + n3, n2, w3, w1, 0]/(1 + n1) -

G[-3 + n3, 1 + n2, n1, w2, w3, 0]/(1 + n2)))/(w1^2*w2^2) +

(((-1 + n2)*n2*f[n1, -2 + n2, n3, 0, 0, 0])/(-1 + n3) +

(n1 + 2*n2 + n3)*f[n1, n2, -2 + n3, 0, 0, 0] +

((-1 + n2)*n2*f[2 + n1, -2 + n2, -2 + n3, 0, 0, 0])/(1 + n1) +

delta[n2]*(-(G[-1, 0, -1 + n1 + n3, w1 + w3, w2, 0]/(1 + n1)) -

G[-1, 0, -1 + n1 + n3, w1 + w3, w2, 0]/(-1 + n3)) +

G[-1 + n2, 1 + n1, -2 + n3, w1, w2, 0]/(1 + n1) +

G[-1 + n3, -1 + n2, n1, w2, w3, 0]/(-1 + n3))/w1^2))/2};

rec[a_ + b_] := rec[a] + rec[b];

rec[a_] := a/; FreeQ[a,f];

rec[a_ b_] := a rec[b]/; FreeQ[a,f];

rec[f[n1_,n2_,n3_,0,0,0]] := (f[n1,n2,n3,0,0,0]/.rec1)/; (n1>=n2 && n1>=n3 && n1>1);

rec[f[n1_,n2_,n3_,0,0,0]] := (f[n1,n2,n3,0,0,0]/.rec2)/; (n2>=n1 && n2>=n3 && n2>1);

rec[f[n1_,n2_,n3_,0,0,0]] := (f[n1,n2,n3,0,0,0]/.rec3)/; (n3>=n2 && n3>=n1 && n3>1);

$RecursionLimit = 4096;

sl2tc = {Log[w1 + w2] -> Log[(w1 + w2)/w3] + Log[w3],

Log[w2 + w3] -> Log[w1] + Log[(w2 + w3)/w1],

Log[w1 + w3] -> Log[w2] + Log[(w1 + w3)/w2]};

sltls = a_ * Log[x_] + a_*Log[y_] -> a*Log[x*y];

sltls2 = a_ * Log[x__] + a_*Log[y__] -> a*Log[x*y];

sl3tc[1] = Log[w1 + w2 + w3] -> -Log[w1] + Log[w1 + w2] + Log[w1 + w3] +

Log[(w1 (w1 + w2 + w3))/((w1 + w2) (w1 + w3))];

sl3tc[2] = Log[w1 + w2 + w3] -> -Log[w2] + Log[w1 + w2] + Log[w2 + w3] +

Log[(w2 (w1 + w2 + w3))/((w1 + w2) (w2 + w3))];

sl3tc[3] = Log[w1 + w2 + w3] -> -Log[w3] + Log[w1 + w3] + Log[w2 + w3] +

Log[(w3 (w1 + w2 + w3))/((w1 + w3) (w2 + w3))];

minapm[expr_] :=

(mawm1 = Map[Apart[#, w3] &, expr];

mawm1 = Map[Apart[#, w2] &, mawm1];
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mawm1 = Map[Apart[#, w1] &, mawm1];

mawm1 = Map[Apart[#, w1] &, mawm1];

mawm2 = Map[Apart[#, w2] &, mawm1];

mawm3 = Map[Apart[#, w3] &, mawm1];

mawm4 = MinimalBy[{mawm1, mawm2, mawm3}, Length];

mawm4 = First[mawm4]);

fopt[n1_?EvenQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, 0, 0, 0, f_] :=

Collect[minapm[Expand[f /. sl2tc]], {l[w1, w2, w3], Log[(w1 + w2)/w3],

Log[(w1 + w3)/w2], Log[(w2 + w3)/w1]}];

fopt[n1_?OddQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, 0, 0, 0, f_] :=

Collect[minapm[Expand[f /. sl3tc[1]]],

{Log[(w1 (w1 + w2 + w3))/((w1 + w2) (w1 + w3))]}];

fopt[n1_?EvenQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, 0, 0, 0, f_] :=

Collect[minapm[Expand[f /. sl3tc[2]]],

{Log[(w2 (w1 + w2 + w3))/((w1 + w2) (w2 + w3))]}];

fopt[n1_?EvenQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, 0, 0, 0, f_] :=

Collect[minapm[Expand[f /. sl3tc[3]]],

{Log[(w3 (w1 + w2 + w3))/((w1 + w3) (w2 + w3))]}];

fopt[n1_?EvenQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, 0, 0, 0, f_] :=

minapm[f];

fopt[n1_?OddQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, 0, 0, 0, f_] :=

minapm[f];

fopt[n1_?OddQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, 0, 0, 0, f_] :=

minapm[f];

fopt[n1_?OddQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, 0, 0, 0, f_] :=

minapm[f];

f3el[n1_, n2_, n3_, 0, 0, 0] := f3el[n1, n2, n3, 0, 0, 0] =

fopt[n1, n2, n3, 0, 0, 0, (Expand[FixedPoint[rec, f[n1, n2, n3, 0, 0, 0]]])];

stl = {Log[w1] - Log[w1 + w2] - Log[w1 + w3] + Log[w1 + w2 + w3]

-> Log[(w1 (w1 + w2 + w3))/((w1 + w2) (w1 + w3))],

Log[w2] - Log[w1 + w2] - Log[w2 + w3] + Log[w1 + w2 + w3]

-> Log[(w2 (w1 + w2 + w3))/((w1 + w2) (w2 + w3))],
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Log[w3] - Log[w1 + w3] - Log[w2 + w3] + Log[w1 + w2 + w3]

-> Log[(w3 (w1 + w2 + w3))/((w1 + w3) (w2 + w3))]};

lnfad = {a_Plus*Log[x__] -> HH[a]*Log[x],

a_Plus*l[w1,w2,w3] -> HH[a]*l[w1,w2,w3],

a_Plus*Derivative[l_,m_,n_][l][w1,w2,w3] -> HH[a]*Derivative[l,m,n][l][w1,w2,w3]};

f3el[n1_Integer /; n1 >= 0, n2_Integer /; n2 >= 0, n3_Integer /; n3 >= 0,

n4_Integer /; n4 >= 0, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, n4, n5, n6] =

If[(AnyTrue[{n1,n2,n3}, OddQ])

,

((-1)^(n4 + n5 + n6)* Collect[(Expand[(Expand[(D[PowerExpand

[f3el[n1, n2, n3, 0, 0, 0]], {w1, n4}, {w2, n5}, {w3, n6}]

/. stl)] /. lnfad)] /. (w1 + w2 + w3) -> s3w // minapm /. HH[x__] -> Identity[x])

/. s3w -> (w1 + w2 + w3), Log[__]])

,

((-1)^(n4 + n5 + n6)* Collect[(Expand[(Expand[(D[

f3el[n1, n2, n3, 0, 0, 0], {w1, n4}, {w2, n5}, {w3, n6}] /. stl)]

/. lnfad)] // minapm /. HH[x__] -> Identity[x]),

{l[w1,w2,w3], Log[__], Derivative[l_,m_,n_][l][w1,w2,w3]}])]

slint1 = {Log[w1 + w2] -> -Log[(w1 + w2 + w3)/(w1 + w2)] + Log[w1 + w2 + w3],

Log[w1 + w3] -> -Log[(w1 + w2 + w3)/(w1 + w3)] + Log[w1 + w2 + w3],

Log[w2 + w3] -> -Log[(w1 + w2 + w3)/(w2 + w3)] + Log[w1 + w2 + w3]};

slint2 = {log[w1 + w2 + w3] -> log[(w1 + w2 + w3)/w1] + log[w1],

log[w1 + w2] -> log[(w1 + w2)/w1] + log[w1],

log[w1 + w3] -> log[(w1 + w3)/w1] + log[w1]};

f3el[n1_?OddQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

Expand[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1]

+SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1], {w1, Infinity, 0}]];

f3el[n1_?EvenQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

minapm[Expand[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1]+

SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1], {w1, Infinity, 0}]]];

f3el[n1_?OddQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

80

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Collect[minapm[Expand[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1]+

SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1],

{w1, Infinity, 0}] /. slint2]], Log[__]];

f3el[n1_?OddQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

Collect[minapm[Expand[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1]+

SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1],

{w1, Infinity, 0}] /. slint2]], Log[__]];

f3el[n1_?OddQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

Collect[Expand[Apart[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1]+

SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1],

{w1, Infinity, 0}], w1] /. slint1], Log[__]];

f3el[n1_?EvenQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

Collect[Expand[Apart[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1]+

SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1],

{w1, Infinity, 0}], w2] /. slint2], Log[__]];

f3el[n1_?EvenQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?OddQ /; n3 >= 0, -1, 0, 0] :=

f3el[n1, n2, n3, -1, 0, 0] =

Collect[Expand[Apart[-Integrate[f3el[n1, n2, n3, 0, 0, 0], w1] +

SeriesCoefficient[Integrate[f3el[n1, n2, n3, 0, 0, 0],w1],

{w1, Infinity, 0}], w3] /. slint2], Log[__]];

f3el[n1_?OddQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?OddQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

(-1)^(n5+n6)*D[f3el[n1, n2, n3, -1, 0, 0], {w2,n5}, {w3, n6}];

f3el[n1_?EvenQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?OddQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

(-1)^(n5+n6)*minapm[Expand[D[f3el[n1, n2, n3, -1, 0, 0], {w2,n5}, {w3, n6}]]];

f3el[n1_?OddQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?OddQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

Collect[(-1)^(n5+n6)*minapm[Expand[D[f3el[n1, n2, n3, -1, 0, 0],
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{w2,n5}, {w3, n6}]]], Log[__]];

f3el[n1_?OddQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

Collect[(-1)^(n5+n6)*minapm[Expand[D[f3el[n1, n2, n3, -1, 0, 0],

{w2,n5}, {w3, n6}]]], Log[__]];

scc = {Log[w1] -> Log[w1 + w2 + w3] - Log[(w1 + w2 + w3)/(w1 + w2)] -

Log[(w1 + w2 + w3)/(w1 + w3)] + Log[(w1 (w1 + w2 + w3))/((w1 + w2) (w1 + w3))],

Log[w2] -> Log[w1 + w2 + w3] - Log[(w1 + w2 + w3)/(w1 + w2)] -

Log[(w1 + w2 + w3)/(w2 + w3)] + Log[(w2 (w1 + w2 + w3))/((w1 + w2) (w2 + w3))],

Log[w3] -> Log[w1 + w2 + w3] - Log[(w1 + w2 + w3)/(w1 + w3)] -

Log[(w1 + w2 + w3)/(w2 + w3)] + Log[(w3 (w1 + w2 + w3))/((w1 + w3) (w2 + w3))],

Log[w1 + w2] -> Log[w1 + w2 + w3] - Log[(w1 + w2 + w3)/(w1 + w2)],

Log[w1 + w3] -> Log[w1 + w2 + w3] - Log[(w1 + w2 + w3)/(w1 + w3)],

Log[w2 + w3] -> Log[w1 + w2 + w3] - Log[(w1 + w2 + w3)/(w2 + w3)]};

f3el[n1_?EvenQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?OddQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

(-1)^(n5+n6)*D[PowerExpand[f3el[n1, n2, n3, -1, 0, 0]], {w2, n5}, {w3, n6}

] /. scc // Expand // Collect[#, Log[__]]&;

f3el[n1_?EvenQ /; n1 >= 0, n2_?OddQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

(-1)^(n5+n6)*D[PowerExpand[f3el[n1, n2, n3, -1, 0, 0]

], {w2, n5}, {w3, n6}] /. scc // Expand // Collect[#, Log[__]]&;

f3el[n1_?OddQ /; n1 >= 0, n2_?EvenQ /; n2 >= 0, n3_?EvenQ /; n3 >= 0,

-1, n5_Integer /; n5 >= 0, n6_Integer /; n6 >=0] :=

f3el[n1, n2, n3, -1, n5, n6] =

(-1)^(n5+n6)*D[PowerExpand[f3el[n1, n2, n3, -1, 0, 0]

], {w2, n5}, {w3, n6}] /. scc // Expand // Collect[#, Log[__]]&;

hy3el[a_?IntegerQ /; a >= -1, b_?IntegerQ /; b >= -1, c_?IntegerQ /; c>= -1,

n1_?IntegerQ /; n1 >= -2, n2_?IntegerQ /; n2 >= -1, n3_?IntegerQ /; n3>= -1] :=

f3el[c+1, b+1, a+1, n1+1, n2+1, n3+1];
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B.2 Four-electron integrals code

To use the code user simply has to load the �le into the Mathematica. It requires the �le with
the three-electron code to be present in the same folder where the �le is loaded. To calculate
the required four-electron singly linked integral that was obtained in this thesis, simply write
the function g4el[a,b,c,d,e,f,n1,n2,n3,n4,w1,w2,w3,w4] with the ten integer arguments
corresponding to the powers of the ri and rij in the singly-linked Hylleraas function followed with
the arguments w1,w2,w3,w4 like the following: g4el[0,0,0,0,0,0,0,0,0,0,w1,w2,w3,w4]. Be
aware that the calculations quickly become lengthy for the higher values of the arguments.

<< ./hy3el.m

ecfld[f_] := Collect[Expand[f], {l[__], Log[__], Derivative[m_,n_,o_][l][__]}]

minapm4[expr_] := (maw4m0 = expr;

maw4m1 = Map[Apart[#, w1] &, expr];

maw4m1 = Map[Apart[#, w2] &, maw4m1];

maw4m1 = Map[Apart[#, w3] &, maw4m1];

maw4m1 = Map[Apart[#, w4] &, maw4m1];

maw4m1 = Map[Apart[#, w1] &, maw4m1];

maw4m2 = Map[Apart[#, w2] &, maw4m1];

maw4m3 = Map[Apart[#, w3] &, maw4m1];

maw4m4 = Map[Apart[#, w4] &, maw4m1];

maw4m5 = MinimalBy[ecfld[{maw4m0, maw4m1, maw4m2, maw4m3, maw4m4}], LeafCount];

maw4m5 = ecfld[First[maw4m5]]);

apmin[expr_] := (apm0 = expr;

apm1 = Apart[expr, w1];

apm2 = Apart[expr, w2];

apm3 = Apart[expr, w3];

apm4 = Apart[expr, w4];

apm5 = MinimalBy[ecfld[{apm0, apm1, apm2, apm3, apm4}], Length];

apm5 = First[apm5]);

g4el[0, 0, 0, 0, 0, 0, -1, -1, -1, -1, w1, w2, w3, w4] :=

g4el[0, 0, 0, 0, 0, 0, -1, -1, -1, -1] = 1/(w1^2 w2^2 w3^2 w4^2);

g4el[0, 0, 0, d_Integer, e_Integer, f_Integer,

n1_Integer, n2_Integer, n3_Integer, n4_Integer, w1, w2, w3, w4] :=

g4el[0, 0, 0, d, e, f, n1, n2, n3, n4, w1, w2, w3, w4] =

ecfld[(1/w1^(3 + n1)*(hy3el[f, e, d, n2, n3, n4]

/. {w1 -> w2, w2 -> w3, w3 -> w4}))];
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simpleven[fun_] :=

minapm4[ecfld[fun] /. {a_Plus*Log[x__] -> HH[a]*Log[x],

(w2 + w3 + w4) -> s3w}] /. {HH[x__] -> Identity[x],

s3w -> (w2 + w3 + w4)}

g4el[a_?EvenQ /; a >= 0, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0,

d_, e_, f_, -1, -1, -1, -1, w1, w2, w3, w4] :=

(

g4el[a, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

ecfld[simpleven[(1/(2 w1))(2 w1

g4el[-2 + a, b, c, d, e, f, -1, 1, -1, -1, w1, w2, w3, w4] +

6 g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

(-2 + a) (g4el[-4 + a, b, c, d, e, f, 0, 1, -1, -1, w1, w2, w3, w4] -

g4el[-4 + a, b, c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] +

3 g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

b (g4el[-2 + a, -2 + b, c, d, e, f, 0, -1, 1, -1, w1, w2, w3, w4] -

g4el[-2 + a, -2 + b, c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[-2 + a, -2 + b, c, 2 + d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

c (g4el[-2 + a, b, -2 + c, d, e, f, 0, -1, -1, 1, w1, w2, w3, w4] -

g4el[-2 + a, b, -2 + c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[-2 + a, b, -2 + c, d, 2 + e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]))]]

) /; (a >= b && a >= c && a > 1);

g4el[a_?EvenQ /; a >= 0, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0,

d_, e_, f_, -1, -1, -1, -1, w1, w2, w3, w4] :=

(

g4el[a, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

ecfld[simpleven[(1/(2 w1))(2 w1

g4el[a, -2 + b, c, d, e, f, -1, -1, 1, -1, w1, w2, w3, w4] +

6 g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

a (g4el[-2 + a, -2 + b, c, d, e, f, 0, 1, -1, -1, w1, w2, w3, w4] -

g4el[-2 + a, -2 + b, c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[-2 + a, -2 + b, c, 2 + d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

(-2 + b) (g4el[a, -4 + b, c, d, e, f, 0, -1, 1, -1, w1, w2, w3, w4] -

g4el[a, -4 + b, c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] +

3 g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +
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c (g4el[a, -2 + b, -2 + c, d, e, f, 0, -1, -1, 1, w1, w2, w3, w4] -

g4el[a, -2 + b, -2 + c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[a, -2 + b, -2 + c, d, e, 2 + f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]))]]

) /; (b >= a && b >= c && b > 1);

g4el[a_?EvenQ /; a >= 0, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0,

d_, e_, f_, -1, -1, -1, -1, w1, w2, w3, w4] :=

(

g4el[a, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

ecfld[simpleven[(1/(2 w1))(2 w1

g4el[a, b, -2 + c, d, e, f, -1, -1, -1, 1, w1, w2, w3, w4] +

6 g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

a (g4el[-2 + a, b, -2 + c, d, e, f, 0, 1, -1, -1, w1, w2, w3, w4] -

g4el[-2 + a, b, -2 + c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[-2 + a, b, -2 + c, d, 2 + e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

b (g4el[a, -2 + b, -2 + c, d, e, f, 0, -1, 1, -1, w1, w2, w3, w4] -

g4el[a, -2 + b, -2 + c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[a, -2 + b, -2 + c, d, e, 2 + f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

(-2 + c) (g4el[a, b, -4 + c, d, e, f, 0, -1, -1, 1, w1, w2, w3, w4] -

g4el[a, b, -4 + c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] +

3 g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]))]]

) /; (c >= a && c >= b && c > 1);

ssc2 = {Log[w2] -> Log[w2 + w3 + w4] - Log[(w2 + w3 + w4)/(w2 + w3)] -

Log[(w2 + w3 + w4)/(w2 + w4)] +

Log[(w2 (w2 + w3 + w4))/((w2 + w3) (w2 + w4))],

Log[w3] -> Log[w2 + w3 + w4] - Log[(w2 + w3 + w4)/(w2 + w3)] -

Log[(w2 + w3 + w4)/(w3 + w4)] +

Log[(w3 (w2 + w3 + w4))/((w2 + w3) (w3 + w4))],

Log[w4] -> Log[w2 + w3 + w4] - Log[(w2 + w3 + w4)/(w2 + w4)] -

Log[(w2 + w3 + w4)/(w3 + w4)] + Log[(w4 (w2 + w3 + w4))/((w2 + w4) (w3 + w4))],

Log[w2 + w3] -> Log[w2 + w3 + w4] - Log[(w2 + w3 + w4)/(w2 + w3)],

Log[w2 + w4] -> Log[w2 + w3 + w4] - Log[(w2 + w3 + w4)/(w2 + w4)],

Log[w3 + w4] -> Log[w2 + w3 + w4] - Log[(w2 + w3 + w4)/(w3 + w4)]}

g4el[a_?EvenQ, b_?EvenQ, c_?EvenQ, d_, e_, f_, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=
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((-1)^(n1+n2+n3+n4) *

ecfld[simpleven[PowerExpand[D[

g4el[a, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4],

{w1, n1+1}, {w2, n2+1}, {w3, n3+1}, {w4, n4+1}]]/. ssc2]]

) /; (n1 > -1 || n2 > -1 || n3 > -1 || n4 > -1);

r[-1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_ /; d >= -1,

e_ /; e >= -1, f_ /; f >= -1, -1, -1, -1, -1] :=

(-hy3el[b + d, c + e, f, -1, -1, -1] /. {w1->(w1+w2), w2->w3, w3->w4}) +

b c g4el[-1, -2 + b, -2 + c, d, e, 2 + f, 0, -1, -1, -1, w1, w2, w3, w4] -

b w1 g4el[-1, -2 + b, c, d, e, f, -1, -1, 1, -1, w1, w2, w3, w4] +

(-b - b^2 - b c) g4el[-1, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

b w1 g4el[-1, -2 + b, c, d, e, f, 1, -1, -1, -1, w1, w2, w3, w4] -

c w1 g4el[-1, b, -2 + c, d, e, f, -1, -1, -1, 1, w1, w2, w3, w4] +

(-c - b c - c^2) g4el[-1, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

c w1 g4el[-1, b, -2 + c, d, e, f, 1, -1, -1, -1, w1, w2, w3, w4]

r[1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_ /; d >= -1,

e_ /; e >= -1, f_ /; f >= -1, -1, -1, -1, -1] :=

(2 g4el[-1, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

b c g4el[1, -2 + b, -2 + c, d, e, 2 + f, 0, -1, -1, -1, w1, w2, w3, w4] -

b w1 g4el[1, -2 + b, c, d, e, f, -1, -1, 1, -1, w1, w2, w3, w4] +

(-b - b^2 - b c) g4el[1, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

b w1 g4el[1, -2 + b, c, d, e, f, 1, -1, -1, -1, w1, w2, w3, w4] -

c w1 g4el[1, b, -2 + c, d, e, f, -1, -1, -1, 1, w1, w2, w3, w4] +

(-c - b c - c^2) g4el[1, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

c w1 g4el[1, b, -2 + c, d, e, f, 1, -1, -1, -1, w1, w2, w3, w4])

frzsumw = {(w1 + w2 + w3 + w4) -> s4w, (w1 + w2 + w3) -> s3w1, (w2 + w3 + w4) -> s3w2};

unfrzsumw = {s4w -> (w1 + w2 + w3 + w4), s3w1 -> (w1 + w2 + w3), s3w2 -> (w2 + w3 + w4)};

simplodd[funct_] := ecfld[(minapm4[funct /. frzsumw /. a_Plus*Log[x__] -> HH[a*Log[x]]]

/. HH[x__] :> minapm4[x]) /. unfrzsumw];

integ[a_Integer /; a >= -1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_ /; d >= -1,

e_ /; e >= -1, f_ /; f >= -1, -1, -1, -1, -1, w1, w2, w3, w4] :=

Integrate[simplodd[ecfld[r[a, b, c, d, e, f, -1, -1, -1, -1]* w1^(b + c)]], w1,

Assumptions -> w1 > 0 && w2 > 0 && w3 > 0 && w4 > 0] // simplodd;

(* chain integrals *)

chainlogs1 = {Log[w3 + w4] -> Log[w3] - Log[w1 + w2 + w3] + Log[w1 + w2 + w3 + w4]
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- Log[(w3 (w1 + w2 + w3 + w4))/((w1 + w2 + w3) (w3 + w4))],

Log[w1 + w2] -> Log[w2] - Log[w2 + w3 + w4] + Log[w1 + w2 + w3 + w4]

-Log[(w2 (w1 + w2 + w3 + w4))/((w1 + w2) (w2 + w3 + w4))]};

chainlogs2 = {Log[w1 + w2 + w3] -> Log[(w2 (w1 + w2 + w3))/((w1 + w2) (w2 + w3))]

+ Log[w2 + w3] + Log[w1 + w2] - Log[w2],

Log[w2 + w3 + w4] -> -Log[(w2 (w1 + w2 + w3 + w4))/((w1 + w2) (w2 + w3 + w4))]

+ Log[w2] - Log[w1 + w2] + Log[w1 + w2 + w3 + w4]};

chainlogs3 = {Log[-(w2/w3)] -> Log[w2] - Log[w1 + w2] + Log[(-w1 - w2)/w3],

Log[-(w2/(w3 + w4))] -> Log[w2] - Log[w1 + w2] + Log[(-w1 - w2)/(w3 + w4)],

Log[(w1 + w2)/(w3 + w4)] -> - Log[w2] + Log[w1 + w2] +

Log[(w1 + w2)/w3] + Log[w2 + w3] - Log[w1 + w2 + w3 + w4] +

Log[(w2 w3 (w1 + w2 + w3 + w4))/((w1 + w2) (w2 + w3) (w3 + w4))]}

chainlogs4 = {Log[w1 (w2 w3 w4^3 + w2 w4^4)] -> Log[w1 w2 w3 w4^3 + w1 w2 w4^4]}

g4el[-1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?EvenQ /; e >= -1, f_?OddQ /; f >= -1, -1, -1, -1, -1, w1, w2, w3, w4] :=

g4el[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

simplodd[minapm[ecfld[((((1/w1^(2 + b + c)*

(-integ[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] +

SeriesCoefficient[1/w1^(2 + b + c)*

integ[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4], {w1, 0, -(2 + b + c)}])

) /. chainlogs1) /. chainlogs2) /. Log[x__] :> Log[Together[x]]) /. chainlogs3]

]];

g4el[-1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?EvenQ /; e >= -1, f_?OddQ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

((-1)^(n1+n2+n3+n4) *

ecfld[((D[PowerExpand[g4el[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4]],

{w1, n1+1}, {w2, n2+1}, {w3, n3+1}, {w4, n4+1}] /. chainlogs1) /. chainlogs2)]

) /; (n1 > -1 || n2 > -1 || n3 > -1 || n4 > -1);

g4el[1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?EvenQ /; e >= -1, f_?OddQ /; f >= -1, -1, -1, -1, -1, w1, w2, w3, w4] :=

g4el[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

simplodd[minapm4[

(((1/w1^(2 + b + c)*(-integ[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] +

SeriesCoefficient[1/w1^(2 + b + c)*

integ[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4], {w1, 0, -(2 + b + c)}])

) /. chainlogs1) /. chainlogs2) /. chainlogs4]];
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g4el[1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?EvenQ /; e >= -1, f_?OddQ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

((-1)^(n1+n2+n3+n4) *

ecfld[((D[PowerExpand[g4el[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4]],

{w1, n1+1}, {w2, n2+1}, {w3, n3+1}, {w4, n4+1}] /. chainlogs1) /. chainlogs2)]

) /; (n1 > -1 || n2 > -1 || n3 > -1 || n4 > -1);

g4el[a_?OddQ /; a >= -1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?EvenQ /; d >= -1,

e_?OddQ /; e >= -1, f_?OddQ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

(g4el[a, c, b, e, d, f, n1, n2, n4, n3, w1, w2, w3, w4] /. {w3 -> w4, w4 -> w3});

(* star integrals *)

starlogs1 = {Log[w1 + w2 + w3] -> Log[(w2 (w1 + w2 + w3))/((w1 + w2) (w2 + w3))]

+ Log[w2 + w3] + Log[w1 + w2] - Log[w2],

Log[w2 + w3 + w4] -> -Log[(w2 (w1 + w2 + w3 + w4))/((w1 + w2) (w2 + w3 + w4))]

+ Log[w2] - Log[w1 + w2] + Log[w1 + w2 + w3 + w4],

Log[w1 + w2 + w4] -> Log[(w2 (w1 + w2 + w4))/((w1 + w2) (w2 + w4))]

+ Log[w1 + w2] + Log[w2 + w4] - Log[w2]};

starlogs2 = Log[w2] -> Log[w1 + w2] + Log[w2 + w3] + Log[w2 + w4] - Log[w1 + w2 + w3 + w4]

+ Log[(w2 (w1 + w2 + w3 + w4))/((w1 + w2) (w2 + w3) (w2 + w4))];

starlogs3 = Log[w1 + w2] -> -Log[w2 + w3] - Log[w2 + w4] + Log[w1 + w2 + w3 + w4]

-Log[(w1 + w2 + w3 + w4)/((w1 + w2) (w2 + w3) (w2 + w4))];

starlogs4 = Log[w1 + w2 + w3 + w4] ->

Log[w2 + w3] + Log[w2 + w4] + Log[(w1 + w2 + w3 + w4)/((w2 + w3) (w2 + w4))];

g4el[-1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?OddQ /; e >= -1, f_?EvenQ /; f >= -1, -1, -1, -1, -1, w1, w2, w3, w4] :=

g4el[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

simplodd[minapm4[ecfld[

((1/w1^(2 + b + c)*(-integ[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] +

SeriesCoefficient[1/w1^(2 + b + c)*

integ[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4], {w1, 0, -(2 + b + c)}]))

/. starlogs1 /. starlogs2 /. starlogs3 /. starlogs4)]]]

g4el[-1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?OddQ /; e >= -1, f_?EvenQ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

((-1)^(n1+n2+n3+n4) *

simplodd[(D[PowerExpand[g4el[-1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4]],
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{w1, n1+1}, {w2, n2+1}, {w3, n3+1}, {w4, n4+1}] /. starlogs1 /. starlogs2 /.

starlogs3) /. starlogs4]) /; (n1 > -1 || n2 > -1 || n3 > -1 || n4 > -1);

g4el[1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?OddQ /; e >= -1, f_?EvenQ /; f >= -1, -1, -1, -1, -1, w1, w2, w3, w4] :=

g4el[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

simplodd[ecfld[

(((((1/w1^(2 + b + c)*(-integ[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] +

SeriesCoefficient[1/w1^(2 + b + c)*

integ[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4], {w1, 0, -(2 + b + c)}])

) /. starlogs1) /. starlogs2) /. starlogs3) /. starlogs4)]];

g4el[1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?OddQ /; d >= -1,

e_?OddQ /; e >= -1, f_?EvenQ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

((-1)^(n1+n2+n3+n4) *

ecfld[(D[PowerExpand[g4el[1, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4]],

{w1, n1+1}, {w2, n2+1}, {w3, n3+1}, {w4, n4+1}] /. starlogs1 /. starlogs2 /.

starlogs3 /. starlogs4)

]) /; (n1 > -1 || n2 > -1 || n3 > -1 || n4 > -1);

g4el[a_?OddQ /; a >= -1, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_?EvenQ /; d >= -1,

e_?OddQ /; e >= -1, f_?OddQ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

(g4el[a, c, b, e, d, f, n1, n2, n4, n3, w1, w2, w3, w4] /. {w3 -> w4, w4 -> w3});

g4el[a_?OddQ /; a >= 3, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_ /; d >= -1,

e_ /; e >= -1, f_ /; f >= -1, -1, -1, -1, -1, w1, w2, w3, w4] :=

g4el[a, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4] =

ecfld[(1/(2 w1))(2 w1 g4el[-2 + a, b, c, d, e, f, -1, 1, -1, -1, w1, w2, w3, w4] +

6 g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

(-2 + a) (g4el[-4 + a, b, c, d, e, f, 0, 1, -1, -1, w1, w2, w3, w4] -

g4el[-4 + a, b, c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] +

3 g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

b (g4el[-2 + a, -2 + b, c, d, e, f, 0, -1, 1, -1, w1, w2, w3, w4] -

g4el[-2 + a, -2 + b, c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[-2 + a, -2 + b, c, 2 + d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[a, -2 + b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]) +

c (g4el[-2 + a, b, -2 + c, d, e, f, 0, -1, -1, 1, w1, w2, w3, w4] -

g4el[-2 + a, b, -2 + c, d, e, f, 2, -1, -1, -1, w1, w2, w3, w4] -

2 g4el[-2 + a, b, -2 + c, d, 2 + e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

g4el[-2 + a, b, c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4] +

2 g4el[a, b, -2 + c, d, e, f, 0, -1, -1, -1, w1, w2, w3, w4]))]
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g4el[a_?OddQ /; a >= 3, b_?EvenQ /; b >= 0, c_?EvenQ /; c >= 0, d_ /; d >= -1,

e_ /; e >= -1, f_ /; f >= -1, n1_, n2_, n3_, n4_, w1, w2, w3, w4] :=

((-1)^(n1+n2+n3+n4) *

ecfld[D[g4el[a, b, c, d, e, f, -1, -1, -1, -1, w1, w2, w3, w4], {w1, n1+1},

{w2, n2+1}, {w3, n3+1}, {w4, n4+1}]]) /; (n1 > -1 || n2 > -1 || n3 > -1 || n4 > -1);
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