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Abstract: Flood susceptibility prediction is complex due to the multifaceted interactions among
hydrological, meteorological, and urbanisation factors, further exacerbated by climate change. This
study addresses these complexities by investigating flood susceptibility in rapidly urbanising regions
prone to extreme weather events, focusing on Gdańsk, Poland. Three popular ML techniques, Support
Vector Machine (SVM), Random Forest (RF), and Artificial Neural Networks (ANN), were evaluated
for handling complex, nonlinear data using a dataset of 265 urban flood episodes. An ensemble filter
feature selection (EFFS) approach was introduced to overcome the single-method feature selection
limitations, optimising the selection of factors contributing to flood susceptibility. Additionally, the
study incorporates explainable artificial intelligence (XAI), namely, the Shapley Additive exPlanations
(SHAP) model, to enhance the transparency and interpretability of the modelling results. The models’
performance was evaluated using various statistical measures on a testing dataset. The ANN model
demonstrated a superior performance, outperforming the RF and the SVM. SHAP analysis identified
rainwater collectors, land surface temperature (LST), digital elevation model (DEM), soil, river buffers,
and normalized difference vegetation index (NDVI) as contributors to flood susceptibility, making
them more understandable and actionable for stakeholders. The findings highlight the need for
tailored flood management strategies, offering a novel approach to urban flood forecasting that
emphasises predictive power and model explainability.

Keywords: flood; machine learning; explainable AI; GIS/RS; feature selection

1. Introduction

In the last 20 years, Europe has witnessed more than 400 major floods, affecting more
than 8.7 million people, causing more than 2000 deaths, and resulting in losses of EUR
72 billion [1]. Projections for Central and Western Europe, including Poland, indicate
a rise in pluvial and river floods [2]. Poland has faced severe urban floods in recent
years, notably in Elblag (2017) [3], in Poznań and Swarzedz (2021) [2], and in Gdańsk
(2001, 2016) [4,5]. These events often follow prolonged dry spells and are characterised by
heavy and concentrated rainfall [6]. Identifying flood-prone areas and understanding the
contributing factors are crucial to mitigating potential losses.

Flood susceptibility refers to the likelihood of an area experiencing flooding based on
intrinsic characteristics, such as topographical, hydrological, and meteorological factors [7–9].
The goal of a flood susceptibility assessment is to develop models that determine the most
relevant factors contributing to flood occurrence [10–12].

For flood susceptibility modelling, approaches vary from quantitative methods such
as artificial intelligence, statistical techniques, and machine learning (ML) [11,13] to semi-
quantitative methods like multi-criteria decision analysis (MCDA) [14]. Computational
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approaches include hydrologic–hydraulic [15] and hydrodynamic modelling [16] integrated
with a geographical information system (GIS). Traditional hydrological and hydrodynamic
models are time-consuming and prone to calibration issues, impacting their accuracy in
identifying flood-prone regions [17]. MCDA models, although widely used, lack evaluation
criteria [18].

In recent decades, ML techniques have gained momentum for effectively predicting
flood-prone areas [18,19]. Among these, support vector machine (SVM), random forest (RF),
and artificial neural network (ANN) have been widely applied to predict flood susceptibility.
ANN is widely used for flood modelling because it can process non-linear and multivariate
data, demonstrating universal modelling potential [10,20]. SVM and RF are also popular
among hydrologists due to their prediction accuracy [10,11,13,21].

Despite the progress made in flood susceptibility modeling studies [10,11,13,17,20–22],
significant challenges remain. A major issue is the lack of a universally accepted model
for flood susceptibility due to their varying performances under different conditions and
in different regions [22]. Furthermore, machine learning models are often criticised for
being “black-box” models. The complexity and opacity of machine learning models often
hinder their practical application, as stakeholders may need help understanding the factors
driving the predictions. That is why there is high demand for models demonstrating how
specific outcomes are achieved [17,23,24]. Many studies also fail to consider the interactions
between different conditioning factors and classifiers, which are critical components for
practical use.

This study addresses these gaps by introducing a novel combination of ensemble-
based feature selection (EFFS) and explainable artificial intelligence (XAI) techniques for
flood susceptibility modelling. Ensemble feature selection has demonstrated effectiveness
across various domains, like human activity recognition [25], medical data analysis [26],
and fish species data [27]. Despite its proven utility, its application in flood data analysis
remains unexplored. This study aims to fill this gap by evaluating EFFS in the context of
flood susceptibility modelling, focusing on Gdańsk, Poland.

The ensemble-based filter feature selection (EFFS) proposed in this study leverages
the strengths of heterogeneous methods to create a more stable and optimal feature subset.
Unlike other methods that rely solely on a single ranking mechanism or a small number
of similar techniques, EFFS incorporates a diverse set of feature selection methods. This
reduces the risk of bias or errors inherent in individual methods [25,27]. This approach
enhances the performance of ML models by selecting the most relevant factors, resulting in
improved flood susceptibility maps [28].

In addition to EFFS, this study incorporates a local XAI model, specifically the Shapley
Additive exPlanations (SHAP) model [29,30] to provide transparency and acceptability
regarding flood susceptibility in decision-making [24]. The use of SHAP allows for us to
quantify the contribution of each feature to flood susceptibility predictions, making the
results more interpretable and actionable for urban planners and stakeholders [17,31]. This
is particularly important in the context of flood risk management, where understanding the
influence of various environmental and infrastructural factors is crucial for decision making.

The main objectives of this study are as follows:

• To use machine learning models (SVM, RF, ANN) to effectively capture complex non-
linear interactions among hydrological, topographic, and built environment features.

• To introduce and assess the effectiveness of an EFFS method in optimising the selection
of relevant flood conditioning factors.

• To incorporate explainable artificial intelligence to enhance the transparency and
interpretability of the flood susceptibility models.

2. Datasets and Methodology

The methodology framework adopted in this study is shown in Figure 1 and en-
compasses several key steps: (i) flood inventory preparation; (ii) data collection on flood
causative factors; (iii) data pre-processing in Python; (iv) multicollinearity analysis; (v)
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feature selection; (vi) model training and prediction; (vii) model validation and explanation;
(viii) flood susceptibility map generation.

Inventory mapping

Floods, non-floods 
data

Validation data 30%

ROC curve8

and other statistical 
measures

Lithology data/soil data

NDVI4

NDWI5

LST6

Remote sensing data

Distance to river 
network

Distance to 
rainwater collectors

Distance to coastline
LULC7

Environmental data

Feature selection

Multicollinearity 
analysis

Ensemble feature 
selection

Training data 70%

SVM, RF, ANN

XAI-SHAP

Flood susceptibility 
map

Slope
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1-Digital elevation model
2-Topographic wetness index
3-Stream power index
4-Normalized difference vegetation index
5-Normalized difference water index
6-Land surface temperature
7-Land use land cover
8-Receiver operating characteristic curve

Figure 1. Workflow of flood susceptibility mapping using topographical and environmental data,
feature selection, machine learning classifiers, and SHAP analysis.

2.1. Local Conditions and Fire Brigade Interventions Dataset

Gdańsk, the largest city in northern Poland, is located on the southern coast of the
Baltic Sea in the Gulf of Gdańsk, covering an area of 262 km2 (Figure 2). The coastal zone
includes the Vistula Split, Vistula Delta Plain, and Kashubian Coast. Together with Sopot
and Gdynia, Gdańsk forms the Tricity metropolitan area. The western side features the
post-glacial hills of the Kashubian Lakeland, rising to 200 m above sea level. The southern
part is a densely residential area, while the western part has elevated moraine hills and a
plateau forming the Tri-City Landscape Park. In contrast, the eastern part has flat, low-lying
polder areas called Żuławy Gdańskie, which are often below sea level [32,33].

Gdańsk receives a mean annual precipitation of 659 mm [32]. Gdańsk faces three main
flood hazards [34], as follows:
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1. Intensive precipitation and runoff from the Moraine Hills, causing urban flash floods,
as seen in July 2001 and 2016 [35].

2. High discharge or ice jams in the main Vistula channel.
3. Sea level rises in the Bay of Gdańsk, and severe storm surges.

Figure 2. The geographical location of the study area: map of Gdańsk, Poland (bottom left), Gdańsk
in Pomeranian Voivodeship (bottom right), and a map of Gdańsk (top) showing flood event locations.

Although Gdańsk is not in an area with a high density of rainfall floods, its terrain
makes it susceptible. Recorded rainfall episodes confirm this [35]. From 2010 to 2017,
the State Fire Service Headquarters recorded 635 interventions related to sudden rainfall,
peaking in 2016 (301), with the fewest occurringn in 2015 (10). On 15 July, 2016, the fire
brigade intervened 189 times due to extreme rainfall on 14 July, 2016 (139.5 mm) [36].

Data for the analyses came from digital records of fire brigade interventions and flood
event reports by Gdańskie Wody (Gdańsk Water Company; responsible for rainwater
management in Gdańsk) [37]. Based on these data (Figure 2), a flood inventory map
was prepared, depicting flooded and non-flooded locations, to train the ML models. The
premise of the training was that future floods will follow past patterns. A total of 265 flood
sites and an equal number of non-flood sites were selected, coded as 1 and 0. Following
previous studies [11,22,38], the dataset was randomly split into training (70%) and test
(30%) sets.
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2.2. Collection of Factors Dataset

Flood intensity and severity depend on topographic, hydrologic, environmental, and
geological factors [39,40]. This study selected flood susceptibility factors based on previous
studies [13,21,26,38,41] and coastal city characteristics. The factors considered are presented
in Table 1.

Table 1. Topographic, hydrologic, and environmental flood susceptibility factors selected for analysis.

Flood Susceptibility Factors Equations Sources

Elevation 1-m ALS DEM from Poland’s geoportal [42],
ArcGIS 10.7

Slope Derived from DEM
Aspect Derived from DEM
Plan Curvature Derived from DEM
Profile Curvature Derived from DEM
Stream Power Index (SPI) SPI = α × tan β 1 Derived from DEM [43]

Topographic Wetness Index (TWI) TWI = log
(

α
tan β

)
1 Derived from DEM [43]

Surface Roughness
Roughness =
FSmean−FSmin
FSmax−FSmin

2 Derived from DEM, ArcGIS 10.7 [44]

Distance to Rainwater Collectors Gdańskie Wody [45], scale 1:25,000

Distance to River Network Open Street Map [46], updated using
Gdańskie Wody

Distance from Coastline System Informacji Przestrzennej Administracji
Morskiej (SIPM) [47]

Soil
Polish Geological Institute—National Research
Institute, spatial resolutions of 1:300,000
(2019–2021) and 1:50,000 [48]

Land Use Urban Atlas 2018 from Copernicus land monitoring
service (CLMS) [49]

Land Surface Temperature (LST) LST =
Tc

1+(λ×Tc/p) log ϵ
3 Landsat 9 OLI/TIRS

NDVI (Normalized Difference Vegetation Index) NDVI = NIR−Red
NIR+Red

4 Landsat 9 OLI/TIRS

NDWI (Normalized Difference Water Index) NDWI = NIR−SWIR
NIR+SWIR

5 Landsat 9 OLI/TIRS

1 α denotes cumulative upstream discharge or flow accumulation (m2m−1), and β is the slope (in radians).
2 FSmean, FSmin, and FSmax represent the mean, minimum, and maximum focal statistical layer. 3 Tc is the
brightness temperature in Celsius; λ is the emitted radiance wavelength; p is the result of h×c

b with h as the
Planck’s constant, c as the velocity of light, and b as the Boltzmann constant; and ϵ is the land surface emissivity
(LSE). 4 NIR is infrared wavelengths, and R is red band. 5 NIR is infrared wavelengths, and SWIR is short-wave
infrared band.

2.3. Data Preprocessing

All factors were standardised to 10 m resolution. The spatial database in raster format
was created in ArcGIS-10.7, resulting in a matrix of 3380 columns by 1923 rows. Factor
values across the study area and flood and non-flood sites were extracted in ArcGIS and
exported as .csv files. Subsequently, the data were pre-processed using Python within
the Google Collab. All factor values were normalised before model training using the
MinMaxScaler from the sklearn module in Python. This technique scales the independent
data to a range between 0 and 1, ensuring that all factors are on a consistent scale.

2.4. Multicollinearity Analysis of Flood Factors

Before training and validating the models, evaluating flood factors is crucial to identify
noise and assess their predictive power to improve model accuracy [10,50].

Multicollinearity, assessed using variance inflation factors (VIF), is important in flood
susceptibility studies. VIF quantifies how much the variance in a regression coefficient
increases due to correlations among predictors [51]. A VIF value exceeding 5 suggests
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significant multicollinearity, which should be evaluated, and the removal of correlated
factors from the model should be considered [52,53]. VIF is calculated using Equation (1):

VIF(x) =
1

1 − R2(x)
(1)

where R2(x) is the coefficient of determination when regressing an independent variable x
against all other variables. A high R2(x) indicates a strong correlation between a flood and
other factors.

2.5. The Ensemble-Based Filter Feature Selection (EFFS) Method

The EFFS technique, proposed to optimise feature sets [54], is applied in many research
fields, such as control engineering [25] and cloud computing [28]. In this study, EFFS is
adopted for the first time in flood susceptibility mapping, demonstrating its potential to
enhance feature selection by leveraging the strengths of individual filter-based methods.

Initial feature importance rankings were obtained from the Mutual Information [11],
Gain Ratio [25], Correlation [22], and ANOVA F-value [55] methods. These rankings form
the basis for the subsequent ensemble analysis [25]. The outcome of the feature ranking
using each method is expressed as follows:

AMI = [XI(1), XI(2), ..., XI(k), ..., XI(m)]; (2)

AGR = [XG(1), XG(2), ..., XG(k), ..., XG(m)]; (3)

ACO = [XC(1), XC(2), ..., XC(k), ..., XC(m)]; (4)

AAO = [XO(1), XO(2), ..., XO(k), ..., XO(m)]. (5)

Here, XI(k), XG(k), XC(k), and XO(k) represent the rank assigned to the kth feature
by each respective filter-based method. The EFFS method integrates these individual
rankings using a ’linear summation’ approach, where the ensemble score for each feature
is calculated as the weighted sum of its ranks across the filter methods. The combined
ranking is expressed as follows:

A = [X(1), X(2), ..., X(k), ..., X(m)], (6)

where X(k) denotes the ensemble score for the kth feature, calculated as follows:

X(k) = αXI(k) + βXG(k) + γXC(k) + ϵXO(k) (7)

The weights α, β, γ, and ϵ are empirically determined to balance the contributions
from different filter methods. For this study, a weight combination of (2, 1, 2, 1) was chosen
based on the preliminary results, although several other combinations were tested. Features
were then sorted based on their ensemble scores in ascending order to finalise the ranking,
ensuring optimal feature selection for flood susceptibility.

2.6. Models and Algorithms Used

Three ML models, i.e., (1) RF, (2) SVM, and (3) ANN, are used for predicting flood
susceptibility. RF, an ensemble learning method, constructs numerous decision trees during
training. Each tree is trained on a random data subset through “bagging”. The final RF
output model, which handles classification and regression tasks, averages the predictions
of individual trees:

ŷi =
1
M

M

∑
j=1

f j(xi) (8)

where M represents the total number of decision trees, xi refers to the input feature vector
for the xith instance, ŷi is the final output from averaging the classification from individual
decision tree prediction fj(xi), fj is the classification model fitted on random dataset samples.
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SVM, a supervised machine learning model, creates a hyperplane to maximise class
separation using a kernel function. It employs a high-dimensional feature space and
minimises structural risk through cross-validation, often using the Radial Basis Function
(RBF) kernel for effective non-linear classification (Table 2). Support vectors, the training
data points nearest to the hyperplane, help construct this hyperplane, which classifies new
data based on the maximised margin between classes. The decision function (Equation (9))
is expressed as follows:

g(x) = sign

(
n

∑
i=1

yiαjK(xi, xj) + b

)
(9)

where g(x) represents the decision function for the SVM, yi is the label for the ith training
instance, K(xi, xj) denotes the kernel function, and b is the bias.

Equation (10) represents the mathematical expression of RBF:

K(xi, xj) = exp(−γ∥xi − xj∥2) (10)

where K(xi, xj) is the RBF kernel, γ is the kernel coefficient that controls the influence of the
distance between input vectors, and ∥xi − xj∥2 is the squared euclidean distance between
input vectors Xi and Xj.

Table 2. Algorithm parameters selected for SVM, RF, ANN.

Algorithm Parameters

SVM Complexity parameter = 0.1; kernel = radial basis function; gamma = ‘auto’; probability = True

RF n = 100, max_depth = 20; min_samples_split = 5

ANN model = Keras sequential model; hidden layers = 4; nodes for each layer = 100, 40, 30, 1; activation = ‘relu’,
‘sigmoid’; optimiser = Adam; loss = ‘binary_crossentropy’; learning rate = 0.0013, epochs = 50

SHAP Explainer = SVM: ‘KernelExplainer’; RF: ‘TreeExplainer’; ANN: ‘DeepExplainer’

Artificial Neural Networks (ANN) are computational models inspired by the human
brain, comprising an input layer, one or more hidden layers, and an output layer. ANN uses
a back-propagation algorithm for learning, adjusting its internal parameters (weights) based
on the error between the predicted outputs and actual data. It minimises this error across
training cycles [20,50]. The sigmoid function activates and handles non-linear relationships
in the data. ANNs approximate complex functions in high-dimensional spaces, making
them suitable for various applications, including classification and regression tasks in fields
like hydrological modeling [41]. The net input to the neuron in the j layer is as follows:

netj = ∑
i

wij · oi (11)

where wij is the weight connecting the node i to node j, and oi is the output from node i.

Oj = f (netj) (12)

where Oj is the output from node j, and f is the activation function applied to the net input.

f ′(netj) = f (netj) · (1 − f (netj)) (13)

where f ′(netj) is the derivative of the activation function.

E =
1
2 ∑

k
(dk − ok)

2 (14)
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where E is the total error, dk is the target output, and ok is the actual output from the
output layer.

∆wij = −η
∂E

∂wij
(15)

where ∆wij is the weight update, η is the learning rate, and ∂E
∂wij

is the partial derivative of
the error with respect to the weight.

wij(n + 1) = wij(n) + ∆wij (16)

where wij(n + 1) is the updated weight for the next iteration.

2.7. Model Explainability

Explainable artificial intelligence enhances transparency in machine learning models,
enabling analysts to understand how factors influence model predictions. XAI techniques
are categorised into global (permutation feature importance and mean decrease impurity)
and local approaches (SHAP and Local Interpretable Model-Agnostic Explanations (LIME)).
Global methods show overall significance for average predictions, while local methods
make specific contributions to individual predictions [31,56]. This study employs the SHAP
method [30] to determine how flood conditioning factors impact flood prediction outcomes.

SHAP values, calculated using the Python-based SHAP library, help to identify key
drivers of the model’s outputs, enhancing interpretability in flood susceptibility modeling.
The SHAP value ϕi( f , x) quantifies the influence of factor i on the model prediction f for
the input x, as shown in Equation (17). F represents all features while S is a subset of F
excluding i [31]. The overall influence is measured by mean |SHAP| value value per feature.

ϕi( f , x) = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|!

(
fS∪{i}(xS∪{i})− fS(xS)

)
(17)

Ij = − 1
n

n

∑
k=1

|ϕ(k)
j | (18)

where Ij represents the average importance of feature j across all instances. n is the total

number of instances in the dataset, and ϕ
(k)
j denotes the SHAP value for feature j for

the kth instance, which quantifies the contribution of feature j to the prediction for that
particular instance.

Table 2 shows the explainers used for each model under SHAP.
Previously, research on ML models for flood susceptibility employed variable impor-

tance plots to highlight the most and least essential predictors [17,31]. However, these
plots fail to elucidate crucial aspects, such as variable interactions leading to specific model
outputs. Individual force plots and collective summary plots are utilised to address this
limitation. These force plots provide a deeper understanding of how the variables interact
and influence the outcomes.

2.8. Performance Evaluation

Flood susceptibility results are evaluated using several statistical metrics for training
and test data: root mean squared error (RMSE), mean absolute error (MAE), accuracy
(ACC), sensitivity, specificity, and area under the receiver operating characteristic ROC
curve (AUC). The ROC is a standard criterion for evaluating model predictive power,
plotting sensitivity on the y-axis and specificity on the x-axis. Sensitivity indicates the
proportion of correctly classified flood cells, while specificity suggests the proportion of
non-flood cells correctly classified as non-flood sites [10]. The area under the ROC curve, the
AUC value, ranges between 0 and 1 and measures model performance, with values closer
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to 1 representing better performance and values closer to 0 indicating a non-informative
model [19]. AUC, sensitivity, and specificity are given as follows:

AUC =
∑ TP + ∑ TN

P + N
(19)

Sensitivity =
TP

TP + FN
(20)

Specificity =
TN

FP + TN
(21)

P is the total number of flood pixels, and N is the total non-flood pixels. TP (true
positives) and TN (true negatives) are correctly classified as flood and non-flood cells. FP
(false positives) and FN (false negatives) are incorrectly classified as flood and non-flood
cells. The ROC curve validated the final prediction maps for both training and test datasets.

3. Results
3.1. Flood Factor Maps

Factor values for flood and non-flood sites were extracted to train, test, and predict
flood susceptibility. The histograms (Figure 3) represent the factors’ frequency distributions
with Kernel Density Estimate (KDE) curves, representing historical flood locations in the
study area. The x-axis shows the values of each variable for historical flood locations, while
the y-axis shows their frequency in the dataset.

Slope: The slope distribution is skewed towards lower values with a long tail extending
towards higher values (Figure 3). Most historical flooded areas have a gentler slope, with
fewer steep slopes (Figure A1b in Appendix A). Steep slopes hinder infiltration and increase
runoff, causing flooding [22].

DEM: DEM is skewed towards lower elevations. The DEM map of Gdańsk shows
elevation from below sea level (−8 m) to higher terrain (up to 180 m) in the southern and
southwestern parts (Figure A1a). This topographic variation divides Gdańsk into three
areas: the upper terrace, the lower terrace, and the edge zone. Lower terraces, including
the coastal belt, are vulnerable to sea level rises and flooding [57].

LST: Gdańsk’s temperature ranged from 8.3 ◦C and 36.7 ◦C, with higher temperatures
in urban areas, industrial clusters and agricultural land on the eastern and southwestern
sides (Figure A2e). The LST distribution shows a central tendency, indicating an optimal
temperature range where flood-related processes or human activity influencing flood
susceptibility are more prevalent. In contrast, lower temperatures are associated with
the rural areas, green spaces, and forests of Gdańsk. LST is critical in flood susceptibility
studies, as high temperatures and increased impervious surfaces contribute to runoff and
flood hazards [41].

River buffer: Distance from the river histogram shows a bimodal distribution (Figure 3),
with peaks at both the low and high ends. This shows that historical flood locations are
either very close to rivers or far from rivers (Figure A2g). Areas near rivers are more
susceptible to flooding, especially during heavy rainfall.

Rainwater collectors: In Gdańsk, the role of rainwater collectors depends on the
weather conditions and infrastructure capacity. Collectors quickly channel water downhill
on steep slopes, reducing accumulation and pressure points. However, in low-lying
areas, collectors must handle runoff from upstream basins. If the rainwater surpasses
the collectors’ capacity during heavy rainfall, the overflow can cause nearby flooding.
Additionally, rising sea levels can cause backflow into collectors, reducing their capacity to
manage runoff and increasing floods. Higher sea levels also reduce the hydraulic gradient
within the collectors, decreasing their capacity to handle runoff. Proximity to rainwater
collectors, as shown on the map (Figure A2h), is a crucial indicator of flood susceptibility,
particularly during periods of intense precipitation or when sea levels rise.
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Soil: Soil distribution shows multiple peaks, indicating varied soil types at flood
locations, ranging from sandy, sandy gravel, and alluvial soil on lower terraces (Figure A3b).
The descriptive soil types in the map (Figure A3b) are tied to specific ranges of numerical
values (Figure 3), which allows for the mapping of spatial variation in soil characteristics.

NDVI: NDVI has a bell-shaped distribution centred at around 0.2, indicating moderate
vegetation cover in most areas. Vegetation and soil can influence infiltration, soil erosion,
and water retention, all affecting flooding [11].

LULC: The LULC map of Gdańsk (Figure A3a) is divided into urban fabric, agricultural
land, forests, water bodies, and more. The LULC histogram (Figure 3) shows numerical
values with multiple peaks, reflecting diverse land use types (e.g., urban, forest, agriculture).
Each range of values represents a specific LULC class, connecting the numerical data to
the land use and land cover types displayed on the map (Figure A3a). Significant peaks
representing historical flood points are found in continuous urban fabric, road networks,
and industrial and commercial land. Specific land use types can significantly impact water
runoff and absorption, which are critical factors in flood dynamics [58]. The LULC map
shows urban expansion towards the south and southwest of Gdańsk, correlating directly
with LST.

Figure 3. Histograms and overlaid kernel density estimates illustrating the distribution of key features
that are critical for flood susceptibility analyses at historical flood sites.

In addition, features with broader value ranges provide distinct information for
predictive modelling (flood vs. non-flood). For instance, slope and DEM are primarily
clustered at lower values, contrasting with LST, NDVI, soil, and LULC, which display
a wider distribution. This suggests that slope and DEM values in historical flood zones
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remain consistent over time in Gdańsk, potentially limiting their effectiveness in predicting
flood-susceptible areas compared to other selected features.

The flood factor analysis shows that each factor uniquely impacts flood susceptibility,
depending on its distribution patterns. This insight is essential to effectively identifying
and mitigating floods in Gdansk.

3.2. Multicollinearity of Factors

Multicollinearity among 16 factors was assessed (Table 3). The minimum VIF value
(1.03) was for the aspect, and the maximum (3.36) was for the slope. All features had VIF
values of less than 5, indicating negligible collinearity or independence from each other.
Hence, all of these factors were suitable for further processing.

Table 3. Multicollinearity analysis showing VIF values of less than five for all the factors of flood
susceptibility.

Variables VIF Variables VIF

LST 2.23 Coastal buffer 1.46
Aspect 1.03 Soil 1.98
Slope 3.36 DEM 1.86

Plan curvature 1.57 NDWI 1.92
Profile curvature 1.65 SPI 2.60

NDVI 2.04 LULC 1.20
TRI 1.25 TWI 2.40

River buffer 1.15 Rainwater collectors 1.42

3.3. Ensemble Feature Selection

The choice of factors affects machine learning models’ accuracy, either directly or
indirectly, but selecting and categorising appropriate factors is challenging without a
universal rule. Therefore, ensemble feature selection identified the most significant factors
from the dataset. Feature selection began with various filter methods, each using distinct
ranking algorithms.

Figure 4 shows the outcome of feature selection, highlighting features’ recurrence
patterns in predicting flood susceptibility. Key factors such as LULC, proximity to rainwater
collectors, Land Surface Temperature (LST), buffer zones around rivers, soil composition,
and NDVI consistently appeared as top features across all filter methods. In contrast,
features like TRI, SPI, and profile and plan curvature showed less consistent rankings,
suggesting lower significance or a more nuanced relationship with the target variable that
is not easily quantifiable or linear.

ANOVA F-value, Mutual Information, Gain Ratio, and Correlation metrics offer varied
perspectives while collectively reinforcing specific features’ significance. Therefore, the
rankings obtained from these methods served as the basis for the EFFS method, which aims
to eliminate irrelevant or redundant features.

Figure 5 illustrates a trend where accuracy initially rises (88%) when features increase
from 2 to 6. Hence, a minimal feature set is inadequate for recognising the complexity of
the data. Beyond this point, accuracy stabilises at 86% across four selection methods. It also
slightly decreases, suggesting an optimal subset of features that balances model complexity
and performance. A similar finding in a flood susceptibility study indicated that adding
more factors may not necessarily improve model effectiveness [22].
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Figure 4. Comparative analysis of feature rankings using four filter methods: ANOVA-F, gain ratio,
mutual information, and correlation.

Figure 5. Accuracy of ML classifier using different feature selection methods and EFFS.

Ensemble feature selection outperforms individual methods across all feature sizes.
Initially, accuracy increases to 95% and peaks at around ten features. High accuracy (98%)
is maintained across all subsequent feature sizes, implying that redundant features in the
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original dataset contribute minimally or not at all to class identification. This finding aligns
with studies in cloud computing and human activity recognition, where ensemble feature
selection outperformed individual approaches using fewer features [25,28]. Therefore, EFFS
emerges as a compelling approach for the selection of an optimal feature set, maximising
classifier accuracy while maintaining computational efficiency. This efficiency is crucial for
large-scale flood susceptibility assessments.

Table 4 outlines the top 10 attributes identified by the EFFS method as having a strong
influence on flood susceptibility. These features will be the primary input variables when
developing predictive models for future flood events, leading to more reliable maps that can
better inform flood management strategies. While the factors influencing flood occurrence
vary across regions [22], the significance of these factors is context-specific and dependent
on the dataset and the characteristics of the study area. Therefore, the findings may not
be universally generalisable, and excluding certain factors does not negate their potential
impact on flooding.

Table 4. Features selected by the ensemble-based filter feature selection method.

Filter Method Selected Features

EFFS Rainwater collectors, LULC, LST, soil, river
buffer, NDVI, slope, NDWI, DEM, aspect

3.4. Explainability

SHAP explained the outcomes of the models selected for this study. The individual
SHAP force plot shows the interactions between variables when reaching the predicted
target variable [24]. Force plots (Figure 6) have three key characteristics: (i) output value,
the predicted value for an individual observation; (ii) base value, the average prediction
across the test dataset; and (iii) colors, where red variables push the prediction higher and
blue variables push it lower.

b

a

Figure 6. SHAP force plots for flood instances, showing the contribution of key features: (a) Contri-
bution of key features for flood instance 1. (b) Contribution of key features for flood instance 2.

Figure 6a shows a flood susceptibility instance where the model predicts a high
flood probability of 0.73. Features like river buffer, rainwater collectors, LST, DEM, and
NDVI significantly push the prediction toward the flood. In another instance (Figure 6b),
the model predicts a maximum flood probability of 1.00. Features like river buffers,
rainwater collectors, LST, and NDVI strongly influence the model towards predicting
floods, indicating their critical role in the model’s decision-making process. Soil contributes
negatively but is overshadowed by the positive contributions.
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In this instance (Figure 7a), the model predicts a high flood probability of 0.73, im-
plying a lower likelihood of non-flood. Features like LULC, rainwater collectors, LST,
DEM, and NDVI contribute positively towards flood prediction (and negatively towards
non-flood prediction). The river buffer slightly increases the non-flood probability, but
its impact is much less significant than that of the other features. In another instance
(Figure 7b), the model predicts a very high flood probability of 0.99, implying a very low
likelihood of non-flood. Features such as rainwater collectors, LST, DEM, NDVI, and LULC
firmly push the prediction toward flood (away from non-flood). Similar to plot (a), the
negative contribution of the river buffer is minimal compared to the positive influences of
the other features.

These interpretations underscore the varying influence of features across different
instances, highlighting the importance of rainwater collectors, LST, NDVI, and river buffers
in flood prediction. Understanding these feature contributions can refine the model’s
performance and enhance interpretability in flood prediction systems.

b

a

Figure 7. SHAP force plots for non-flood instances, showing the contribution of key features:
(a) Contribution of key features for non-flood instance 1. (b) Contribution of key features for non-
flood instance 2.

Figure 8 shows SHAP summary plot values for flood factors, ranking their importance
in the model’s predictions from most impactful, at the top, to least impactful, at the bottom.
Each point on the plot represents the SHAP value, and its position on the x-axis indicates
its impact on the model predictions. An SHAP value of zero means it has no impact, while
values’ position to the right or left of the graph suggest higher or lower impacts.

For a classification task, SHAP value > 0 increases the likelihood of a class, while
SHAP value < 0 decreases the probability. The colours on the plot represent feature values,
with cooler colours representing lower values and warmer colours representing higher
values or binary class indications. The spread of the points represents the variability of the
features’ impact; a wide spread suggests varied effects, while a narrow spread indicates a
more consistent impact.

Rainwater collectors, LST, DEM, soil, river buffer, and NDVI strongly impact the model
predictions, while other factors are mostly centered around zero or have a slightly positive or
negative impact. This finding is also supported by the results of EFFS and individual feature
selection methods, as shown in Figure 4. Recent studies have demonstrated that explainable
models significantly enhance the understanding of model outcomes [17,24,31,56]. Hence,
SHAP values help validate the model by confirming that the most influential features align
with known flood susceptibility factors, such as elevation [11,21,22], slope [21], river network,
and land cover [13,21,22].

In the SHAP value graph of ANN (Figure 8), features like rainwater collectors and LST
show high SHAP values, suggesting that these variables strongly influence the model’s
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predictions. By showing the impact of each feature, stakeholders can better understand the
factors driving flood hazards in their regions, facilitating more informed decision-making.

On the map, areas with dense rainwater collector networks or a higher LST (Figure A2e)
correspond to regions marked as highly or very highly susceptible areas, indicating that
these features potentially escalate the flood hazard in these zones. Furthermore, zones
closer to rivers are designated high-hazard areas due to the potential overflow or con-
centrated runoff during heavy rains. Enhanced explainability makes flood susceptibility
maps more understandable and accurate by helping to communicate risks to the public
and policymakers.

a b

c

Figure 8. Explanation of models’ (a) SVM, (b) RF, and (c) ANN using SHAP. A cluster of data around
the SHAP value of zero indicates a small impact on model output.

3.5. Performance of Flood Prediction

After training, the models were evaluated using statistical measures and ROC curves
for training and testing data to assess model fit and generalisation. Table 5 presents
the results.

Table 5. Performance evaluation of models for training and testing datasets using statistical measures.

Methods SVM RF ANN

Training Testing Training Testing Training Testing

RMSE 0.270 0.330 0.260 0.252 0.073 0.168
MAE 0.133 0.160 0.182 0.151 0.016 0.057

Accuracy 0.905 0.862 0.903 0.913 0.992 0.965
AUC 0.972 0.960 0.965 0.974 0.999 0.994

Sensitivity 0.907 0.892 0.855 0.964 0.989 0.988
Specificity 0.904 0.833 0.947 0.867 0.995 0.944
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The RMSE and MAE values for the training datasets are 0.073, 0.016 for ANN, 0.260,
0.182 for RF, and 0.270, 0.133 for SVM, with the fewest errors being obtained using the
ANN model. Similar results were observed for the testing data: ANN (RMSE: 0.168, MAE:
0.057), RF (RMSE: 0.252, MAE: 0.151), and SVM (RMSE: 0.330, MAE: 0.160). ANN achieved
an accuracy of 0.992 for training and 0.965 for testing, correctly classifying 96% of pixels as
flood and non-flood in the test dataset. RF followed, with an accuracy of 0.903 and 0.913,
and SVM, with an accuracy of 0.905 and 0.862.

The flood maps produced by the three models were validated using AUROC for
training and testing datasets. The success rate curve for the training data (Figure 9) shows
the ANN model to have the highest AUC (0.999), followed by SVM (AUC = 0.972) and
RF (AUC = 0.965). The prediction rate curve for the validation dataset (Figure 9) showed
similar results: ANN (AUC = 0.994), RF (AUC = 0.974), and SVM (AUC = 0.960).

Figure 9. ROC curves for training and test datasets for SVM, RF, and ANN under best parameter
configuration.

The performance difference between the training and testing datasets is a common
occurrence in machine learning, often attributed to model generalisation [59]. In this case,
the models performed slightly poorer using the testing dataset compared to the training
dataset, as evidenced by the higher RMSE and lower accuracy in testing for all models.

This discrepancy likely arises because the models are trained on a specific set of data,
allowing them to learn intricate patterns within the training set. However, when applied
to new, unseen testing data, the models may struggle to generalise as well, especially if
the testing data contain variability that is not fully captured in the training set. This slight
performance drop reflects the models’ ability to generalise to new scenarios rather than
overfitting the training data [10].

Additionally, ANN’s complexity may contribute to its better performance due to its
ability to capture more complex patterns. At the same time, simpler models like SVM
and RF show greater discrepancies between the training and testing results. However, the
overall differences remain small, suggesting that all models were reasonably effective in
predicting flood hazard across both datasets.

3.6. Flood Susceptibility Maps

Models were trained using hyperparameter tuning for optimal performance. The
RBF kernel with a C value of 0.1 for SVM showed the best performance, with an RMSE of
0.270. Previous research also found the RBF kernel to be superior for determining flood
susceptibility [11,13,60]. ANN was tested with various neurons and hidden layers, and the
best configuration had four hidden layers, offering the highest accuracy and lowest RMSE
(Table 2).
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Each pixel in the flood susceptibility map is assigned a value between 0 and 1, indicat-
ing flood probability, with 0 meaning no probability and one meaning 100% probability [22].
The probability values must be classified into various classes to create visually effective
susceptibility maps. Quantile, natural breaks, equal intervals, and standard deviations can
be used [61]. In this study, the final maps were divided into five classes using quantile
classification, ensuring each class contained an equal number of pixels.

Classifiers were categorised into five susceptibility levels: very low. (0.01–0.22), low
(0.22–0.39), moderate (0.39–0.57), high (0.57–0.75), and very high (0.75–0.98). Table 6 shows the
percentage of the area in each class for each classifier. The ANN model indicated that 36.601%
of the region falls under very high susceptibility and 24.144% under high susceptibility,
totalling 60.745% in the high-susceptibility zone (Figure 10). For RF, 29.810% is very high, and
27.652% is high, while for SVM, 41.803% of the area comes under the very high-susceptibility
class, and 10.302% comes under the high susceptibility class. Low- and very low-susceptibility
areas together comprise 39.883% (SVM), 24.915% (RF), and 28.368% (ANN).

Table 6. Flood susceptibility classification using the SVM, RF, and ANN models.

Class SVM (%) RF (%) ANN (%)

Very low 17.686 6.151 9.709
Low 22.197 18.764 18.659

Medium 8.013 17.624 10.886
High 10.302 27.652 24.144

Very High 41.803 29.810 36.601

Figure 10. Flood susceptibility maps for SVM, RF, and ANN models.

The analysis showed that high- and very high-flood-susceptibility regions are found
in the central and northwestern parts of Gdańsk, correlating with fire brigade interven-
tions after heavy rainfall. Figure 11 shows the flood distribution per district, with colour
intensity indicating the number of flood events. Wrzeszcz Górny, Wrzeszcz Dolny, Osowa,
Śródmieście, Oliwa, and Orunia had the most interventions [36], as shown in Figure 11.
Highly susceptible areas are found near rainwater collectors and watercourses, especially
near the edge zone and the lower terrace. Densely built and flat regions receive runoff
from the upper terrace during heavy rainfall. The Historic Center of Gdańsk, located in
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this lower terrace area, is also prone to flooding [37], suggesting that rainwater collectors
and watercourses struggle to manage runoff effectively under extreme rainfall events [35].
The main areas that are vulnerable to flash floods in Gdańsk are divided into three regions:
(1) the moraine hills (upper terrace), subdivided into plateau and slopes, (2) the polders,
and (3) Canal Radunia.

• The plateau (Figure 11A) of Gdańsk moraine hills is less urbanised, with gentler slopes,
leading to slower runoff. Increased urbanisation poses a threat by potentially raising
peak flow during rainfall, surpassing the existing retention basins’ capacity. To address
this, Gdańsk has implemented strict regulations [34], pausing some development
plans, although enforcement varies by region. If urban expansion is managed or
its impacts are mitigated, the need for urgent intervention on the plateau may be
minimal [33].

• The moraine hills with slopes (Figure 11B) in southwest Gdańsk are increasingly
urbanised and prone to flash floods due to their steep terrain, heavy rainfall, and
urbanisation. Unlike low-lying areas, they are not vulnerable to storm surges because
of their higher elevation. Urbanisation has stressed the water system, replacing
natural ecosystems with an infrastructure that accelerates runoff and strains old
sewage systems. The storm drainage network and impermeable surfaces direct water
into waterways like the Radunia Canal, overwhelming their capacity and exacerbating
flooding [35]. Retention basins are crucial in reducing peak flows in these hills [34].
Many basins have already been constructed, with more planned, mainly on the
plateau. However, the rising land costs in this area diminish the cost-effectiveness of
these measures [33]. Another measure is retaining up to 30 mm of rainwater in new
developments [5].

• The rural zone, particularly the polder area southeast of the city (Figure 11C), is
well-prepared for water-related challenges. Initially designed for agriculture with
controlled water-level regulation, it has a sufficient buffering capacity to manage
short, intense rainfalls without significant impact. Although flooding occurred in 2001
when Canal Radunia’s capacity was exceeded, overall, the polder’s drainage system
effectively handles water flow. Rainfall–runoff in the polders poses no significant
issues, making them a viable option for development compared to the moraine hills.
However, enhancing the polder’s drainage and pumping systems would be necessary
to accommodate the increased runoff from urbanised surfaces [33].

• Canal Radunia, an artificial channel dating back to the Middle Ages designed to drain
the polder and supply water to Gdańsk, receives water from small natural streams
in the moraine hills and has a maximum discharge capacity of 20 m3/s. During the
2001 flash flood, the canal was overwhelmed by a combined discharge of around
100 m3/s from streams, stormwater, and overland flow, resulting in breaches at five
places and subsequent flooding east of the channel [4,33]. Gdańsk implemented a
comprehensive three-stage rainwater management strategy involving on-site water
management, municipal stormwater systems, retention reservoirs, and crisis response
measures. Gdańsk has engaged residents in climate change adaptation measures
through social platforms, citizens’ panels, and the Gdańsk Climate Change Forum,
fostering knowledge-sharing about pluvial flood mitigation [5].
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Figure 11. Flash flood-susceptible areas in Gdańsk; the top map shows the LULC with upper and
lower terraces; the lower section features satellite images of specific areas (A–D), and a map indicating
flood distribution across different districts, with colour gradients representing the number of floods.
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4. Limitations and Future Research Directions

Gdańsk faces greater challenges from flash floods coinciding with storm surges and sea
level rises, threatening local beaches and aquifers. Combined with climate change-induced
storm events, these pose substantial risks to the city. Future research should further refine
flood models, particularly to address sea level rises and climate change impacts.

A key limitation of this study is that it used a single model across Gdańsk’s varied
topography. Flash flood-prone areas differ from those vulnerable to sea level rises, as
illustrated by the distinct zones on the study area map (Figure 2). Future research should
focus on developing and refining separate predictive models tailored to these hazards.
Coastal flooding models must be calibrated for low-lying areas susceptible to sea level rises.
This approach will enhance the accuracy and relevance of flood susceptibility assessments
in urban planning and climate adaptation strategies for Gdańsk.

The study relies on historical flood data, remote sensing, and other geospatial datasets,
which may only sometimes be fully comprehensive or up to date. Future research could
benefit from integrating higher-resolution data or real-time monitoring systems for more
precise flood prediction. Additionally, while SHAP improves model interpretability, com-
plex models like ANN tend to be less interpretable compared to simpler models. This
trade-off between model accuracy and interpretability could be a limitation for decision-
makers who prefer clearer, more transparent models.

5. Conclusions

Flood susceptibility mapping in Gdańsk, Poland, employing SVM, RF, and ANN
models, ensemble-based filter feature selection, and explainability techniques, provided
valuable insights into flood susceptibility. The study draws several conclusions:

• Ensemble feature selection identified critical factors influencing flood susceptibil-
ity in Gdańsk, including LULC, proximity to rainwater collectors, LST, river buffer
zones, soil composition, and NDVI. These factors were consistently highlighted across
multiple feature selection methods as pivotal in predicting flood-prone areas.

• The predictive performance of the SVM, RF, and ANN models was evaluated using
AUC, with the ANN model demonstrating a superior performance (AUC 0.992) com-
pared to RF (AUC 0.965) and SVM (AUC 0.905), underscoring the efficacy of machine
learning approaches in accurately delineating flood susceptibility zones in Gdańsk.

• To tackle the issue of model interpretability, SHAP clarified the impact of specific
features on model predictions. This approach improves transparency by providing
insights into how particular factors (rainwater collectors, LST, NDVI, river buffer) con-
tribute to flood susceptibility assessments and facilitating informed decision-making
in flood mitigation strategies.

• Future research should focus on creating separate prediction models considering
floods associated with sea level rises and climate change.

• Urban planners, policymakers, and disaster management authorities can prioritise
interventions and distribute resources effectively using the practical insights from
this study. Using machine learning techniques and geospatial data, stakeholders can
anticipate flood hazards and improve community resilience.
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Appendix A
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Figure A1. Spatial distribution of flood susceptibility factors: (a) DEM, (b) slope, (c) aspect, (d) TRI,
(e) plan curvature, and (f) profile curvature.
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Figure A2. Spatial distribution of flood susceptibility factors: (a) SPI, (b) TWI, (c) NDVI, (d) NDWI,
(e) LST, (f) distance from the coastline, (g) distance from the river network, and (h) distance from
rainwater collectors.
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a

b

Figure A3. Spatial distribution of flood susceptibility factors: (a) LULC and (b) soil.
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