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I. INTRODUCTION

While trying to formulate quantum mechanics on frac-
tal backgrounds one immediately faces the problem of
momentum representation. The issue is nontrivial and
reduces to the question of what should be meant by a
Fourier transform on a fractal. Historically the first ap-
proach to fractal harmonic analysis can be, implicitly,
traced back to studies of diffusion on fractals [1, 2]. A
generator of the diffusion is then a candidate for a Lapla-
cion on a fractal, and once we have a Laplacian we can
look for its eigenfunctions. The eigenfunctions may play
a role of a Schauder basis in certain function spaces, and
thus lead to a sort of signal analysis on a fractal. Whether
and under what conditions the resulting eigenfunction
expansions can be regarded as analogs of Fourier trans-
formations is a separate story. Fractals such as Cantor
sets naturally lead to wavelet transforms (the Haar basis
[3–5], for example), but quantum mechanical momentum
representation is expected to be associated with gradi-
ent operators, and there is no obvious link between Haar
wavelets and gradients.

Gradients and Laplacians can be defined on fractals
also more directly. Here one should mention the ap-
proaches that begin with Dirichlet forms defined on cer-
tain self-similar fractals, and those that start with dis-
crete Laplacians [6–9]. Self-similarity is an important
technical assumption, and it is not clear what to do in
more realistic cases, such as multi-fractals or fractals that
have no self-similarity at all (a generic case in natural
systems). Four different definitions of a gradient (due to
Kusuoka, Kigami, Strichartz and Teplyaev) can be found
in [10].

One might naively expect that it would be more log-
ical to begin with first derivatives and only then turn
to higher-order operators, such as Laplacians. It turns
out that Laplacians defined in the above ways cannot be
regarded as second-order operators. Still, an approach
where Laplacians are indeed second-order is possible and
was introduced by Fujita [11, 12], and further developed
by Freiberg, Zähle and others [13–17]. We will later see
that a non-Diophantine Laplacian is exactly second-order
and, similarly to the approach from [13–17], is based on

derivatives and integrals satisfying the fundamental laws
of calculus.

In yet another traditional approach to harmonic anal-
ysis on fractals one begins with self-similar fractal mea-
sures, and then seeks exponential functions that are or-
thogonal and complete with respect to them. The classic
result of Jorgensen and Pedersen [18] states that such
exponential functions do exist on certain fractals, such
as the quaternary Cantor set, but are excluded in the
important case of the ternary middle-third Cantor set.

In the present paper we will follow a different ap-
proach. One begins with arithmetic operations (addi-
tion, subtraction, multiplication, and division) which are
intrinsic to the fractal. The arithmetic so defined is non-
Diophantine in the sense of Burgin [19, 20]. An impor-
tant step is then to switch from arithmetic to calculus
[21] where, in particular, derivatives and integrals are
naturally defined. The resulting formalism is simple and
general, extends beyond fractal applications, but works
with no difficulty for Cantorian fractals, even if they are
not self-similar [21, 22]. Actually, a straightforward mo-
tivation for the present paper came from discussions with
the referee of [22], who pointed out possible difficulties
with momentum representation of quantum mechanics
on Cantorian space-times.

In Sec.II we recall the basic properties of non-
Diophantine arithmetic, illustrated by four examples
from physics, cognitive science, and fractal theory. Sec.
III is devoted to complex numbers, discussed along the
lines proposed by one of us in [21], and with particular
emphasis on trigonometric and exponential functions. In
Sec. IV we recall the non-Diophantine-arithmetic def-
initions of derivatives and integrals. Sec. V discusses
a scalar product of functions, and the corresponding
Fourier transform (both complex and real) is introduced
in Sec. VII. In Sec. VIII we discuss an explicit example
of a sawtooth signal with Cantorian domain and range.
Finally, in Sec. IX we briefly discuss the issue of spec-
trum of Fourier frequencies, and compare our results with
those from [18].

Postprint of: Aerts D., Czachor M., Kuna M., Fourier transforms on Cantor sets: A study in non-Diophantine arithmetic and calculus,
Chaos, Solitons & Fractals, Vol. 91 (2016), pp. 461-468, DOI: 10.1016/j.chaos.2016.07.008
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.1016/j.chaos.2016.07.008
https://creativecommons.org/licenses/by-nc-nd/4.0/


2

II. GENERALIZED ARITHMETIC: FRACTAL
AND NOT ONLY

Consider a set X and a bijection f : X → R Following
the general formalism from [21] we define the arithmetic
operations in X,

x⊕ y = f−1
(
f(x) + f(y)

)
,

x	 y = f−1
(
f(x)− f(y)

)
,

x� y = f−1
(
f(x)f(y)

)
,

x� y = f−1
(
f(x)/f(y)

)
,

for any x, y ∈ X. In later applications we will basically
concentrate on an appropriately constructed fractal X,
but the results are more general. This is an example of
a non-Diophantine arithmetic [19, 20].

One verifies the standard properties: (1) associativity
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), (x � y) � z = x � (y � z),
(2) commutativity x ⊕ y = y ⊕ x, x � y = y � x, (3)
distributivity (x ⊕ y) � z = (x � z) ⊕ (y � z). Elements
0′, 1′ ∈ X are defined by 0′ ⊕ x = x, 1′ � x = x, which
implies f(0′) = 0, f(1′) = 1. One further finds x	x = 0′,
x � x = 1′, as expected. A negative of x ∈ X is defined
as 	x = 0′ 	 x = f−1

(
− f(x)

)
, i.e. f(	x) = −f(x) and

f(	1′) = −f(1′) = −1, i.e. 	1′ = f−1(−1). Notice that

(	1′)� (	1′) = f−1
(
f(	1′)2

)
= f−1(1) = 1′. (1)

Multiplication can be regarded as repeated addition in
the following sense. Let n ∈ N and n′ = f−1(n) ∈ X.
Then

n′ ⊕m′ = (n+m)′, (2)

n′ �m′ = (nm)′ (3)

= m′ ⊕ · · · ⊕m′︸ ︷︷ ︸
ntimes

. (4)

In particular n′ = 1′ ⊕ · · · ⊕ 1′ (n times).
A power function A(x) = x � · · · � x (n times) will

be denoted by xn
′
. Such a notation is consistent in the

sense that

xn
′
� xm

′
= x(n+m)′ = xn

′⊕m′
. (5)

Before we plunge into fractal applications let us consider
four explicit examples of non-Diophantine arithmetic.

A. Benioff’s number scaling

The rescaled-multiplication approach of Benioff [23,
24] can be regarded as a particular case of the above
formalism with f(x) = px, p 6= 0. Indeed, x � y =
(1/p)(pxpy) = pxy, x ⊕ y = (1/p)(px + py) = x + y,
x � y = (1/p)(px)/(py) = x/(py), but f(1/p) = 1.
Since (1/p) � x = (1/p)

(
p(1/p)px

)
= x one infers that

1′ = f−1(1) = 1/p is the unit element of multiplication
in Benioff’s non-Diophantine arithmetic.

B. Fechner map

This arithmetic is implicitly used in cognitive science
[25]. It occurs as a solution of the following Weber–
Fechner problem [26]: Find a generalized arithmetic such
that (x + kx) 	 x is independent of x. Here x 7→ x′ =
x + ∆x is the change of an input signal, while x′ 	 x is
the change of x as perceived by a nervous system. Ex-
periments show that ∆x/x ≈ k = const (Weber-Fechner
law) in a wide range of xs, and with different values of
k for different types of stimuli. The corresponding arith-
metic is defined by the ‘Fechner map’ f(x) = a lnx + b,
f−1(x) = e(x−b)/a, and thus 0′ = f−1(0) = e−b/a,
1′ = f−1(1) = e(1−b)/a. Clearly, 0′ 6= 0 and 1′ 6= 1.
Interestingly, the Fechnerian negative of x ∈ R+ reads

	 x = 0′ 	 x = e−2b/a/x ∈ R+, (6)

but nevertheless does satisfy

	 x⊕ x = e−b/a = 0′, (7)

as it should on general grounds [25]. So, numbers that are
negative with respect to one arithmetic are positive with
respect to another. In a future work we will show that
Fechner’s f has intriguing consequences for relativistic
physics.

C. Ternary Cantor line

Let us start with the right-open interval [0, 1) ⊂ R,
and let the (countable) set Y2 ⊂ [0, 1) consist of those
numbers that have two different binary representations.
Denote by 0.t1t2 . . . a ternary representation of some
x ∈ [0, 1). If y ∈ Y1 = [0, 1) \ Y2 then y has a unique
binary representation, say y = 0.b1b2 . . . . One then sets
g±(y) = 0.t1t2 . . . , tj = 2bj . The index ± appears for
the following reason. Let y = 0.b1b2 · · · = 0.b′1b

′
2 . . . be

the two representations of y ∈ Y2. There are two op-
tions, so we define: g−(y) = min{0.t1t2 . . . , 0.t′1t′2 . . . }
and g+(y) = max{0.t1t2 . . . , 0.t′1t′2 . . . }, where tj = 2bj ,
t′j = 2b′j . We have therefore constructed two injective
maps g± : [0, 1) → [0, 1). The ternary Cantor-like sets
are defined as the images C±(0, 1) = g±

(
[0, 1)

)
, and

f± : C±(0, 1) → [0, 1), f± = g−1± , is a bijection between
C±(0, 1) and the interval. For example, 1/2 ∈ Y2 since
1/2 = 0.12 = 0.0(1)2. We find

g−(1/2) = min{0.23 = 2/3, 0.0(2)3 = 1/3} = 1/3,(8)

g+(1/2) = max{0.23 = 2/3, 0.0(2)3 = 1/3} = 2/3.(9)

Accordingly, 1/3 ∈ C−(0, 1) while 2/3 /∈ C−(0, 1). And
vice versa, 1/3 /∈ C+(0, 1), 2/3 ∈ C+(0, 1). The standard

Cantor set is the sum C̃ = C−(0, 1) ∪ C+(0, 1). All ir-

rational elements of C̃ belong to C±(0, 1) (an irrational

number has a unique binary form), so C̃ and C±(0, 1) dif-
fer on a countable set. Notice further that 0 ∈ C±(0, 1),
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with f±(0) = 0. In [21, 22] we worked with C−(0, 1)
so let us concentrate on this case. Let C−(k, k + 1),
k ∈ Z, be the copy of C−(0, 1) but shifted by k. We
construct a fractal X = ∪k∈ZC−(k, k + 1), and the bi-
jection f : X → R. Explicitly, if x ∈ C−(0, 1), then
x + k ∈ C−(k, k + 1), and f(x + k) = f(x) + k by def-
inition. In [21, 22] the set X is termed the Cantor line,
and f is the Cantor-line function. For more details see
[21]. The set X ∩ [k, k + 1) is self-similar, but X as a
whole is not-self similar. Fig. 1 (upper) shows the plot of
g = f−1. For completely irregular generalizations of the
Cantor line, see [22].

Let us make a remark that in the literature one typi-
cally considers Cantor sets C̃ so that the resulting func-
tion g : C̃ → [0, 1) is non invertible on a countable subset.
In [3] one employs the map g to define the Haar basis on

C̃ ‘up to a countable set of points’. In our formalism we
have to work with bijective g since we need its inverse.

D. Quaternary Cantor line

Here we construct a Cantor set that is analogous to
the one employed by Jorgensen and Pedersen in [18]. In
a single step of the algorithm one splits an interval into
four identical segments and retains only the first and the
third. Similarly to the triadic set one needs to remove
a countable subset of right or left endpoints of the sub-
intervals in order to have a one-to-one map onto [0, 1).
We then extend the construction in a self-similar way to
the whole of R. So, as opposed to the previous paragraph,
we will not consider the sum of translated copies, but
rather the sum of rescaled copies.

Consider a number y ∈ R+. Let Y1 denote those y
that have a unique binary representation

y = (bm . . . b1b0.b−1 . . . b−k . . . )2. (10)

We define

g±(y) = (2bm . . . 2b12b0.2b−1 . . . 2b−k . . . )4. (11)

g±(y) is a number whose quaternary (i.e. base-four) rep-
resentation contains only 0s and 2s. The ternary set had
the same property, but in the ternary (base-three) repre-
sentation.

Now, if y ∈ Y2 = R \ Y1 we have the ambiguity which
of the two binary forms of y to take. Applying to the two
forms the recipe (11) we get two numbers, x and x′ say.
Then g−(y) = min{x, x′} and g+(y) = max{x, x′}. Fi-
nally, we extend the maps by anti-symmetry to negative
y, i.e. g±(−y) = −g±(y).

The images X± = g±(R) define two quaternary Cantor
sets, and f± = g−1± are the required bijections f± : X± →
R.

Fig. 1 (lower) shows the plot of g+. Notice that

1′+ = f−1+ (1) = g+
(
1.(0)2

)
= g+

(
0.(1)2

)
= max{2.(0)4 = 2, 0.(2)4 = 2/3} = 2. (12)

FIG. 1: f−1 for the ternary Cantor line X (upper), and f−1
+

for the quaternary Cantor set X+ = f−1
+ (R) (lower).

Analogously

1′− = f−1− (1) = g−
(
1.(0)2

)
= g−

(
0.(1)2

)
= min{2.(0)4 = 2, 0.(2)4 = 2/3} = 2/3. (13)

As we can see, both unit elements 1′± differ from 1, so it
is not clear which of the two bijections, and thus which of
the two Cantor sets X±, is more ‘natural’. Calculations
are simpler with X+.

III. NON-DIOPHANTINE COMPLEX
NUMBERS

The examples discussed in the present paper will em-
ploy real-valued, sine and cosine Fourier transforms.
However, having in mind future applications it will
pay to discuss in detail the construction of a complex-
valued transform. In order to do so, we have to ex-
plain what should be meant by a complex number if
non-Diophantine arithmetic is in use. We will follow the
strategy from [21].

From now on the numbers from X will be denoted by
upper-case letters: X ∈ X, X ⊕ Y ∈ X, and so on. The
elements of R will be generally denoted by lower-case
symbols, eg. f(X) = x, with very few non-ambiguous
exceptions, such as n!′ = f−1(n!) instead of the appar-
ently more consistent N !′ = f−1(n!). Non-Diophantine
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complex numbers, denoted by

C

, will be identified with
pairs of elements form X, subject to the following arith-
metic:

A⊕B = (A1, A2)⊕ (B1, B2) (14)

= (A1 ⊕B1, A2 ⊕B2), (15)

A�B = (A1, A2)� (B1, B2) (16)

= (A1 �B1 	A2 �B2, A1 �B2 ⊕A2 �B1),(17)

and conjugation

A∗ = (A1,	A2). (18)

The modulus is defined by

|A|2
′

= A�A∗ = (A2′

1 ⊕A2′

2 , 0
′) ≡ A2′

1 ⊕A2′

2 . (19)

We simplify the notation by identifying (A1, 0
′) ∈

C

with
A1 ∈ X.

The ‘imaginary unit’ is defined as i′ = (0′, 1′), and

satisfies i′ � i′ = i′2
′

= (	1′, 0′) ≡ 	1′. We do not risk
any ambiguity if we write i′A instead of i′ � A, for any
A ∈

C

.
Moreover

A1 ⊕ i′A2 = (A1, 0
′)⊕ i′(A2, 0

′)

= (A1, 0
′)⊕ (0′, 1′)� (A2, 0

′)

= (A1, 0
′)⊕ (0′, A2) = (A1, A2). (20)

Complex exponent is defined as

Exp (i′φ) = ( Cosφ, Sinφ) (21)

= Cosφ⊕ i′ Sinφ, (22)

= f−1
(

cos f(φ)
)
⊕ i′f−1

(
sin f(φ)

)
(23)

= f−1
(
<eif(φ)

)
⊕ i′f−1

(
=eif(φ)

)
(24)

where

CosX = f−1
(

cos f(X)
)
, (25)

SinX = f−1
(

sin f(X)
)
. (26)

The trigonometric identity reads

1′ = Cos 2′X ⊕ Sin 2′X (27)

= Exp (i′φ)� Exp (i′φ)∗ (28)

= Exp (i′φ)� Exp (	i′φ). (29)

In Taylor expansions we need a non-Diophantine factorial

n!′ = 1′ � 2′ � 3′ · · · � n′ (30)

= f−1
(
f(1′)f(2′)f(3′) . . . f(n′)

)
(31)

= f−1(1 · 2 · · · · n) = f−1(n!). (32)

Taylor expansions of elementary functions occur auto-
matically,

CosX = f−1
(

cos f(X)
)

(33)

= f−1
(

1− f(X)2/2! + f(X)4/4!− . . .
)
(34)

= f−1
(
f(1′)− f(X)2/f(2!′) + . . .

)
(35)

= 1′ 	X2′ � 2!′ ⊕X4′ � 4!′ . . . (36)

= ⊕∞k=0(	1′)(2k)
′
X(2k)′ � (2k)!′ (37)

SinX = f−1
(

sin f(X)
)

(38)

= X 	X3′ � 3!′ ⊕X5′ � 5!′ . . . (39)

= ⊕∞k=0(	1′)(2k)
′
X(2k+1)′ � (2k + 1)!′ (40)

ExpX = f−1
(

exp f(X)
)

(41)

= 1′ ⊕X ⊕X2′ � 2!′ ⊕X3′ � 3!′ . . . (42)

= ⊕∞k=0X
k′ � k!′. (43)

IV. NON-DIOPHANTINE DERIVATIVES AND
INTEGRALS

A derivative of a function A : X→ X is defined by

DA(X)

DX
= lim

H→0′

(
A(X ⊕H)	A(X)

)
�H, (44)

and an integral is an inverse of the derivative, so that
the fundamental laws of calculus relating integration and
differentiation remain valid in X.

For example, let A(X) = XN ′
= f−1

(
f(X)N

)
. Di-

rectly from definition (44), and taking into account
f(N ′) = N , one finds

DXN ′

DX
= f−1

(
Nf(X)N−1

)
(45)

= f−1
(
f(N ′)f(X)N−1

)
(46)

= N ′ �X(N−1)′ = N ′ �XN ′	1′ . (47)

One similarly verifies

D Sin (K �X)

DX
= K � Cos (K �X), (48)

DCos (K �X)

DX
= 	K � Sin (K �X), (49)

DExp (K �X)

DX
= K � Exp (K �X), (50)

DExp (i′K �X)

DX
= i′K � Exp (i′K �X). (51)

A derivative of a function a : R → R is defined with
respect to the lowercase arithmetic,

da(x)

dx
= lim
h→0

(
a(x+ h)− a(x)

)
/h. (52)
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Now let A = f−1 ◦ a ◦ f . Then,

DA(X)

DX
= f−1

(
da
(
f(X)

)
df(X)

)
, (53)

∫ Y

X

A(X ′)DX ′ = f−1

(∫ f(Y )

f(X)

a(x)dx

)
, (54)

satisfy

D

DX

∫ X

Y

A(X ′)DX ′ = A(X), (55)∫ X

Y

DA(X ′)

DX ′
DX ′ = A(X)	A(Y ). (56)

Formula (53) follows directly from the definitions of
D/DX and d/dx.

It is is extremely important to realize that (53) is not
the usual formula relating derivatives of A = f−1 ◦ a ◦ f
and a. Indeed,

DA

DX
= f−1 ◦ da

dx
◦ f, , (57)

so that D/DX behaves like a covariant derivative, but
with a trivial connection. Yet, f can be any bijection
f : X→ R. The usual approach, employed in differential
geometry or gauge theories, would employ the arithmetic
of R, and one would have to assume differentiability of f
and f−1. Here bijectivity is enough since no derivatives
of either f or f−1 will occur in (53) and (57).

V. SCALAR PRODUCT

Let Ak, Bk : X → X, k = 1, 2, Ak = f−1 ◦ ak ◦ f ,
Bk = f−1 ◦ bk ◦ f , and A = A1 ⊕ i′A2, a = a1 + ia2.
Define

〈A|B〉 =

∫ T�2′

	T�2′
A(X)∗ �B(X)DX. (58)

Employing (17), (18), (54) we transform (58) into

〈A|B〉 = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)

⊕i′f−1
(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
. (59)

f(T ) can be finite or infinite. It is useful to denote 〈a|b〉 =∫ f(T )/2

−f(T )/2
a(x)b(x)dx, so that

〈A|B〉 = f−1 (<〈a|b〉)⊕ i′f−1 (=〈a|b〉) . (60)

In the Appendix we prove that

〈A|B〉∗ = 〈B|A〉, (61)

〈A|B ⊕ C〉 = 〈A|B〉 ⊕ 〈A|C〉, (62)

〈A|Λ�B〉 = Λ� 〈A|B〉, Λ ∈

C

. (63)

VI. FOURIER TRANSFORM

Let A : X →

C

. The Fourier transform Â : X →

C

is
defined by

Â(K) =
(
Â1(K), Â2(K)

)
= Â1(K)⊕ i′Â2(K)(64)

=

∫ T�2′

	T�2′
A(X)� Exp (	i′K �X)DX. (65)

After some computations one finds its equivalent explicit
form

Â(K) = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)e−if(K)xdx

)

⊕i′f−1
(
=
∫ f(T )/2

−f(T )/2

a(x)e−if(K)xdx

)
.(66)

Now assume f(T ) < ∞. Dirac’s delta in the
space of square-integrable functions a : C → C,∫ f(T )/2

−f(T )/2
|a(x)|2dx <∞, can be written as

δ(x− y) =
1

f(T )

∑
n∈Z

ei2nπ(x−y)/f(T ) (67)

=
1

f(T )
+

2

f(T )

∑
n>0

(
cos

2nπx

f(T )
cos

2nπy

f(T )

+ sin
2nπx

f(T )
sin

2nπy

f(T )

)
. (68)

Denoting

cn(y) =

√
2

f(T )
cos

2nπy

f(T )
, n > 0 (69)

sn(y) =

√
2

f(T )
sin

2nπy

f(T )
, n > 0 (70)

c0(y) =

√
1

f(T )
, (71)

s0(y) = 0, (72)

Cn(X) = f−1
(
cn
(
f(X)

))
, (73)

Sn(X) = f−1
(
sn
(
f(X)

))
, (74)

one finds

δ(x− y) =
∑
n≥0

(
cn(x)cn(y) + sn(x)sn(y)

)
, (75)

which implies

A(X) = ⊕n≥0
(
Cn(X)� 〈Cn|A〉 ⊕ Sn(X)� 〈Sn|A〉

)
.

(76)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


6

Since

〈Cn|Cm〉 = f−1 (<〈cn|cm〉)⊕ i′f−1 (=〈cn|cm〉) (77)

= f−1
(
δnm

)
⊕ i′f−1 (0) (78)

= δ′nm ⊕ i′0′ (79)

= δ′nm (80)

= 〈Sn|Sm〉, (81)

〈Cn|Sm〉 = 0′, (82)

where

δ′nm = f−1(δnm) =

{
1′ for n = m
0′ for n 6= m

, (83)

we arrive at the Parseval formula

〈A|B〉 =

∫ T�2′

	T�2′
A(X)∗ �B(X)DX (84)

= ⊕n≥0
(
〈A|Cn〉 � 〈Cn|B〉 ⊕ 〈A|Sn〉 � 〈Sn|B〉

)
.

(85)

VII. EXAMPLE: CANTORIAN SAWTOOTH
FUNCTION

Let us consider the sawtooth function a : R → R and
its ternary Cantor-line analogue, A = f−1◦a◦f , depicted
in Fig. 2. Now let us perform the Fourier transform with
f(T ) = 1, i.e. T = 1′. Fig. 3 shows two reconstructions of
A with 5 and 30 Fourier terms, respectively. The Gibbs
phenomenon is clearly visible.

VIII. SPECTRUM OF FREQUENCIES

The Laplacian ∆ = D
DX

D
DX satisfies

∆Cn(X) =
D

DX

D

DX
f−1

(
cn
(
f(X)

))
(86)

= f−1

(
− (2nπ)2

f(T )2

√
2

f(T )
cos

2nπf(X)

f(T )

)

= 	f−1(n)2
′
� f−1

(
(2π)2

f(T )2

)
� Cn(X).(87)

Spectrum in the sense of Jorgensen and Pedersen [18] cor-
responds to f(T ) = 1 and is given by λs that parametrize
the exponent e2πiλx. For the quaternary Cantor set they
find that λs are all the odd multiples of 4j , for non-
negative integers j. In our case the relevant numbers
are {n′ = f−1(n)}. For the quaternary Cantor set X+

the bijection f−1 maps n = bk2k + · · · + b121 + b0 into
n′ = 2(bk4k + · · · + b141 + b0). Now assume that j is
the smallest value of the binary index satisfying bj = 1.
Then

n′ = 2(bk4k + · · ·+ bj+14j+1 + 4j) (88)

= 4j2(bk4k−1 + · · ·+ bj+141 + 1). (89)

FIG. 2: The sawtooth function a (upper), and its Cantorian
analogue A = f−1 ◦ a ◦ f , where f is the ternary Cantor-line
function (lower).

FIG. 3: Finite-sum Fourier reconstructions of the sawtooth
function, with 5 (upper) and 30 terms. The Gibbs effect is
enhanced by jumps of the Cantor-line function.
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So our n′ are given by even multiples of 4j , but not all of
them are allowed. For example, 4j × 6 is not included.

As opposed to the approach from [18] one can obtain
an analogous spectrum for the ternary Cantor set, and
actually for all Cantor sets described in [22], including
those that are not self-similar. The ternary Cantor-line
function (Fig. 1, upper) satisfies f−1(k) = k for integer
k, so spectrum will include all non-negative integers. If
one takes a self-similar “middle-third” Cantor set, then
n′ = 2(bk3k + · · · + b131 + b0), so one will obtain an
analogous result as for the quaternary Cantor set, but
with 4j replaced by 3j .

IX. SUMMARY

The concepts of differentiation and integration can be
easily defined for fractals equipped with intrinsic non-

Diophantine arithmetic. Once we know how to integrate
and differentiate in a way that preserves the fundamental
theorems of calculus, we can easily define Fourier trans-
forms that possess all the standard properties (resolution
of unity, Parceval theorem, Gibbs effect,...). Accordingly,
there is no problem with momentum representation in
quantum mechanics on fractal space-times, at least in
the class of fractals that fulfill our assumptions.
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Appendix: Properties of 〈A|B〉

Let

〈A|B〉 = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
⊕ i′f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
(90)

Then

〈A|B〉∗ = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
	 i′f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
(91)

= f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
⊕ i′f−1

(
−=

∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
(92)

= f−1

(
<
∫ f(T )/2

−f(T )/2

b(x)a(x)dx

)
⊕ i′f−1

(
=
∫ f(T )/2

−f(T )/2

b(x)a(x)dx

)
(93)

= 〈B|A〉 (94)

Now let A = f−1 ◦ a ◦ f , B = f−1 ◦ b ◦ f . We first show that A⊕B = f−1 ◦ (a+ b) ◦ f :

A⊕B(X) = A(X)⊕B(X) (95)

= f−1
(
f
(
A(X)

)
+ f

(
B(X)

))
(96)

= f−1
(
a[f(X)] + b[f(X)]

)
(97)

= f−1
(
(a+ b)[f(X)]

)
(98)

= f−1 ◦ (a+ b) ◦ f(X). (99)

So

〈A|B ⊕ C〉 = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)(b+ c)(x)dx

)
⊕ i′f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)(b+ c)(x)dx

)
(100)

Let us concentrate on the first integral

f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)(b+ c)(x)dx

)
(101)

since the proof for

f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)(b+ c)(x)dx

)
(102)

will be identical. We find

(101) = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx+ <
∫ f(T )/2

−f(T )/2

a(x)c(x)dx

)
(103)

= f−1

[
f

(
f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx
))

+ f

(
f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)c(x)dx
))]

(104)

= f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
⊕ f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)c(x)dx

)
. (105)

Analogously

(102) = f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
⊕ f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)c(x)dx

)
, (106)
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implying

〈A|B ⊕ C〉 = 〈A|B〉 ⊕ 〈A|C〉. (107)

Next, let Λ ∈

C

be a constant. Then

B′(X) =
(
B′1(X), B′2(X)

)
(108)

= Λ�B(X) (109)

= (Λ1 ⊕ i′Λ2)� (B1(X)⊕ i′B2(X)) (110)

=
(

Λ1 �B1(X)	 Λ2 �B2(X))
)
⊕ i′

(
Λ1 �B2(X)⊕ Λ2 �B1(X))

)
(111)

= f−1
(
f(Λ1)b1[f(X)]− f(Λ2)b2[f(X))]

)
⊕ i′f−1

(
f(Λ1)b2[f(X)] + f(Λ2)b1[f(X)]

)
(112)

B′ =
(
B′1, B

′
2

)
(113)

=
(
f−1 ◦

(
f(Λ1)b1 − f(Λ2)b2

)
◦ f, f−1 ◦

(
f(Λ1)b2 + f(Λ2)b1

)
◦ f
)

(114)

=
(
f−1 ◦ b′1 ◦ f, f−1 ◦ b′2 ◦ f

)
(115)

=
(
f−1 ◦ <

((
f(Λ1) + if(Λ2)

)(
b1 + ib2

))
◦ f, f−1 ◦ =

((
f(Λ1) + if(Λ2)

)(
b1 + ib2

))
◦ f
)

(116)

So

b′1 = <
((
f(Λ1) + if(Λ2)

)(
b1 + ib2

))
, (117)

b′2 = =
((
f(Λ1) + if(Λ2)

)(
b1 + ib2

))
, (118)

b′ = b′1 + ib′2 (119)

=
(
f(Λ1) + if(Λ2)

)(
b1 + ib2

)
(120)

Recall that

〈A|B′〉 = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b′(x)dx

)
⊕ i′f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b′(x)dx

)
(121)
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Therefore

〈A|Λ�B〉 = f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b′(x)dx

)
⊕ i′f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b′(x)dx

)
(122)

= f−1

(
<

[(
f(Λ1) + if(Λ2)

) ∫ f(T )/2

−f(T )/2

a(x)b(x)dx

])

⊕i′f−1
(
=

[(
f(Λ1) + if(Λ2)

) ∫ f(T )/2

−f(T )/2

a(x)b(x)dx

])
(123)

= f−1

(
f(Λ1)<

∫ f(T )/2

−f(T )/2

a(x)b(x)dx− f(Λ2)=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)

⊕i′f−1
(
f(Λ2)<

∫ f(T )/2

−f(T )/2

a(x)b(x)dx+ f(Λ1)=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
(124)

= f−1

(
f(Λ1)f

[
f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)]
− f(Λ2)f

[
f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)])

⊕i′f−1
(
f(Λ2)f

[
f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)]
+ f(Λ1)f

[
f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)])

= Λ1 � f−1
(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
	 Λ2 � f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)

⊕i′
[

Λ2 � f−1
(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
⊕ Λ1 � f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)]
(125)

= (Λ1 ⊕ i′Λ2)�

[
f−1

(
<
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)
⊕ i′f−1

(
=
∫ f(T )/2

−f(T )/2

a(x)b(x)dx

)]
(126)

= Λ� 〈A|B〉 (127)

which ends the proof.
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