
FPGA Acceleration of Matrix-Assembly Phase of
RWG-based MoM

Tomasz Topa,Member, IEEE, Artur Noga,Member, IEEE, Tomasz P. Stefański,Senior Member, IEEE

Abstract—In this letter, the field-programmable-gate-array
accelerated implementation of matrix-assembly phase of the
method of moments (MoM) is presented. The solution is based
on a discretization of the frequency-domain mixed potential
integral equation using the Rao-Wilton-Glisson basis functions
and their extension to wire-to-surface junctions. To take advan-
tage of the given hardware resources (i.e., Xilinx Alveo U200
accelerator card), nine independent processing paths/runtime
efficient compute units are developed and synthesized. Numerical
results provided for a quadrifilar spiral antenna mounted on
a conductive handset box show that the proposed parallelization
scheme performs 9.53× faster than a traditional (i.e., serial)
central processing unit (CPU) MoM implementation, and about
1.67× faster than a parallel six-core CPU MoM implementation.

Index Terms—Method of moments, Field programmable gate
arrays, Hardware acceleration.

I. I NTRODUCTION

T HE method of moments (MoM) based on the electric
field integral equation (EFIE) is one of the flagship

computational tools, which has proven its usefulness and
accuracy in solving a vast variety of real-world electro-
magnetics problems [1]. The potential of MoM, however,
is impaired by its well-known high demands of computer
resources in terms of central processing unit (CPU) time and
memory storage needed to perform computations. Fortunately,
many of these computations can be carried out independently,
providing an opportunity for parallelization and acceleration
of MoM solvers. A parallel implementation of EFIE-based
MoM typically involves splitting the most computationally
intensive parts of workload, i.e., solving the system of linear
equations and assembling the impedance matrix, into tasks
of various granularities, targeting architectural strengths of
given computational resources, and minimizing data transfers
between hardware components. Although much development
work has been done to speed up MoM computations, perfect
performance across multiple parallel processing platforms still
remains a challenging problem. It stems from the complexity
of MoM parallelization schemes due to a high level of con-

Manuscript received Month 00, 2022; revised Month 00, 2022, accepted
Month 00, 2022. This work was supported by the Polish Ministry of Science
and Higher Education funding for statutory activities (BK-246/RAu-11/2022).

T. Topa and A. Noga are with the Department of Electronics, Electrical
Engineering and Microelectronics, Silesian University of Technology, Gliwice
44-100, Poland (e-mails: tomasz.topa@polsl.pl, artur.noga@polsl.pl).

T. P. Stefański is with the Faculty of Electronics, Telecommunications and
Informatics, Gdańsk University of Technology, Gdańsk 80-233, Poland (e-
mail: tomasz.stefanski@pg.edu.pl).

currency and heterogeneity for a wide variety of accelerators
and co-processors available currently on the market.

The first hardware-accelerated implementation of MoM on
graphics processing unit (GPU) is presented in [2], where
the GeForce 7600GT graphics card is employed to assem-
bly the impedance matrix and solve the system of linear
equations. Following this idea, CUDA-enabled graphics cards
are employed to evaluate the current distribution on a short
linear dipole antenna [3] and accelerate the electromagnetic
scattering analysis of a square conductive plate [4]. Since
then, various GPU accelerations have been proposed for MoM,
resulting in large savings in computation times [5]–[7]. How-
ever, all the proposed hybridization schemes suffer from poor
load balancing, making the computations less intensive, and
thus, more time consuming. To address this issue, Kolundzija
and Zoric [8] split the assembly phase of MoM into two
different tasks, namely evaluation of self and non-self terms,
and execute them respectively on CPU and GPU. The same
task scheduling strategy is applied in [9]–[11], however, in
order to reduce CPU stalls, the assembly of impedance matrix
is partially overlapped with solving the MoM matrix equation.
Additionally, in order to balance the workload between CPU
and GPU, the processed data (i.e., the impedance matrix) is
divided into small sets (i.e., rectangular tiles) that are reshaped
during computations. At the same time, the research focused
on the development of accelerated MoM codes on recon-
figurable computing devices have been carried out. In [12]
and [13], the FPGA-based implementations ofgetrf() and
gmres() LAPACK routines are respectively presented for
solving complex-valued systems of MoM equations. These
designs (i.e., the MoM implementations) focus on data in-
tegrity, optimal resource utilization, scalability and load bal-
ancing. In [14], the PCI-hosted Nallatech 385A board featuring
a single Intel Arria 10 GX 1150 FPGA is employed to
accelerate the assembly phase of wire-grid MoM framework.
Given the capabilities of underlying device architecture and its
performance potential, only a single processing path (PP) is
synthesized for handling both computations and data transfers.

In this letter, the FPGA acceleration for the matrix-assembly
phase of MoM using the RWG basis functions is presented.
That is, the mixed potential integral equation (MPIE), which is
a modification of EFIE [1], [15], is solved on CPU whereas the
assembly phase is accelerated on FPGA. The implementation
includes surface and line current densities and provides, like
the approach described in [5], the possibility for handling
arbitrarily-shaped conducting objects including wires (W),
bodies (B) and wire-body junctions (J). The developed so-

0000–0000/00$00.00c© 0000 IEEE

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tomasz Stefanski. Downloaded on July 27,2022 at 16:34:32 UTC from IEEE Xplore. Restrictions apply.

Postprint of: Topa T., Noga A., Stefański T., FPGA Acceleration of Matrix-Assembly Phase of RWG-Based MoM, IEEE Antennas and Wireless
Propagation Letters Vol. 21, iss. 9 (2022), pp. 1847-1851, DOI: 10.1109/LAWP.2022.3183168

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://dx.doi.org/10.1109/LAWP.2022.3183168

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 0, 0000 2

lution can be useful for the acceleration of design processes
(i.e., optimizations) of microwave circuits and antennas.The
application of FPGA not only speeds up computations but also
keeps the power consumption at a low level, which allows one
to reduce the environmental effects of computer simulations.
The machines used in this study consist of hexa-core Intel
i7-8700K CPU with NVIDIA Titan Xp GPU (machine M1),
and quad-core Intel i7-3820 CPU with Xilinx Alveo U200
PCIe accelerator card (machine M2). We employ two different
machines (M1 and M2) in our investigations because the
FPGA card is passively cooled and requires special computer
case with large air flow for its proper operation.

II. M OM OVERVIEW

The MoM framework considered in this letter converts
MPIE into the matrix equation

Z · I = V (1)

whereZ denotes the square complex-valued impedance ma-
trix, I is the column vector of unknown current expansion
coefficients, andV represents the voltage-excitation vector.
Because the framework is aimed at handling the electromag-
netic analysis of conductive wire-body objects, the impedance
matrix can be written as

Z =

Z
BB

Z
BW

Z
BJ

Z
WB

Z
WW

Z
WJ

Z
JB

Z
JW

Z
JJ

 . (2)

The submatricesZγβ , whereγ, β = B,W or J , represent
mutual electromagnetic couplings between the current modes
belonging to the subsets indicated by corresponding super-
scripts. Once the matrix entriesZmn and the column vector
entries Vm are evaluated, the dense linear complex-valued
matrix equation (1) is solved by standard methods of linear
algebra. However, in the context of MoM simulations, one of
the most widely used techniques for solving (1) is the lower
and upper (LU) decomposition offering many advantages over
other possible approaches [3], [4].

III. I MPLEMENTATION ISSUES

The Alveo U200 accelerator card [16] used in this study
is built on the Xilinx 16 nm UltraScale FPGA chip. Its
advantages stem from the implementation of computations
on reconfigurable hardware rather than their execution as
a sequential code on a processor with fixed architecture.
Therefore, the Alveo accelerator is adaptable to changing
algorithms, arithmetics, and data structures, thus, it is capable
to accelerate almost any computations without changing the
hardware. Available resources of the Alveo card are given
in Table I. Like many modern accelerators, the card offers
fully IEEE-754 compliant single and double-precision floating
point operations, and possesses the capability for overlapping
data transfers with computations. A simplified version of
the developed OpenCL code for assembling the impedance
matrix of MoM is illustrated in Fig. 1. Based on the ap-
proach described in [14], the singularities arising from (1)
are evaluated on the CPU host (routineZ−self−terms())

#include ”CL/xcl2.hpp”

// load the geometry
1: call geoinput(x, y, z, rad, ...);

...

// create command queue to perform the computations
cl_command_queue queue = clCreateCommandQueue(context, device, ...,2:
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, ...);

...

// create the event list
3: cl_event events[32];

...

// allocate memory on the device for storing the results/output data
4: for (int i = 0; i < 16; i++)

cl_mem cz_d[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, ...);5:
...

// copy input data to the device memory
6: call clEnqueueWriteBuffer(queue, x_d, CL_FALSE, 0, ..., x, ...);

...

// launch the kernel/computation on the device
Z_non_self_terms(queue, device, x_d, ..., cz_d , ..., &events);7: call

// calculate the submatrices Zjw, Zwj, Zbj, Zjb, Zjj and the self-terms on the host
Z_self_terms(cz, x, y, x, rad, ...);8: call

cpu_Z_junc(cz, x, y, x, rad, ...);9: call
...

// release openCL objects
10: call clReleaseMemObject(cz_d[i], x_d, y_d, z_d, rad_d, ...);

// ------------------- routine Z_non_self_terms -------------------
11: void Z_non_self_terms(cl_command_queue q, ..., float* x_d, ...,

clDoubleComplex* cz_d, ..., cl_event ev){

...

// calculate wire-wire, wire-body, body-wire and body-body interactions simultaneously
12: call clEnqueueNDRangeKernel(q, „Z_ww_kernel”, cz_d[0], ..., ev[0]);

13: call clEnqueueReadBuffer(q, cz_d[0],CL_FALSE, ..., cz[off1],0, ev[1]);

14: call clEnqueueNDRangeKernel(q, „Z_wb_kernel”, cz_d[1], ..., ev[2]);

15: call clEnqueueReadBuffer(q, cz_d[1],CL_FALSE, ..., cz[off2],0, ev[3]);

16: call clEnqueueNDRangeKernel(q, „Z_bw_kernel”, cz_d[2], ..., ev[4]);

17: call clEnqueueReadBuffer(q, cz_d[2],CL_FALSE, ..., cz[off3],0, ev[5]);

18: for (int i = 0; i < num_iter; i++){

19: call clEnqueueNDRangeKernel(q, „Z_bb_1_kernel”, cz_d[3+6*i], i, ...,

ev[6+12*i]);

20: call clEnqueueReadBuffer(q, cz_d[(3+6*i)],CL_FALSE, ...,
cz[6*i*off4],0, ev[7+12*i]);
...

21: call clEnqueueNDRangeKernel(q, „Z_bb_6_kernel”, cz_d[8+6*i], i, ...,

ev[16+12*i]);

22: call clEnqueueReadBuffer(q, cz_d[(8+6*i)],CL_FALSE, ...,
cz[(5+6*i)*off4],0, ev[17+12*i]);

23: }

24: clFlush();

25: }

Fig. 1. Simplified FPGA-oriented OpenCL code for assemblingimpedance
matrix of RWG-based MoM.

whilst the non-singular integrals on the FPGA device (routine
Z−non−self−terms()). CPU is also employed to calcu-
late the submatricesZJβ andZ

γJ (γ, β = B,W or J). This
is mainly due to rather small number of wire-body junctions
present in the investigated structure (results of numerical
experiments show that computations of the submatricesZ

Jβ

andZγJ should be offloaded to the device only when the an-
alyzed structure contains more than 250 body-wire junctions,
otherwise the CPU-based approach is more efficient). In order
to fully exploit the processing power of device, nine concur-
rently executed tasks are performed – two for handling the
wire-body interactions, one for evaluating the electromagnetic
coupling between the wires, and six – between the bodies.
The hardware implementation (i.e., synthesis) of PPs occupies
resources as given in Table I. As one can notice, the utilization
of LUTs and DSP slices is a bottleneck for the proposed
FPGA implementation. It turned out that our attempts to
attach an additional PP were unsuccessful because FPGA
design tools reported problems at the level of interconnection
routing. In general, designed digital circuits are not placed in
isolation into FPGA chips, i.e., designed circuits are a part
of a valid FPGA design which includes various additional
components in order to run target applications. Since a single
clCreateBuffer() call allocates a limited amount of

This article has been accepted for publication in IEEE Antennas and Wireless Propagation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2022.3183168

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tomasz Stefanski. Downloaded on July 27,2022 at 16:34:32 UTC from IEEE Xplore. Restrictions apply.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 0, 0000 3

TABLE I
RESOURCES REQUIRED FOR ACCELERATED IMPLEMENTATION OF MATRIX-ASSEMBLY PHASE OFMOM.

2 wire-body PPs wire-wire PP 6 body-body PPs

Resources Available Used Utilization (%) Used Utilization(%) Used Utilization (%)

Digital signal processing (DSP) blocks/slices 6840 1580 23 399 6 3126 46
Look-up tables (LUTs) 1182 K 264 K 22 93 K 8 567 K 48
Flip-flops (FFs) 2364 K 304 K 13 103 K 4 636 K 27
36 Kb RAM blocks (BRAMs) 6480 254 4 15 <1 672 10
Registers 2364 K 48 K 2 15 K <1 156 K 7

global memory on the card, four sets of four output data
buffers are created (one set per global memory bank) to utilize
all available device main-memory resources (line 5). Follow-
ing the current implementation strategies, the data transfers
between the host and the device are overlapped with the FPGA
kernel execution (line 12 – 22). Additionally, global memory
reads and writes are pipelined and locally cached through
36 Kb BRAM-based memory banks. In our implementation of
MoM computations, the estimated frequency of card is equal
to 312 MHz whereas the target frequency for this card is equal
to 300 MHz. In general, an estimated frequency higher than the
one associated with the device target indicates that designed
compute units can run in hardware. Once the assembly phase
is finished, the multithreadedzgesv() routine from MKL li-
brary [17] is invoked to solve the MoM matrix equation. Using
this routine here serves two major benefits. Firstly, it simplifies
the kernel development process (i.e., matrix assembly), and
secondly – it improves its performance (i.e., more hardware
resources are utilized to implement the kernel). Furthermore,
as presented and concluded in [12], [18] and [19], solving
a complex-valued system of linear equation on FPGA may be
less effective than the relevant multicore approach especially,
when the LU decomposition scheme is employed.

IV. RESULTS

To evaluate the performance potential provided by the
described parallelization scheme, a quadrifilar spiral antenna
(QSA) mounted on a conductive handset box of a dimension
of 0.2 × 0.2 × 0.2 m3 (height× width × depth) is consid-
ered [20]. The antenna consists of four separate spiral arms
placed at90◦ to each other, as presented in Fig. 2. Each arm
of the total length of 256 mm (the spiral constant is equal to
a = 1.42 mm/rad) is connected to the top surface of handset
box by a short (0.03 m) wire of the radius of 0.5 mm. The
arms are fed with delta-gap voltage sources with90

◦ phase
shift between feeding signals, i.e.,0

◦, 90◦, 180◦, and270◦. For
the purpose of numerical modeling, the structure is subdivided
into 4800 triangular patches (the handset) and 148 linear
segments (the QSA antenna). The total number of unknowns
(i.e., degrees of freedom) associated with the model is equal
to 7684, which corresponds to a memory footprint of 900 MB
when complex double-precision arithmetic is employed.

Fig. 3 shows the input impedance of the OSA antenna in
Fig. 2, computed at increments of 10 MHz in the frequency
range from 1.4 GHz to 3.1 GHz. The results are in very good
agreement with the output data from CONCEPT-II taken as
the reference [21]. Since the spiral arms are located 0.03 m

0.19m

0.2m

0.03m

0.2m0.2m

Fig. 2. Quadrifilar spiral antenna mounted on a conductive cubic handset
box.

-400

-200

 0

 200

 400

 600

 800

 1000

 1200

1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

im
pe

da
nc

e
(Ω

)

frequency (GHz)

Resistance
Reactance
Resistance (Concept-II)
Reactance (Concept-II)

Fig. 3. Input impedance of QSA antenna in Fig. 2 as function offrequency.

above the top surface of handset box (see Fig. 2), the input
impedance of antenna becomes smooth enough to meet the
impedance matching requirements for the intended operating
frequency band of 2.4835–2.5 GHz (i.e., operating frequency
band of the big low earth orbit satellite communication sys-
tem). The total execution time taken to solve the problem on
a single CPU core (the reference approach on M1) is equal
to 15425 s (90.2 s per single frequency point). This time is
reduced to 2726 s (5.66×) when all available CPU cores are
used on the machine M1, and to 2253 s (6.85×) when the
described CPU/FPGA parallelization scheme is employed on
the machine M2. The assembly phase takes 8841 s on M1 for
the sequential CPU implementation, 1546 s for the six-core
implementation, and 928 s for the proposed hybridization

This article has been accepted for publication in IEEE Antennas and Wireless Propagation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2022.3183168

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tomasz Stefanski. Downloaded on July 27,2022 at 16:34:32 UTC from IEEE Xplore. Restrictions apply.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 0, 0000 4

 0

 5

 10

 15

 20

 25

 30

 0 4000 8000 12000 16000 20000 24000 28000

sp
ee

du
p

ra
tio

matrix size

1 core/6 cores
1 core/GPU
1 core/FPGA

Fig. 4. Measured speedup of matrix-assembly phase of wire-body MoM as
function of matrix sizeN (global memory installed on GPU device is of size
12 GB, the speedup analysis is limited to problem of size 28300 unknowns).

framework executed on the machine M2. As it can be seen, the
FPGA-based assembly scheme performs 9.53× faster than the
single core approach on M1, and 1.67× faster than the six-core
implementation. Note that the last result (928 s) includes
the time (75 s) required for transferring the data between
CPU and the PCI-hosted FPGA device. The solution of MoM
matrix equation (the four-core approach performed on M2)
takes 1325 s (4.87× faster than the serial, i.e., a single core,
implementation on M1) and for a given problem size of 7684
unknowns contributes more than 58% to the total execution
time (2253 s) of the proposed hybridization scheme. To better
illustrate the computing throughput provided by the considered
heterogeneous processing platform, the measured speedup of
matrix-assembly phase as a function of the problem/matrix
size is presented in Fig. 4. The speedup is evaluated by
changing both the discretization of antenna and the handset
box depicted in Fig. 2, while keeping the ratio of numbers of
the body and wire basis functions associated with the handset
and antenna model reasonably constant over the range ofN .
The total power consumption during the computations on
FPGA, that is computing the non-self terms, equals to around
56 W (62 W less comparing to the six-core approach). Most of
this power (37 W) is consumed for calculating the body-body
interactions, some (18 W) for handling the wire-body and
wire-wire interactions, and the remaining (1 W) for transfer-
ring the output data between the host and the device.

To make the hardware acceleration analysis more complete,
computations of the non-singular integrals have also been
offloaded to Titan Xp GPU within the machine M1 and
carried out concurrently with the computations of on-diagonal
elements (singularities) performed on the host. In this case,
the assembly of impedance matrix (7684×7684 elements)
and the total execution take 310 s and 1490 s, respectively.
Then, it corresponds to the speedup factors of around 28.52×

and 10.35×, respectively, when compared to the reference
single-core approach. However, obtained performance im-
provements of the matrix-assembly phase (4.98× over the
six-core approach and 2.99× over the FPGA-based implemen-
tation) come at the price of the total power consumed by the
Titan Xp device (230 W).

V. CONCLUSION

In this letter, the acceleration of matrix-assembly phase
of wire-body MoM framework, employing the heterogeneous
CPU/FPGA computing platform, is demonstrated. Timing and
speedup results show that the proposed hybrid processing
scheme performs 9.53× faster when compared to the reference
single-core CPU implementation, and about 1.67× faster when
compared to the six-core approach for the problem size of
7684 unknowns. It is also worth pointing out that the given
FPGA-based approach consumes 2.11× less power than the
multicore implementation and 4.11× less power than the
GPU-based implementation, making it a suitable candidate for
energy-efficient acceleration of MoM simulations.

ACKNOWLEDGMENT

The Titan Xp GPU used for the research presented in this
paper was donated by the NVIDIA Corporation.

REFERENCES

[1] R. F. Harrington,Field Computation by Moment Methods, New York, NY,
USA: Macmillan, 1968.

[2] S. Peng, and Z. Nie, “Acceleration of the method of moments calculations
by using graphics processing units,”IEEE Trans. Antennas Propag.,
vol. 56, no. 7, pp. 2130–2133, Jul. 2008.

[3] M. J. Inman, A. Z. Elsherbeni, and C. J. Reddy, “CUDA basedGPU
solver for method of moments simulations,” presented at the26th Int.
Annu. Rev. Prog. ACES, Tampere, Finland, Apr. 25-29, 2010.

[4] E. Lezar, and D. Davidson, “GPU-accelerated method of moments by
example: monostatic scattering,”IEEE Antennas Propag. Mag., vol. 52,
no. 6, pp. 120–135, Dec. 2010.

[5] T. Topa, A. Noga, and A. Karwowski, “Adapting MoM with RWGbasis
functions to GPU technology using CUDA,”IEEE Antennas Wireless
Propag. Lett., vol. 10, pp. 480–483, May 2011.

[6] D. De Donno, A. Esposito, G. Monti, and L. Tarricone, “MPIE/MoM
acceleration with a general-purpose graphics processing unit,” IEEE
Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2693–2701, Sep. 2012.

[7] X. Mu, H.-X. Zhou, K. Chen, and W. Hong, ”Higher order method of mo-
ments with a parallel out-of-core LU solver on GPU/CPU platform,” IEEE
Trans. Antennas Propag., vol. 62, no. 11, pp. 5634–5646, Nov. 2014.

[8] B. Kolundzija, and D. Zoric, “Efficient evaluation of MoMmatrix
elements using CPU and/or GPU,” inProc. 6th Eur. Conf. on Antennas
and Propag., Prague, Czech Republic, Mar. 2012, pp. 702–706.

[9] T. Topa, “Load-balanced Fortran-based out-of-GPU memory implemen-
tation of the method of moments,”IEEE Antennas Wireless Propag. Lett.,
vol. 16, pp. 813–816, Aug. 2016.

[10] A. Karwowski, A. Noga, and T. Topa “An efficient framework for
analysis of wire-grid shielding structures over a road frequency range,”
Radioengineering, vol. 25, no. 4, pp. 629–636, Dec. 2016.

[11] A. Karwowski, A. Noga, and T. Topa “Computationally efficient tech-
nique for wide-band analysis of grid-like spatial shields for protection
against LEMP effects,”Appl. Comput. Electromagn. Soc. J., vol. 32, no. 1,
pp. 87–92, Jan. 2017.

[12] T. Hauser, A. Dasu, A. Sudarsanam, and S. Young, “Performance
of a LU (lower and upper) decomposition on a multi-FPGA system
compared to a low power commodity microprocessor system,”J. Scalable
Comput.: Pract. Experience, vol. 8, no. 4, pp. 373–385, Dec. 2007.

[13] A. Devi, M. Gandhi, K. Varghese, and D. Gope “Accelerating method
of moments based package-board 3D parasitic extraction using FPGA,”
Microw. Opt. Technol. Lett., vol. 58, no. 4, pp. 776–782, Apr. 2016.

[14] T. Topa, “Porting wire-grid MoM framework to reconfigurable comput-
ing technology,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 9,
pp. 1630–1633, Sept. 2020.

[15] J. R. Mosig, “Arbitrarily shaped microstrip structures and their analysis
with a mixed potential integral equation,”IEEE Trans. Microw. Theory
Tech., vol. 36, no. 2, pp. 314–323, Feb. 1988.

[16] Xilinx, Alveo Data Center Accelerator Card Platforms. User Guide,
Jul. 30, 2021. [Online]. Available: http://www.xilinx.com

[17] Intel, Intel OneAPI Math Kernel Library. Developer Reference, Jun. 28,
2021. [Online]. Available: http://www.intel.com

This article has been accepted for publication in IEEE Antennas and Wireless Propagation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2022.3183168

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tomasz Stefanski. Downloaded on July 27,2022 at 16:34:32 UTC from IEEE Xplore. Restrictions apply.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 0, 0000 5

[18] T. de Matties, J. de Fine Licht, and T. Hoefler, “FBLAS: Streaming
Linear Algebra Kernels on FPGA,” presented at theInt. Conf. HPC Netw.
Stor. Anal. (SC’19), Denver, CO, USA, Nov. 17–22, 2019.

[19] S. Kestur, J. D. Devids, and O. Williams, “BLAS Comparison on FPGA,
CPU and GPU,” inProc. IEEE Comput. Soc. Annu. Symp. VLSI, Lixouri,
Greece, Jul. 5–7, 2010, pp. 288–293.

[20] R. A. Abd-Alhameed, M. Mangoud, P. S. Excell, and K. Khalil,
“Investigations of polarization purity and specific absorption rate for two
dual-band antennas for satellite-mobile handsets,”IEEE Trans. Antennas
Propag., vol. 53, no. 6, pp. 2108–2110, Jun. 2005.

[21] Hamburg University of Technology,The CONCEPT-II. [Online]. Avail-
able: http://www.tet.tuhh.de/en/concept-2/

This article has been accepted for publication in IEEE Antennas and Wireless Propagation Letters. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/LAWP.2022.3183168

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Tomasz Stefanski. Downloaded on July 27,2022 at 16:34:32 UTC from IEEE Xplore. Restrictions apply.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

