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a b s t r a c t

In this paper, we will discuss the existence of solutions of fractional equations of Volterra
type with the Riemann–Liouville derivative. Existence results are obtained by using a
Banach fixed point theorem with weighted norms and by a monotone iterative method
too. An example illustrates the results.
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1. Introduction

This paper discusses the existence of solutions of problems:Dqx(t) = f

t, x(t),

 t

0
k(t, s)x(s)ds


≡ F x(t), t ∈ J0 = (0, T ], T > 0,

x̃(0) = r,
(1)

where f ∈ C(J × R × R, R), J = [0, T ], x̃(0) = t1−qx(t)|t=0 , and Dqx denotes a Riemann–Liouville fractional derivative of x
with q ∈ (0, 1).

Recently, much attention has been paid to study fractional problems, see for example [1–10]. The monotone iterative
technique can be successfully applied to obtain existence results for fractional differential problems, see book [2], and
for example papers [1,3,4,6,8–10]. Authors of papers, [3,4,6,7,9,10], obtained their existence results under the assumption
that function f satisfies a one-sided Lipschitz condition with respect to the second variable with a corresponding constant
coefficient M . In our paper, we consider a more general case when constant M is replaced by a function M ∈ C(J, R). We
also obtained existence results by using the Banach fixed point theorem with the corresponding weighted norms.

The organization of this paper is as follows. In Section 2, Theorem 1 presents the existence result giving sufficient condi-
tions under which problem (1) has a unique solution. To achieve this we apply a Banach fixed point theorem with a corre-
sponding weighted norm (Bielecki norm) assuming the Lipschitz condition of f with respect to the last two arguments with
nonnegative coefficients. It is important to indicate that in the case when 1

2 < q < 1, we do not need any conditions on the
coefficients. In Section 3, we use the monotone iterative method. First we discuss a comparison result. Theorem 2 presents
the existence result for problems of type (1), by using the monotone iterative method. An example is given to illustrate the
results.
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2. Existence results for problem (1), by a Banach fixed point theorem

Let C1−q(J, R) = {u ∈ C((0, T ], R) : t1−qu ∈ C(J, R)}. For u ∈ C1−q(J, R) we define two weighted norms:

∥u∥∗
= max

[0,T ]

t1−q
|x(t)| or ∥u∥∗ = max

[0,T ]

t1−qe−λt
|x(t)|

with a fixed positive constant λ.

Theorem 1. Let q ∈ (0, 1), f ∈ C(J × R × R, R), k ∈ C(J × J, R). In addition, we assume that:

H1 : there exist nonnegative constants K , L,W such that: |k(t, s)| ≤ W and

|f (t, u1, u2) − f (t, v1, v2)| ≤ K |v1 − u1| + L|v2 − u2|,

H1 : ρ ≡
TqΓ (q)
Γ (2q)


K +

WLT
2q


< 1 if 0 < q ≤

1
2 .

Then problem (1) has a unique solution.

Proof. Consider the problem x = N x, where operator N is defined by

N x(t) = rtq−1
+

1
Γ (q)

 t

0
(t − s)q−1F x(s)ds.

Now, we have to show that operator N has a fixed point. To do it we shall show that N is a contraction map. Let x, y ∈

C1−q(J, R). We consider two cases.
Case 1. Let 0 < q ≤

1
2 . Then, in view of assumption H1, we have

∥N x − N y∥∗
≤

1
Γ (q)

max
t∈J

t1−q
 t

0
(t − s)q−1

|F x(s) − F y(s)|ds

≤
1

Γ (q)
max
t∈J

t1−q
 t

0
(t − s)q−1


K |x(s) − y(s)| + L

 s

0
|k(s, τ )| |x(τ ) − y(τ )|dτ


ds

≤
1

Γ (q)
∥x − y∥∗ max

t∈J
t1−q

 t

0
(t − s)q−1


Ksq−1

+ LW
 s

0
τ q−1dτ


ds

=
1

Γ (q)
∥x − y∥∗ max

t∈J
t1−q

 t

0
(t − s)q−1


Ksq−1

+
LW
q

sq

ds

= ρ∥x − y∥∗.

Hence, operator N has a unique fixed point, by the Banach fixed point theorem.
Case 2. Assume that 1

2 < q < 1. Now, we use the norm ∥ · ∥∗ with a positive λ such that:

√
λ > ρ1 ≡

Kq + LWT
qΓ (q)

Γ (2q − 1)
√
2Γ (2(2q − 1))

√

T 2q−1.

Note that
 t

0
e2λsds ≤

1
2λ

e2λt ,

t1−q

 t

0
(t − s)2(q−1)s2(q−1)ds =

Γ (2q − 1)
√

Γ (2(2q − 1))

√

t2q−1.

(2)

We will use the Schwarz inequality for integrals t

0
|a(s)| |b(s)|ds ≤

 t

0
a2(s)ds

 t

0
b2(s)ds.

Using assumption H1, the Schwarz inequality and (2), we have

∥N x − N y∥∗ ≤
1

Γ (q)
max
t∈J

t1−qe−λt
 t

0
(t − s)q−1

|F x(s) − F y(s)|ds

≤
1

Γ (q)
∥x − y∥∗ max

t∈J
t1−qe−λt

 t

0
(t − s)q−1


Ksq−1eλs

+
LW
q

sqeλs

ds
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≤
(Kq + LWT )

qΓ (q)
∥x − y∥∗ max

t∈J
t1−qe−λt

 t

0
(t − s)q−1sq−1eλsds

≤
(Kq + LWT )

qΓ (q)
∥x − y∥∗ max

t∈J
t1−qe−λt

 t

0
(t − s)2(q−1)s2(q−1)ds

 t

0
e2λsds

≤
ρ1
√

λ
∥x − y∥∗.

It proves that problem (1) has a unique solution. This ends the proof. �

Consider the linear problem:
Dqu(t) = −M(t)u(t) + σ(t), t ∈ J0,
ũ(0) = r. (3)

Lemma 1. Let q ∈ (0, 1), M ∈ C(J, R), σ ∈ C1−q(J, R). Moreover, we assume that Assumption H3 holds with:

H3 : (i) M(t) = M, t ∈ J ,
or

(ii) function M is not a constant on J and

T qΓ (q)
Γ (2q)

max
t∈J

|M(t)| < 1 only in the case when 0 < q ≤
1
2
.

Then problem (3) has a unique solution.

Proof. In case (i), problem (3) has a unique solution in terms of Mittag-Leffler’s function, see for example [2].
In case (ii), the assertion results from Theorem 1. �

Remark 1. Note that if 1
2 < q < 1, then problem (1) has a unique solution for arbitraryM ∈ C(J, R).

3. Existence results for problem (1), by a monotone iterative method

To apply the monotone iterative method we have to introduce the notation of lower and upper solution for (1) and
discuss corresponding fractional inequality. Comparison results will play a very important role in our research. First, we
discuss fractional differential inequalities.

Let us introduce the following assumption:

H4:(i) M(t) = M, t ∈ J ,
or

(ii) functionM is not a constant on J and ifM(t) ≤ 0 on J , we extra assume that:−M(t) ≤ M̄(t) on J, M̄ is nondecreasing
and

1
Γ (q)

 T

0
(T − s)q−1M̄(s)ds < 1. (4)

Lemma 2. Let q ∈ (0, 1) and M ∈ C(J, [0, ∞)) or M ∈ C(J, (−∞, 0]). Suppose that p ∈ C1−q(J, R) satisfies the problem:
Dqp(t) ≤ −M(t)p(t), t ∈ J0,
p̃(0) ≤ 0. (5)

Let Assumption H4 hold.
Then p(t) ≤ 0 on J.

Proof. We consider only the case when function M is not a constant on J . Assume that the assertion is not true. It means
that there exist points t2, t∗ ∈ (0, T ] such that p(t2) = 0, p(t∗) > 0 and p(t) ≤ 0, t ∈ (0, t2]; p(t) > 0, t ∈ (t2, t∗]. Let
t0 be the first maximal point of p on [t2, t∗]. Some ideas in the proof are taken from paper [10].

Case 1. LetM(t) ≥ 0 on J . Then

Dqp(t) ≤ 0, t ∈ [t2, t∗],

so  t0

t2
Dqp(s)ds ≤ 0.
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Hence, from the definition of Riemann–Liouville fractional derivative, we have

0 ≥ I1−qp(t0) − I1−qp(t2) ≡ A. (6)

On the other hand, we have

A =
1

Γ (1 − q)

 t0

0
(t0 − s)−qp(s)ds −

 t2

0
(t2 − s)−qp(s)ds


=

1
Γ (1 − q)

 t2

0


(t0 − s)−q

− (t2 − s)−q p(s)ds +

 t0

t2
(t0 − s)−qp(s)ds


>

1
Γ (1 − q)

 t0

t2
(t0 − s)−qp(s)ds > 0.

It contradicts relation (6), so the assertion holds in this case.
Case 2. LetM(t) ≤ 0on J and let M̄ benondecreasing on J . Note that Riemann–Liouville fractional integral Iq is amonotone

operator. Now, using the fractional integral Iq to the both sides of (5) we obtain

p(t) − p̃(0)tq−1
≤ −Iq[M(t)p(t)], t ∈ [t2, t∗].

Note that p̃(0)tq−1
≤ 0, so in view of the fact that M̄ is nondecreasing we obtain

p(t0) ≤ −
1

Γ (q)

 t0

0
(t0 − s)q−1M(s)p(s)ds

= −
1

Γ (q)

 t2

0
(t0 − s)q−1M(s)p(s)ds +

 t0

t2
(t0 − s)q−1M(s)p(s)ds


< −

p(t0)
Γ (q)

 t0

0
(t0 − s)q−1M(s)ds

= −
p(t0)
Γ (q)

tq0

 1

0
(1 − σ)q−1M(σ t0)dσ

≤
p(t0)
Γ (q)

tq0

 1

0
(1 − σ)q−1M̄(σT )dσ

=
p(t0)
Γ (q)

tq0
T q

 T

0
(T − s)q−1M̄(s)ds

≤
p(t0)
Γ (q)

 T

0
(T − s)q−1M̄(s)ds.

Hence,

p(t0)

1 −

1
Γ (q)

 T

0
(T − s)q−1M̄(s)ds


< 0.

Using condition (4), it shows that p(t0) < 0. It is a contradiction, so the assertion holds. �

Remark 2. IfM(t) = M, t ∈ J , then the assertion of Lemma 2 holds and condition (4) is superfluous, see for example papers
[7,9].

Lemma 2 is an essential improvement both of Lemma 2.1 [10], Lemma 2.3 [9] and Lemma 2.3 [7].

Remark 3. BecauseM ∈ C(J, R), so in caseM(t) ≤ 0, t ∈ J there exists a nonnegative constantM0 such that−M(t) ≤ M0,
t ∈ J . Then, condition (4) takes the formM0T q < Γ (q + 1).

We say that u is called a lower solution of (1) if

Dqu(t) ≤ F u(t), t ∈ J0, ũ(0) ≤ 0,

and it is an upper solution of (1) if the above inequalities are reversed.
Let us introduce the following assumptions:

H5: q ∈ (0, 1), f ∈ C(J × R × R, R), k ∈ C(J × J, R),
H6: there exists a functionM ∈ C(J, R) such that:

f (t, u1, u2) − f (t, v1, v2) ≤ M(t)[v1 − u1]

if y0(t) ≤ u1 ≤ v1 ≤ z0(t), u2 ≤ v2.
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Theorem 2. Let assumption H5 hold. Let y0, z0 ∈ C1−q(J, R) be lower and upper solutions of problem (1), respectively and y0(t)
≤ z0(t), t ∈ J . In addition, we assume that assumption s H6,H3,H4 are satisfied.

Then problem (1) has, in the sector [y0, z0], solutions, where

[y0, z0] = {z ∈ C1−q(J, R) : y0(t) ≤ z(t) ≤ z0(t), t ∈ J0, ỹ0(0) ≤ z̃(0) ≤ z̃0(0)}.

Proof. Let η, ξ ∈ [y0, z0]. Put ϕ(t) = min[η(t), ξ(t)], Φ(t) = max[η(t), ξ(t)]. Consider the boundary value problems
Dqv(t) = F ϕ(t) − M(t)[v(t) − ϕ(t)], t ∈ J0,
ṽ(0) = r, (7)
Dqw(t) = F Φ(t) − M(t)[w(t) − Φ(t)], t ∈ J0,
w̃(0) = r. (8)

By Lemma 1, problems (7), (8) have a unique solution. Therefore, we can define the operator

B : Ω̄ → C1−q(J, R) × C1−q(J, R), [y0, z0] ⊂ C1−q(J, R), B(η, ξ) = (v, w),

where v, w are solutions of (7) and (8), respectively with Ω̄ = [y0, z0] × [y0, z0].
Now, we want to show that

y0(t) ≤ v(t) ≤ w(t) ≤ z0(t), t ∈ J.

Put p = y0 − v. Then

Dqp(t) ≤ F y0(t) − F ϕ(t) + M(t)[v(t) − ϕ(t)],
≤ M(t)[ϕ(t) − y0(t)] + M(t)[v(t) − ϕ(t)]
= −M(t)p(t),

and p̃(0) ≤ 0.
This and Lemma 2 show that y0(t) ≤ v(t), t ∈ J . Similarly we can show that w(t) ≤ z0(t), t ∈ J . To show that v(t) ≤

w(t), t ∈ J , we put p = v − w. Then

Dqp(t) = F ϕ(t) − F Φ(t) − M(t)[v(t) − ϕ(t) − w(t) + Φ(t)]
≤ M(t)[Φ(t) − ϕ(t)] − M(t)[v(t) − ϕ(t) − w(t) + Φ(t)]
= −M(t)p(t)

and p̃(0) = 0. Hence B : Ω̄ → Ω̄ .
In order to apply Schauder’s fixed point theorem we need to show that the operator B is continuous and compact. Put

σ(t) = F ϕ(t) + M(t)ϕ(t). Then problem (7) takes the form
Dqv(t) = −M(t)v(t) + σ(t) ≡ Gv(t), t ∈ J0,
ṽ(0) = r.

Then the solution of problem (7) is a fixed point of operator N , where operator N is defined by

N x(t) = rtq−1
+

1
Γ (q)

 t

0
(t − s)q−1Gv(s)ds.

Operator N is continuous in view of continuity of G.
In fact N is a compact map. For given ϵ > 0, we take

δ = min


T ,


ϵΓ (2q)
4DΓ (q)

 1
q


.

Then for each v ∈ C1−q(J, R), t1, t2 ∈ J, t1 < t2 and t2 − t1 < δ, we have |t1−q
1 N v(t1) − t1−q

2 N v(t2)| < ϵ.
In fact, there exists a positive constant D such that maxs∈J s1−q

|Gv(s)| ≤ D and

|t1−q
1 N v(t1) − t1−q

2 N v(t2)| ≤
1

Γ (q)

t1−q
1

 t1

0
(t1 − s)q−1Gv(s)ds − t1−q

2

 t2

0
(t2 − s)q−1Gv(s)ds


≤

1
Γ (q)

 t1

0
[t1−q

1 (t1 − s)q−1
− t1−q

2 (t2 − s)q−1
]Gv(s)ds


+

1
Γ (q)

 t2

t1
t1−q
2 (t2 − s)q−1Gv(s)ds
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≤
D

Γ (q)

 t1

0
[t1−q

1 (t1 − s)q−1
− t1−q

2 (t2 − s)q−1
]sq−1ds

+
D

Γ (q)

 t2

t1
t1−q
2 (t2 − s)q−1sq−1ds

=
D

Γ (q)

 t1

0
t1−q
1 (t1 − s)q−1sq−1ds −

 t2

0
t1−q
2 (t2 − s)q−1sq−1ds

+ 2
 t2

t1
t1−q
2 (t2 − s)q−1sq−1ds


≤

DΓ (q)
Γ (2q)


|tq1 − tq2 | + 2(t2 − t1)q


because t2

t1
t1−q
2 (t2 − s)q−1sq−1ds =

 t2−t1

0
t1−q
2 (t2 − t1 − u)q−1(u + t1)q−1du

=

 1

0
t1−q
2 (t2 − t1)q(1 − σ)q−1

[σ t2 + t1(1 − σ)]q−1dσ

≤

 1

0
t1−q
2 (t2 − t1)q(1 − σ)q−1(σ t2)q−1dσ

= (t2 − t1)q
Γ 2(q)
Γ (2q)

.

Now we consider two cases.
Case 1. Let δ ≤ t1 < t2 < T . Use a mean value theorem to get

tq2 − tq1 ≤ qδq−1(t2 − t1) ≤ qδq.

Case 2. Let 0 ≤ t1 < δ, t2 < 2δ. Then

tq2 − tq1 ≤ tq2 ≤ (2δ)q.

Consequently, we have

|t1−q
1 N v(t1) − t1−q

2 N v(t2)| <
4DΓ (q)
Γ (2q)

δq
≤ ϵ.

We see that the operator B : Ω̄ → Ω̄ is equicontinuous on J . The Arzeli–Ascoli theorem guarantees that B is compact.
Hence, by Schauder’s fixed point theorem, the operator B has a fixed point, i.e. there exist (v, w) ∈ Ω̄ such that B(v, w) =

(v, w) and v ≤ w.
Now, by (7) and (8), we see that v, w satisfy the following relations

Dqv(t) = F v(t) − M(t)[v(t) − v(t)], t ∈ J0,
ṽ(0) = r,
Dqw(t) = F w(t) − M(t)[w(t) − w(t)], t ∈ J0,
w̃(0) = r.

It shows that v, w ∈ C1−q(J) are solutions of problem (1). It ends the proof. �

Example 1. Let A, B ∈ C([0, 1], (0, ∞)) and B(t) ≤ A(t), t ∈ [0, 1]. Consider the problem:
Dqx(t) = F x(t), t ∈ J0 = (0, 1],
x̃(0) = 0

(9)

with

F x(t) =
t−q

Γ (1 − q)
+ A(t)[t − x(t)]3 +

1
2
B(t)

 t

0
(sin ts)4x(s)ds.
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Let y0(t) = 0, z0(t) = 1 + t, t ∈ J = [0, 1]. It is not difficult to show that y0 is a lower solution of problem (9). Moreover

F z0(t) =
t−q

Γ (1 − q)
− A(t) +

1
2
B(t)

 t

0
(sin ts)4(1 + s)ds

≤
t−q

Γ (1 − q)
<

t−q

Γ (1 − q)
+

t1−q

Γ (2 − q)
= Dqz0(t).

It proves that z0 is an upper solution of problem (9).MoreoverM(t) = 3A(t). In view of Theorem2, problem (9) has solutions
in [y0, z0] if 1

2 < q < 1. In case when 0 < q ≤
1
2 , we have to extra assume that

Γ (q)
Γ (2q)

max
t∈[0,1]

A(t) < 1;

for example if q =
1
2 , so maxt∈[0,1] A(t) < 1

√
π
.
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