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From limits of quantum operations to multicopy entanglement witnesses
and state-spectrum estimation
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Limits of state transformations in quantum mechanics are studied. Impossibility of physical implementation
of the transformationo®"—p" in quantum mechanics is proved. The most natural notions of structural
completely positive approximation and structural physical approximations of nonphysical map are introduced.
It is shown that these always exist for linear Hermitian maps and can be optimized under natural conditions. It
is pointed out that it is physically possible to measure in a simple way the tracdls pdbwer of quantum state
Tr(e") if only joint measurements on copies of the system are allowed. This gives the interpretation of
Tsallis entropies as values of “multicopy” observables. Following this observations, the notion of multicopy
entanglement witnesses is defined and examples are provided. Finally, using notion of multicopy observable, a
simple method of spectrum state estimation is discussed.
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[. INTRODUCTION It is natural to expect that physical approximations of
nonphysical maps could help in solving physical problems in
The limits of nonlinearlike operations within the quantum general. To study this, we use the notion of structural com-
mechanics is an interesting question. It has been shown thptetely positive approximatiofSCPA and structural physi-
[1], for example, the operation cal approximatior{SPA of the nonphysical operation. These
are very restrictive approximations—the key feature of such
(1) approximated maps is that these always have the direction of
generalized Bloch vector of the output state the same as the
. - . output state of the original nonphysical map. Only the length
can be performed with the finite probability by means of 4of the vector is rescaled by some factor. The first example of

quite simple network W'th two copies @ as an 'npl.ﬂ' on such map has been introduced in different context as a uni-
the other hand, the limits for other nonlinear operations have L : . .

L ; . . versalNOT gate in pioneering work9]. It is worth mention-
been shown resulting in “no-disentanglement” rule in quan-

tum mechanicg2,3]. In this work, we want to show both ing the first version of applications in entanglement detection

further limits and advantages of nonlinear transformations i ,13’14]' Here, we show th?‘t SCPA and SPA always exist for
context of the quantum entanglement theory. inear, nonphysical Hermitian maps. We also prove that there

It can be easily seen that if the stateis diagonal, then IS @ natural optimization giving the best SPA.
Eq. (1) provides the square af. However, to get this, we We also consider p033|b|I|ty_ of direct measurement of
have to know the eigenvectors of the state. It is interestingrace ofnth power of a state. Using generalized swap opera-
that if one could physically produce square power of an unior, we show that value Tg") can be measured as quantum
known state, it would be possible to distill entanglementobservable if joint measurements arcopies of the system
from many quantum states with little previous information are allowed. Several interesting applications of this fact are
about then4]. To some extent, it would be similar to situ- provided. In particular, one can measure what we propose to
ation in compression protocol of Rg6] where no measure- call multicopy observablesf the system: mean value of such
ment of a source state is needed if one of its parametemsbservables is measurable if joint measurements on several
(entropy is known. We shall show that it is impossible to copies of the system in the same state can be performed. The
produce any power of the state if we do not know its eigen-mean value of such an observable can be found if such a
vectors. More precisely, it is impossible to perform the op-measurement is repeated many times. Each time it consumes
eration providing nth power of amnknownstate fromn  n copies ofp, but the entire procedure can provide us the
copies of it. interesting information about properties of single In our
However, one can consider weaker requirements: if somanalysis, we point out that all Tsallis entropig8] with
operation is impossible to perform exactly, one can try tonatural index correspond to some multicopy observables.
perform itapproximately The most known examples of such Then, applying the separability conditions as the entropic
approximations are cloning operatip8—8|, universalNoT  inequalities theory developed first in Ref26,15,29 and
gate[9], and “two-qubit fidelity” map[10]. Recently more completed in an elegant way in Ref46,17), we show that
careful study of approximations of one-qubit maps has beerach Tsallis[18] entropic separability testéequivalent to
carried ouff11,12. quantum Renyi onegl5-17) can be physically performed
directly with the help of single multicopy observable. The
advantage of the method is that only a finisenal) number
*Email address: pawel@mif.pg.gda.pl of copies in joint measurement is required. Finally, we point
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out how to estimate the spectrum of an unknown state usingubspace-sy, of (C%®". Thus, the subspace is an eigen-
the idea of multicopy observables. The above observationsubspace oA corresponding to eigenvalue 1. On the other
are in a sense complementary to the optimal procedures ¢fand, putting into Eq(4) full rank matrix ¢, diagonal in
Refs.[19,20, because on one hand we allow for join mea-some standard basige;)}, one gets that positivity ofA
surement on small number of copies and on the other hangyould imply A=3%"1(le))(g|)®". But this is in contradic-
we focus on mean values of quantum observables directly.tjon to the expected invariance 6{sy, under the action
In both approaches, collective measurements on finde 55 A
more than dimension of Hilbert space of a single gapym-

berTﬂf copies are qulvedd n fo'ﬂe r“_”IOfSeXpe”r iment. the I STRUCTURAL PHYSICAL APPROXIMATIONS
€ paper s organized as 1oliows. In Sec. 1l, we prove the OF NONPHYSICAL HERMITIAN MAPS

following “no-go” result: if the statep is unknown, then the

operationp®"— p" is impossible. In Sec. Ill, we provide a A. Definition

general idea of the SCPA and its slight modification—the  \ye introduce the following definition of the SCPA of lin-
SPA. We also show that these approximations always exist

- . d d’
folr any Hermitianlmap. Finally, we show that the most natu—earDZﬁrr:inﬂg'r?q ?ﬁg‘sgfi z) f_;|lr51’ éir )Hermitian mah is any
ral SPA is optimal. L . !

In Sec. IV, we investigate further possibility of direct completely positive operation of the form

measurement of nonlinear parameters. We introduce the no- = _
tion of “multicopy observable” and show how Tsallis en- Ale)=d(e)A+yA, ®)
tropy with natural index can be measured with the help Ofyit, jinear functions=0, and strictly positive parameter.
such an observable. We utilize entropic separability criteriar,o mapA, is defined as,(-)=ITr(-). The SPA of non-

to introduce the notion ofmulticopy entanglement witness

Finally, in Sec. V, we point out how to estimate the spectrur‘nphy~SICaI mapA 's_ such SCPAA~that any.stateg satisfies
of unknown state defined o™, Tr{A(e)]=1, which means thak can be implemented ex-

perimentally.

Remark 1The optimalNOT gate[9] can be treated as first
example of the SCPAand also the SPAOnN the other hand,

Consider an arbitrary quantum state defined’8rspace. the approximated cloning machifié—8] is not the SCPA.
We shall show that there is no quantum transformation of théndeed, if the cloning machine acts on the siate¢hen it can
kind be seen that the machine output is not of the faifa) A,

@n n tyewe.
Ale™—e", 2 Remark 2The above definition could also be extended to

which works for arunknownquantum state. Let us first note the form A(g)=45(e)A,+ y(e)A. This would apparently
that such an operation would tpeobabilistic, i.e., it would ~ @dmit nonlinear components in the SPA map. It can be
give the required output with the probability=Tr(o") de- shown, h_owever, that thenas.sumpt|9n§(|0fnontr|V|aI|ty of
pending on the input state. Suppose that such an operatidfe functiony (y#0) and(ii) its continuity lead to the form
existed. Then, because of complete positivity it would be oft® Wherey is constant and linear.

the form of completely positive map.(¢)=SN,V,oV!. Let us comment on the definition. The essence of the

So, we would rewrite Eq(2) as follows: SCPAA of an arbitrary mapA is that (i) it is complete
positive andiii) its outputkeeps the structure of the outpaft

N . . wog
E ViQ®”ViT=Q”- @ :ir;e;,f]g:physma.l map. In partlcula[,v for gnyg, the dlrec.
=4 generalized Bloch vector ol (@) is the same as in
A(g). However, the vector of\ (o) is “decreased” by a
Taking trace of both sides of the above equation, we get thaghctor y [9] and the additional portiofquantified bys) of
there would exist theositive state independent operatdr  completely random noise is admixed. The SPA is such SCPA
=3 V]V, with the property 0<A<I such that that can be probabilistically implemented in l@ee the Ap-
o n pendiX. Note that for finite-dimensional systems, some SPA
Tr(Ae™")=Tr(e") (4 can be obtained from nonzero SCPA by normalization,

Il IMPOSSIBILITY OF THE OPERATION  p®N—pN

for any state ¢. In particular, for any pure projectorP
=|¢){ ¢| corresponding to normalized vectet), we would A 1+ A
resp 9 o Aspa=—A, ag=maxirfA(e)], (6)
have TrAP,")=Tr(P,)=1. But, because all eigenvalues aj 0
of A belong to the intervdl0,1], this means that any vector
of the form|¥)=|¢)®" must be an eigenvector & How-  Where strict positivity ofag is given by complete positivity
ever, all|¥)’s of this form span the completely symmetric of nonzero SCPA\.
Now, one can ask about possible optimality of the given
SPA. Let us recall that question of optimality was frequently

Lt A,B are Hermitian operators, then the notatidesB means  posed in context of approximate cloning machines. Here, we

that for any vectot ), one has |A| )< {y|B|y). define optimality as follows.
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Definition 2.The optimal SPA ofA is such SPA ma;iOpt
that for any fixedo (i) the ratios(¢)/y in Eq. (5) is minimal
and (ii) the probability of implementationp(Agp;e)
=Ti{Aop(@ )] is maximal if compared to any other SPA

Sometimes, instead of the term “the optimal SPA,” we
shall use name “the best SPA.”

Summarizing, for the best SPA, one requires as much less

“noise” in Eqg. (5) as possible under the condition of maxi-
mal probability of implementatiofsee the Appendix

B. Natural construction

In what follows, we shall briefly prove the following.
Proposition 1.For any Hermitian linear map\:B(C*)

—B(C?), there exists a SPA defined by
Aa=Ba (@r +A), (7)

with the parametea=\d, whereA =maxX0,—\'] and\’ is
the minimal eigenvalue of the operatdw AJ(P,). Here,
P, =|¥,}¥,| corresponds to the “isotropic” maximally
entangled dod state |V, )=(Ud)=L,|i)]i), Ba
=max,Tr([aA,+A](e)).

The above approximation follows immediately from the
well-known fact that linear, Hermitian operatioh is com-
pletely positive if and only if I® AJ(P.) has non-negative
spectrum.

C. Remarks on structural physical approximations
of nonlinear maps

One might expectas it was conjectured in first version of
this paper that there is no physical approximation of the

map ¢“"— p". However, quite recently, it has been shown

that such operations are possible. Namely, in [R&f], the
explicit construction of such a map for two qubits=2)

has been provided. It happens that generalization of this re-

PHYSICAL REVIEW A8, 052101 (2003

proposition 2. Minimization of the raté/y according to the
condition (i) of the Definition 2 leads to constardt that
amounts to

6= vyAad. 9

In this way, one gets the family of SPA mafis,= y(AdA,
+A) depending on single parametgr On the other hand,
according to the conditiofii) of Definition 2, to get the best
SPA, we have to maximize the vaIue[ﬁry(g)] under the

condition T{Ky(g)]sl. Since the latter must be satisfied
for any o, one gets y<1/(Add'+a,) with a,
=max, Tr A(e)]. This after maximization leads to optimal
parametersy=1/(Add' + a,), =Ad/(Add’' + a,). In this
way, we have obtained the formul®). To conclude the
proof of the Proposition 2, it is enough to check that the map
(8) coincides with Eq(7) for a=\d.

Interpretation and example

There is a simple interpretation of the optimal form(8a
if «,>0. To get the best SPA, one needs the following
two operationsii) rescale the given linear, Hermitiak by
taking A’=aX1A, which already satisfies TA'(¢)]<1,
(i) take the following convex combination:

Aopt= Py Agept (1—py)A’, (10)

with probability p, =\dd’ ;Y /(Add’a;*+1) and A
=maX0,—\'], where\’ is the minimal eigenvalue of the
operator[I® A](P,). In the above formula, we have also
used the usual depolarizing channel

Agegl@)=1/d’ (11

sult to many copies of multilevel system is possible. This

issue will be considered elsewhdg2?].

IV. OPTIMIZATION

Here, we shall give the optimal form of the SPA of given
linear, Hermitian map as follows.

Proposition 2.The best SPA of linear, Hermitian mapis
the approximatior7) with minimala (i.e.,a=\d). It can be
written in the form

~ Yo 1

Rgor= A+ 8
PUNdd +a, | Add +ay ®

with ay =max, Tr[A(e)].

Proof. Recall that, following Riesz theorem applied to
Hilbert-Schmidt space, the linear function of quantum stat
denoted bys is uniquely determined by some Hermitian op-
erator D in the following way: 6(¢)=Tr(Dg). Now, the
complete positivity ofA results in conditionS(¢) = ya, with
parametera=\d defined as in proposition 1. wherkis a
dimension of the Hilbert space ara=\ is defined as in

e

that turns any state ofiY into a maximally mixed state on
cY". Note thatA ge,=A, /d’.
In the case of trace-preserving mdps, in general, for all
maps that satisfyry =1), the above protocol give&’=A
so the only stegii) above is important. This means that in
these cases, to get the optimal SPA, one has to construct a
probabilistic mixture of A with depolarizing channel. For
very efficient applications of such maps in domain of physi-
cal detection of quantum entanglement, see Héf3,14.
Example.Consider the best SPA of the transposition map
T:B(CYH—B(CY that transposes the matrikT(A)]mn
=Anm- Applying the prescription above fok=T, we get
[I®T](P+)=1/dV whereV is a “flip” or “swap” operator
[23]. As V has spectrum: 1, this gives\ =1/d, a, =1 that
results in the optimal parametp, =d/(d+1). In this way,
we get trace-preserving SPA, which is the following quantum
channel:

d 1
—_— + —

y |
_ N T
e =g iatar1¢ 12
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or T=[d/(d+1)](1/d)+[1/(d+1)]T. It has already been =Tr(A;---A,). Unfortunately, it is, in general, not Hermit-
introduced as a byproduct of optimal quantum cloning madan (which can be checked directly looking at its decompo-
chines[6—8] and is equivalent to one-qubit universal quan-Sition into swapsV=V(?). However, note that value
tum NoT gate[9]. Tr(Xo) for anyoperatorX and stater can be experimentally
Another important example of the SPA is the approxima-checked by measuring Hermitiafdefined as X,=3(X
tion of partial transpositioi® T that found application in +X')] and anti-Hermitian [defined as X,=(—i/2)(X

detection[13] and estimatiofi14] of quantum entanglement. —X')] part of X because of elementary observati¢X)
=Tr(Xo)=Tr(X,o) +iTr(X,o) =(Xp) +i(X,). Thus, one

V. TSALLIS ENTROPY AS “MULTICOPY” OBSERVABLE can determine mean value K¢) of non-Hermitian opera-
AND MULTICOPY ENTANGLEMENT WITNESSES tor X by an experimental measurement of otvyp Hermitian
observables.
A. Multicopy observables The interesting case is when we knawpriori that the

We propose to extend the notion of quantum observable resulting value TR/ o) is real. Then, there is the following
to n-copy observable ®. Suppose that the system state isSimple observatiortcf. Refs.[13,20).

defined on the Hilbert spac®. Then, measurement &% Observation. Consider an arbitrary(may be non-
performed oro leads to the mean valugd)=Tr(Ag). Hermitian) operatoiX. If the value(X)=Tr(Xo) is real, then
Definition 3.Let A™ be the Hermitian operator i . it coincides with the usual mean value of observable defined

We interpret it asn-copy observable with respect to the Py Hermitian part ofX. _ _
single system defined on a single Hilbert spatdy defin- This leads to the interesting consequences. Namely, appli-
ing “mean value” of A" on o as cation of the above observation to the momentspT)(

=Tr(V(Mo®"), which arereal, leads to an immediate con-
(AN, =(AM) o o o=Tr(AMp®"). (13)  clusion that each of them can be measured as the mean value
of n-copy observable

Remark.The above concept of multicopy observables in- W =V 4+ (vMyT]/2, (15)
volves an interaction between many copies of the system.
One can explain the concept with the help of the following mmediately, all Tsallis entropieéq(g)=[1—Tr(gq)]/(q
physical example. Suppose that we are given an ensemble ojl) with positive integery can be measured as the mean

many copies of the stag of single spins particle. One can value ofsingle multicopy observable
consider an observable that measuremordinate of global

spin of each three particles of the ensentdated as a new FAQ) — (1 DY/ (1
joint spin- system Such an observable is just multicopy w (I=WH/(1~q). (16)
(three-copy observable. It involves an interaction since evi- S

o ; For another implications, see remarks on spectrum state es-
dently it is not a product of three spiobservables. Hence, timation (Sec. V)
after measurement of the observable, the three-particle sys- Estimation of mean values of multicopy observabiés

tem will, in general, remain in entangled state. : X
) , above observables have, in general, complicated structure.
Below, we shall consider examples of multicopy observ- . X .
. : However, their mean values can be estimated via measure-
ables that are important for further analysis. . . .
“ » : ment on single ancilla coupled to the system. This may be
Example 1. “Swap” observable&Consider the swap opera- ; ; : X
. done either in a way proposed recently in §&0] with the
tor [8] on two-system space, which has the propafisp) helo of th di b ble i h i :
®[W)=|¥)®|®) for anyd, ¥ CY. It is known[8] thatV/ elp of the encoding observable into the anditlas requires
is hermitian and satisfies 1\;’@\@) B)—.Tr(AB) In particular ancilla that is bigger than the system, but allows for elegant
its mean val n the st i N -inp ’ interferometric implementationor via binary measurement
$ mean value on the stagez @ Is on a single spinlike ancilla coupled to the systgzh]. The
latter method works also for any bounded continuous vari-
able observables. It is interesting that in the case of multi-
copy observabl¢l5), the corresponding mean value gfi"
can be measured interferometrically directly using controlled
™ [20].

Tr(Vo®p)=Tr(0?). (14)

Thus, swapV operator can be viewed asc@py observ-
able: the above formulél4) leads to the conclusion that the ~<. i
value Tr(0?) is measurable if joint measurements on twoUNitary operatiorV
copies of the state are allowed. From that, we get immedi-

ately that the Tsallis entrorﬁg(g) =[1-Tr(eM]/(g—1) is B. Multicopy entanglement witnesses
measurabTIe fog=2. Indeed, we take the observate=| Separability inequalities in terms of entropic inequalities
=V andS;(0)=(W),e=Tr(We®p0). were first investigated in Ref26]. Following the Renyi en-

Example 2. “Shift” operation. Tsallis entropies as induced tropy analysis, we know that any separable state satisfies the
multicopy observablesConsider the well-known natural entropy inequalitysee Refs[26,15,29,16,1}
generalization of the swap. This is a shift operation
V,, which can be interpreted as some cyclic permutation. S.(0ap)— S, (0x)=0X=A,B. (17)
It is defined asVWu;@UL® - - - AUL=UL® - - - QU Uy, It
is known that (see Ref. [24]) Tr(VWA;®---®A,) This is equivalent to the Tsallis entropy inequalities
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éq(QAB)—éq(Qx)BO,X=A,B- (18) observab_les, gach_ﬁa single copy statistic;,_ or(ii) an
asymptotic estimation of Young frames requiring estimation
All these inequalities have been shown to be satisfied bpf sequence ofi-copy observables with approaching infin-
bipartite separable statésee Ref[17]). As such these form Ity. The method(ii), has an elegant mathematical back-
a necessary condition for separability of quantum statesground, was shown to be optimaee Ref[19]). It involves
Consider the bipartite state defined onHg=Ha® Hg. effectively only m output parameterébecause it needs esti-
We shall define the q -observable on the system obpies ~Mmation of probabilities ofm results of output observable
of the statep £8. Let W@ be just the observabld5) acting but requires possibility of collective measurements on arbi-

onH xg. Let us recall that this is the multicopy observable a7 numper of copies to get good accuracy. Quantum to-
~ ~ () mography(i) requires only single copy per measurement, but
that corresponds to entrofgy . Let alsoW? stand for coun- one needsn?—1 observables. In the present approach, we

terpart of W9 but acting onH g%, X=A,B. Finally, let see that measurement of omty—1 observables is needed if
_ _ collective measurements ainite numbers of 2,3...,m
R =W —| ,@ W, copies are possible. In this sense, it represents some kind of
compromise between the previous two methGdsnd (ii).
RW=WD - WDy, (19) It is quite remarkable that one can design powerful inter-
ferometric scheme$13,2Q that allow to detect means of
wherely corresponds to identity matrix ol 4, X=A,B. thosem—1 observables in a natural way as a result of inter-

Evidently, mean valué(R{®)) ,=(R{?) ,=q is positive if  action with controlled bit ancilldsee also discussion in Sec.
and only if the inequalitie$18) and (17) are satisfied foX  VA).
=A,B. Thus, becaus§ Rg(q)»g is (i) positive for all sepa-
rable state® (ii) negative for some entangled stagefthose VI. CONCLUSION
that violate inequilities(18) and (17)], we propose to call

them multicopy entanglement witnessds general, it is tina nth power of the state provided that operations om
likely that multicopy observabletike the above entangle- cogies o? are allowed Wghpave shown thatpit is impossible
ment witnesses can be useful not only in quantum informa; b e : P :

tion theory but also in quantum domain, in general. Applica-We have analyzed the possibility of construction of the struc-

tion of such witnesses is expected when technology aIIow%unr(‘;“erptr;])'/es'é:(;’lrl1 d?tri)cﬁ)rzo(;(flm?etlsoemrsif?) gfv\fgﬁ’_ duer;mﬁs'@g,{ﬂgp
for precise control of physical interactions among many P a

guantum systems. More formally, we can introduce the folStructure coming f_rom the map. We hav_e_ shown _that It is
lowing. possible to approximate any linear, Hermitian map in such a

Definition 4. An n-copy entanglement witness is an way. We have also optimized the SPA any nontrivial Hermit-

n-copy observableR™ that satisfies((R™)),=0 for all ian map. On the other hand, it has been pointed out that if

(n) joint measurements on n copies of given siatare allowed,
separableg, but ((R >>9ent<0 holds for some entangled then the nonlinear function of the state defined bygT)(

state@en- can be easily measurable. This leads to the notion of multi-

copy observable with remarkable examples of measurement
C. Remarks on state spectrum estimation of Tsallis entropies.

It is remarkable that if one wants to determine spectrum Further, we have introduced the notion of multicopy en-
{pi} of the stateo defined onm-dimensional Hilbert space, tanglement witnesses. The examples of the latter have been

then it is sufficient to knowm—1 valuesw,=Tr(g2), Ws provided, measuring the degree of violation of separability
=Tr(0%), ... w,=Tr(e™). This can be seen by réalizing criterion based on entropic inequalities. Finally, the existence

that Tr(Qk):(pl)k+(p2)k+ o +(pm)k_ Thus, since a finite of simple method of spectrum estimation for the unknown

discrete random variable is determined by fits-1 mo- state has been pointed out, which requires collective mea-
ments, allp,'s can be uniquely determined from the set of surements on small number of copies. The number of needed

given valuew;}. But according to Sec. IV C, these happen €Stimated parameters is 2difn-3, which is less than
to be mean values of observables), i.e. W_:<<W(i)>> (dimH)“—1 required in tomography. One can hope that the
= (WY 1. Thus, we have the fOIIov;/in?;; T °®  multicopy observables idea together with direct physical in-
= 0®i- s .

Conclusion.In order to determine the spectrum @om- terpretation of Tsallis entropy in context of multicopy ob-
pletely unknow stateg, it is enough to know mean values servables can be useful not only for the quantum entangle-

We have considered possibility of transformation of get-

w; of m—1 multicopy observable®/® (k=2, ... m) that ment theory but also for the quantum information in general.
correspond to Hermitian parts of shift operation¥).

. Remark.The apove conclusion is complementa_ry_to what ACKNOWLEDGMENTS

is known in the literature so far. We have had eitkigrto

perform full tomography: estimation of mean valuesnot The author thanks Vladimir Buzek and Marek Czachor

for helpful discussions on nonlinearity in the context of

quantum mechanics. He is grateful to Artur Ekert for point-

2The conclusion is an improveme(fitased on technique from Ref. ing out an inconsistency in an earlier version of this work
[13]) of the one made in previous version of the present paper. and for very helpful discussions. Remarks of Joachim Dom-
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sta on classical probability theory are also acknowledged=sk \i(.)v/ is trace preserving because [&(o)]
The work was supported by the European Union, project_ T =k OViQV'T] =T sk OV‘TViQ] = TH(Ag+ 1 — Ago]
1= I = I
EQUIP, Contract No. IST-1999-11053. =Tr(lp)=Tr(o)=1. But any trace-preserving map can be
implemented in lab by the interaction with some additional
APPENDIX guantum systentancilla) and some von-Neumann measure-

Here according to a well-known quantum mechanical pro-ment on this system with outputs-0,1, . . . k (for descrip-

cedure, known form is Krausee for instance, Re27]), we tion, see Ref[27]). In this case, théth “event” corresponds

- o to the single map/iViT. It can be interpreted as “producing”
shall recall how any completely positive mapsatisfying unnormalized stat®;oV{ . Indeed, though its action results

T{A(e)]=1 (A1)  in normalized stateg;=V,oV!/p; this occurs only with

. _ ) probabiIini=Tr(ViQViT). In this sense, the original map
can be probabilistically implemented in laboratory. We know.5, pe implemented: we apply some special von-Neumann
that A(-)=={_,Vi(-)V] . From Eq.(A1), remembering that measurement on the ancilla and keep the system if only the
TS VieVI1=Ti{ =",V V,e], we get that the positive ith event withi#0 occurs. If the singled-out event corre-
operatorA0=Eik:1Vi*Vi has the spectrum form in interval sponding toi=0 occurs, we “discard” our system. This
[0,1]. Thus we can defin&,=+/I —Aq and then, the ex- gives the new statep’=A(g)/p with probability p
tended completely positive map.’(-)=A(-)+Vq(-)V' =T A(0)].
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