
Vol.:(0123456789)

Empirical Software Engineering
https://doi.org/10.1007/s10664-021-10043-z

1 3

Game-based Sprint retrospectives: multiple action research

Adam Przybyłek1 · Marta Albecka2 · Olga Springer1 · Wojciech Kowalski3

Accepted: 30 August 2021
© The Author(s) 2021

Abstract
In today’s fast-paced world of rapid technological change, software development teams
need to constantly revise their work practices. Not surprisingly, regular reflection on how to
become more effective is perceived as one of the most important principles of Agile Soft-
ware Development. Nevertheless, running an effective and enjoyable retrospective meeting
is still a challenge in real environments. As reported by several studies, the Sprint Retro-
spective is an agile practice most likely to be implemented improperly or sacrificed when
teams perform under pressure to deliver. To facilitate the implementation of the practice,
some agile coaches have proposed to set up retrospective meetings in the form of retrospec-
tive games. However, there has been little research-based evidence to support the positive
effects of retrospective games. Our aim is to investigate whether the adoption of retrospec-
tive games can improve retrospective meetings in general and lead to positive societal out-
comes. In this paper, we report on an Action Research project in which we implemented
six retrospective games in six Scrum teams that had experienced common retrospective
problems. The received feedback indicates that the approach helped the teams to mitigate
many of the “accidental difficulties” pertaining to the Sprint Retrospective, such as lack
of structure, dullness, too many complaints, or unequal participation and made the meet-
ings more productive to some degree. Moreover, depending on their individual preferences,
different participants perceived different games as having a positive impact on their com-
munication, motivation-and-involvement, and/or creativity, even though there were others,
less numerous, who had an opposite view. The advantages and disadvantages of each game
as well as eight lessons learned are presented in the paper.

Keywords Collaborative games · Serious games · Retrospective · Agile · Scrum · Software
process improvement · Team communication

Communicated by: Daniel Méndez

 * Adam Przybyłek
 adam.przybylek@gmail.com

1 Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology,
Narutowicza 11/12, 80-233 Gdańsk, Poland

2 Dynatrace Sp. z o.o, Aleja Grunwaldzka 411, 80-309 Gdańsk, Poland
3 OKE Poland Sp. z o.o, Jana Heweliusza 11, 80-890 Gdańsk, Poland

http://orcid.org/0000-0002-8231-709X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-021-10043-z&domain=pdf

 Empirical Software Engineering

1 3

1 Introduction

Over the last two decades, we have seen a major change in how software is developed with
the adoption of agile methods. Agile methods embrace the fact that software development
projects are too complex to be included in a full-scale plan, and the requirements cannot be
fully understood or specified up front because they are rarely ready to be collected (Boehm
et al. 2001; Campbell et al. 2016). Thereby, agile methods originated from the practice of
encouraging close collaboration among the development team and between the team and
the customer, to accommodate changes, and to work in rapid, iterative development cycles.

Due to their positive impact on productivity, agile methods have become mainstream
in the software industry (Cao et al. 2009; Mundra et al. 2013; Eloranta et al. 2016; Schön
et al. 2017; Gaikwad et al. 2019; Butt et al. 2019; Jarzębowicz and Sitko 2019; Küpper
et al. 2019). Nevertheless, despite numerous agile transformation success stories, most
organizations struggle to fully implement an agile method (VersionOne, 2020). Indeed,
agile methods are claimed to be easy to understand (Schwaber 2004; López-Martínez et al.
2016), but hard to follow in practice, which has been confirmed even by their inventors.
For instance, according to Beck (2004) “XP is simple in its details, but it is hard to exe-
cute,” while Schwaber and Sutherland (2017) describes Scrum as “simple to understand,
(but) difficult to master.”

When companies encounter challenges in adopting agile practices, the general ten-
dency is to abandon the practice (Yu and Petter 2014). Yet, when practices are abandoned,
neglected, or compromised, a company fails to take full advantage of the method. Fortu-
nately, agile teams are equipped with a mechanism for self-repair, which is called Retro-
spective (Highsmith and Fowler 2001). Unfortunately, this practice itself is often imple-
mented improperly due to little guidance from agile methods. For instance, XP does not
mention Retrospective at all, while neither Scrum nor Kanban describe specific procedure
for running this meeting. Accordingly, in many projects, retrospectives are conducted in
a mechanical way, without an understanding of the real value of the ceremony (Mas et al.
2018), while agile teams have difficulties in transforming the lessons learned into action
(Drury et al. 2012; Dybå et al. 2014b; Andriyani et al. 2017). What is worse, if retrospec-
tive meetings are repeated in the same way over and over again, they may get dull, which
demotivates team members and negatively affects outcomes. Consequently, team members
start to see retrospectives as a waste of time and they stop attending them (Gonçalves and
Linders 2014). As agile teams usually work under intense time pressure (project manag-
ers often believe that Scrum teams can do “twice the work in half the time” (Sutherland
2015)), the temptation to skip a nonproductive retrospective is even stronger (Moe et al.
2012; Hoda et al. 2013; Babb et al. 2014; Dybå et al. 2014a; Khanna, 2018). Indeed, many
researchers and practitioners have reported that retrospective meetings are skipped because
“the same old things come up every time instead of insightful ideas” or the team “has run
out of things to improve” (Lamoreux 2005; Nikitina et al. 2012; Jeffries 2013; Carlson
2013; Eloranta et al. 2016; Drægert and Petersen 2016; Przybyłek and Kotecka 2017). Fur-
thermore, several other problems that frequently prevent teams from conducting productive
retrospectives have been brought up (Lamoreux 2005; Gonçalves and Linders 2014; Derby
and Larsen 2006; Kua 2013; Loeffler 2017; Ringstad et al. 2011; Rubin 2012):

• the lack of meeting structure narrows down the discussion;
• a few vocal participants dominate the discussion, while others only listen even though

they have profound views on things;

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

• participants use the meeting primarily to complain rather than to improve.

In the meantime, the usage of game elements in non-gaming practices has become
an emerging subject for improving the software development processes (Yilmaz et al.
2016; Yilmaz and O’Connor 2016; Stettina et al. 2018). It has been evidenced that turn-
ing an activity into a game may address a range of problems in software engineering,
including poor communication within the development team, inadequate teamwork, lack
of motivation, and boredom with work (Olgun et al. 2017; Akarsu et al. 2018; Üsfekes
et al. 2019; Yilmaz et al. 2019; Daylamani-Zad et al. 2020). Ipso facto, to mitigate com-
mon retrospective problems, some agile coaches have proposed setting up retrospec-
tive meetings in the form of games, which are claimed to break the habitual routine
and enforce the structure of the meeting (Roden and Williams 2015). However, there
has been little research to date on how retrospective games affect retrospective meet-
ings (Matthies and Dobrigkeit 2021). In our pilot study (Przybyłek and Kotecka 2017),
we successfully implemented game-based retrospectives in 3 teams in Intel Technology
Poland, but we failed to meet scientific rigor. The teams stated that retrospective games
made their retrospectives more engaging, insightful and broke the monotony. Encour-
aged by the preliminary results, in this paper, we explore retrospective games further
and repeat the study in three new companies to make it more robust. Our aim is to inves-
tigate whether the adoption of retrospective games can improve retrospective meetings
in general and lead to positive societal outcomes.

Since we need an industrial context to embed our research, we are carrying out the pro-
ject as Action Research (Baskerville and Myers 2004). Action Research is a method for
co-development of research results, where academia and industry work together to solve
problematic situations. Through this co-development, the academics and practitioners learn
from each other, and thus they develop research results which contribute to both the indus-
trial practice and scientific knowledge development (Staron 2020).

As a result of this work, four major contributions can be enumerated, as follows:

• a proposal of a generic model of running a retrospective game, which is based on the
group creativity model (Nijstad and Paulus 2003) as well as the state-of-the-art in
group idea generation;

• a proposal of a systematic methodological approach to choose and adopt retrospective
games that suit the Scrum team the best and have a chance to improve their retrospec-
tive practice;

• an in-depth discussion of the promises and realities of game-based retrospectives,
including the advantages and disadvantages of six implemented games as well as eight
lessons learned that were identified during our Action Research project;

• a refinement of the Action Research methodology, which consists of a revised validity
system for Action Research studies in software engineering, and a proposal of a new
research design borrowed from Case Study.

The remainder of this paper is structured as follows. The next section outlines the theo-
retical and practical background on an agile retrospective, team creativity, and collabora-
tive games. In Section 3, we present related work. In Section 4, the research method, ques-
tions, context, as well as data collection and analysis details are discussed. This is followed
by the core section of this paper in which we report on the conducted Action Research
cycle, interpret the collected data, and provide the lessons learned. In Section 6, we elab-
orate on the threats to validity, while in Section 7, we consider the implications of our

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

research. Section 8 discusses the rigor and the relevance of the project. Finally, we summa-
rize the key findings and suggest directions for future research.

2 Theoretical and Practical Background

This section introduces the main concepts that must be understood in the context of our
work: agile retrospective, team creativity, serious games, and retrospective games.

2.1 Agile retrospective

One of the core principles of all agile methods is the need for continuous process improve-
ment: “At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly” (Highsmith and Fowler 2001). An agile practice that
provides time and space for the team to come together in order to inspect, fix, and improve
their process is a retrospective meeting. The Scrum framework calls this the Sprint Ret-
rospective (Schwaber and Sutherland 2020). However, team reflexivity as a group level
construct is older than the Agile Manifesto (for review, see (Collier et al. 1996; Dingsøyr
and Hanssen 2003)). It has been defined as a social-cognitive process, in which “team
members collectively reflect upon the team’s objectives, strategies, and processes as well
as their wider organization and environments, and adapt them accordingly” (West, 1996).
In fact, systematic reflection as a prominent tool for learning from experience is an impor-
tant determinant of team effectiveness (West, 1996; Dybå et al. 2014a; Ellis et al. 2014).
According to West et al. (1997), reflexive teams conduct more detailed planning, pay more
attention to long-term consequences, and respond to a wider range of environmental cues.

The Sprint Retrospective is held at the end of each Sprint after the Sprint Review. All
members of the team are required to attend the retrospective and actively participate in the
discussion. During the meeting, three key questions should be answered (Schwaber 2004;
Ringstad et al. 2011):

• What went well, that if we don’t discuss, we might forget?
• What did not work and how can we improve it?
• What will we commit to improve in the next iteration?

Accordingly, the retrospective is an opportunity for the team to look back over an iter-
ation and recognize successes and failures; to link the related experience to people, the
development process, engineering practices, and tools; and to create a plan for improve-
ments to be enacted during the next iteration (Dybå et al. 2014b; Lehtinen et al. 2015,
Lehtinen et al. 2017; Dingsøyr et al. 2018; Ilyés 2019). Indeed, the retrospective is one of
the most frequently mentioned agile practices in the context of software process improve-
ment (Mas et al. 2018; Küpper et al. 2019). The output of a retrospective are “action items”
(Derby and Larsen 2006), which define identified issues as well as possible corrective
actions to resolve them (Matthies 2020). All action items should be assigned to volunteers
who will take appropriate steps to implement them. Anything that exceeds the authority or
scope of responsibility of the team should be escalated to management and considered in
an organization-level retrospective (Carlson 2013; Lehtinen et al. 2017; Guckenbiehl and
Theobald 2020). The role of the management is to create an organizational context that is

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

conducive to reflection and organizational learning (Dybå et al. 2014a). The ultimate goal
of agile retrospectives is to improve productivity and work satisfaction.

2.2 Team creativity

Creativity is the ability to come up with ideas or artifacts that are novel (i.e., original, sur-
prising) and valuable (Amabile 1983; Sternberg 1999; Boden, 2004). It has been studied
from a variety of perspectives for decades. Initially, research on creativity focused on indi-
viduals and their personality traits as the basis for creativity (Amabile 1983).

More recent studies have suggested that breakthrough ideas are rarely the result of indi-
vidual effort, but emerge from the combined efforts of a number of people (Sawyer 2007).
Consequently, the research has expanded to comprise team-level creativity (Hoegl & Par-
boteeah, 2008).

Numerous techniques have been developed to facilitate the group idea generation pro-
cess (for review, see (Paulus and Nijstad 2003)). The most classic one is brainstorming
(Osborn, 1953), in which group members tap their long-term memory in real-time for rel-
evant ideas to connect to the problem being considered (Paulus and Dzindolet 2008). The
rules behind brainstorming are as follows: focus on quantity (the more ideas, the better),
welcome wild ideas, combine ideas and improve them, and do not be critical.

Nevertheless, contrary to Osborn’s (1957) claim that brainstorming increases the qual-
ity and quantity of ideas produced by group members, research findings have suggested the
opposite effect (Taylor et al. 1958; Diehl and Stroebe 1987). Several cognitive and social
processes have been considered to explain this effect, including:

• social loafing (free-riding) – the tendency of individuals to rely on the efforts of others
to accomplish the task (Karau and Williams 1993);

• downward matching – the tendency of individuals to match their performance to the
least productive group member (Paulus and Dzindolet 1993);

• evaluation apprehension – people often refrain from expressing ideas that they think
are too controversial, weird, or unrealistic, because they fear they will receive negative
evaluations from others (Diehl and Stroebe 1987);

• production blocking – only one person can speak at a time, while the other group mem-
bers must sit passively waiting for their turn; in the meantime, they may forget ideas or
lose their motivation to share (Nijstad et al. 2003).

To reduce the negative impact of these processes, “individual brainstorming” (also
known as brainwriting) has been proposed. In brainwriting, participants silently write
down their ideas on post-it notes and place them in the center of the table (Michinov 2012).
Several studies have provided evidence that brainwriting groups produce more ideas than
face-to-face brainstorming groups (Madsen and Finger 1978; Paulus and Brown 2003).
Furthermore, a number of scholars have found that combining individual and group brain-
storming brings even better results (for review, see (Korde and Paulus 2017)).

One of the predominant group creativity models, which has influenced the literature on
collective creativity for next decades (Nijstad and Stroebe 2006; Paulus and Brown 2007;
De Dreu et al. 2008; Mannix 2009; Paulus and Nijstad 2019), is depicted in Fig. 1. It was
proposed in 2003 by Nijstad and Paulus (2003) and it integrated different state-of-the-art
cognitive models at that time (Paulus and Nijstad 2003). The shaded rectangle represents
the individual’s creative process. Each group member has resources (i.e., knowledge, skills,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

abilities, and expertise) and is able to acquire new resources (arrow 1). These resources
are used to undertake the individual processing and develop an output (ideas, solutions,
etc.) on an individual level. The individual contribution is then sent (arrow 2) to the group
processing (the centrally located interactions). Provided that individuals pay attention to
the contributions of others, the stimulus is added to their resources (arrow 3). Individuals
also receive group feedback through discussion, reasoning, and voting. The new informa-
tion can be processed again on the individual level, which may result in new ideas or a shift
in preferences. There is a back and forth exchange between the individual and group level
until the contributions of individuals are combined to yield a group response (arrow 4).
This response is then implemented or transferred to external verification (arrow 5).

Lastly, many studies have reported that positive emotions increase team creativity (for
reviews, see (Paulus and Dzindolet 2008) and (Shin 2014)). This can be explained with the
broaden-and-build theory (Fredrickson 1998), according to which positive emotions have
the ability to broaden an individual’s momentary thought–action repertoire, which in turn
promotes the discovery of creative ideas and actions.

2.3 Serious games

Games have been a part of human civilization for thousands of years (Akarsu et al. 2018)
and have helped in making daily life and reality more interesting and engaging (McGonigal

Fig. 1 A generic model of group creativity (Nijstad and Paulus 2003)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

2011). Based on a story by Herodotus (440 BCE), 3 millennia before his time, the Lyd-
ians invented several games, including dice, knuckle-bones, and the ball, to overcome an
18-year-long famine (Dal Sasso et al. 2017). “The plan adopted against the famine was
to engage in games for one day so completely as not to feel any craving for food […] and
the next day to eat and abstain from games” (McGonigal 2011). That game-based remedy
can be explained by flow theory (Csikszentmihalyi 1991). According to Csikszentmiha-
lyi (1991), playing games is one of the activities that helps participants achieve a state of
mind which is characterized by complete absorption in what they are doing, and a result-
ing altered sense of time. This mental state in which a person performing an activity is
completely immersed in a feeling of energized focus, full engagement, and enjoyment in
the process of the activity, is called flow (Csikszentmihalyi 1991). Later on, Sawyer (2007)
expanded flow theory and argued that a group can enter a state of flow to increase their
innovation.

A typical game is as a combination of a game system (e.g., game board) with which
participants interact, rules of interactions, and a goal (Yilmaz 2013; Dal Sasso et al. 2017).

The famous book by Neumann & Morgenstern (1944) titled “Theory of games and eco-
nomic behavior” is the cornerstone upon which modern-day game theory is based. Accord-
ing to game theory, games fall into three broad categories (Zagal et al. 2006; Daylamani-
Zad et al. 2020):

• competitive games, where individuals form strategies that directly oppose to others;
• cooperative games, where players have interests that are neither completely opposed

nor completely coincident; hence, opportunities exist for cooperation but not necessar-
ily for equal reward;

• collaborative games, where all players work together as a team, sharing a common
goal, outcomes, and penalties.

Driven by the successes of the leisure game industry, the notion of games was rede-
fined in non-gaming application areas, including learning, coaching, health care, awareness
raising, strategic thinking, as well as market research (Gelperin 2011; Pallot et al. 2012;
Yilmaz et al. 2016; Lamrani et al. 2017; Westera 2017; Stettina et al. 2018; Trujillo et al.
2018; Üsfekes et al. 2019; Lamrani and Abdelwahed 2020; Butt et al. 2021a; Khorram
et al. 2021). Abt (1970) coined the term “serious games” to describe games which “are not
intended to be played primarily for amusement,” but are designed for educating or solving
a problem.

2.4 Retrospective games

Retrospective games are a form of collaborative games used for agile retrospectives. They
refer to several structured social activities inspired by game play and designed to help the
participants share their knowledge and experiences on a given topic, explore this knowl-
edge in ways that may not occur during normal interactions, identify hidden assumptions,
develop a joint understanding of a problem, and generate innovative ideas about solving
the problem (IIBA, 2015; Gonçalves and Linders 2014; Przybylek and Olszewski 2016;
Yilmaz and O’Connor 2016; Matthies 2020; Matthies et al. 2020). They involve a strong
visual or tactile element (IIBA, 2015). Activities like moving sticky notes, scribbling on
white boards, assembling things, or drawing pictures encourage less vocal people to con-
tribute to the discussion, help overcome inhibitions, and foster creative thinking (Hohmann

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

2006; Lin et al. 2010) by stimulating alternative mental processes. They have also been
claimed to help agile teams get better outcomes from retrospective meetings (Roden and
Williams 2015).

Table 1 briefly presents the retrospective games that we used in our prior study. All of
them use a game board, but different metaphors and categories are employed. The facilita-
tor starts each game by drawing its board and distributing several packets of sticky notes in
as many colors as the number of categories in the game.

The Sailboat game (Gonçalves and Linders 2014) uses the metaphor of a sailboat,
rocks, clouds, and islands. The sailboat stands for the team. Everyone wants the sailboat
to move fast to reach the island. Unfortunately, the boat has a few anchors holding it back.
The game motivates team members to be focused on future directions, where they want
to go. It also helps the team to identify impediments, possible risks, and things that make
them deliver great software.

The Mad/Sad/Glad game (Derby and Larsen 2006) helps release a heavy emotional
steam and connect team members’ emotions to events that happened in the Sprint. The
emotions are often affected by problems encountered while working together. Knowing
these problems can help the team solve future problems. Mood++ extends Mad/Sad/Glad
by introducing two new categories (Przybyłek and Kotecka 2017).

Both the Starfish (Gonçalves and Linders 2014) and 5Ls (Przybyłek and Kotecka 2017)
games are an evolution of the typical three questions that are used for retrospectives. In
contrast to Mad/Sad/Glad, they stimulate the team to think mostly from a rational perspec-
tive, rather than an emotional perspective.

There are also non-board retrospective games. One of the most prominent among them
is the 360 Degrees Appreciation (Caroli and Caetano 2016), which fosters open appreci-
ation feedback within a team. The game provides an opportunity to acknowledge team-
mates’ hard work, contribution, and help. It is especially useful after a tough iteration to
raise team morale. It consists of the following steps:

• each team member writes down on a sheet of paper what he/she appreciates;
• team members form a circle;
• one participant sits in the center of the “circle of recognition”;
• everyone in the circle reads the appreciation feedback to the team member in the center

(complete the 360 degrees);
• team members change in the center until everyone has received feedback.

3 Related work

The application of collaborative games in software development is receiving more and
more attention. An important cornerstone for this research area was the games introduced
by Hohmann (2006) as market and product research techniques and later adopted by Ghan-
bari et al. (2015) and Przybyłek and Zakrzewski (2018) to enhance requirements engi-
neering processes. Being inspired by Hohmann’s games, Trujillo et al. (2014) proposed a
game-based workshop as an alternative for the Inception phase of a project. Besides this,
Gelperin (2011) defined six collaborative games to support requirements understanding
and proposed a mapping system to help developers choose the best game to play in any sit-
uation. Our current work differs from those cited above in that we use collaborative games

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Ta
bl

e
1

 R
et

ro
sp

ec
tiv

e
ga

m
es

G
am

e
G

am
e

bo
ar

d
C

at
eg

or
ie

s

Sa
ilb

oa
t

an
 im

ag
e

of
 a

 sa
ilb

oa
t,

ro
ck

s,
w

in
d,

 a
n

is
la

nd
Is

la
nd

 –
 th

e
te

am
’s

 g
oa

l;
A

nc
ho

r –
 e

ve
ry

th
in

g
th

at
 sl

ow
s t

he
 te

am
 d

ow
n;

Ro
ck

s –
 th

e
ris

ks
 th

e
te

am
 m

ig
ht

 e
nc

ou
nt

er
;

W
in

d
–

ev
er

yt
hi

ng
 th

at
 h

el
ps

 th
e

te
am

 re
ac

h
th

ei
r g

oa
l

M
ad

/S
ad

/G
la

d
th

re
e

co
lu

m
ns

M
ad

 –
 fr

us
tra

tio
ns

, i
ss

ue
s t

ha
t h

av
e

an
no

ye
d

th
e

te
am

 a
nd

/o
r h

av
e

w
as

te
d

a
lo

t o
f t

im
e;

Sa
d

–
di

sa
pp

oi
nt

m
en

ts
, i

ss
ue

s t
ha

t h
av

e
no

t w
or

ke
d

ou
t a

s w
el

l a
s w

as
 h

op
ed

;
G

la
d

–
pl

ea
su

re
s,

is
su

es
 th

at
 h

av
e

m
ad

e
th

e
te

am
 h

ap
py

M
oo

d+
+

fiv
e

co
lu

m
ns

*
–

al
l c

at
eg

or
ie

s f
ro

m
 M

ad
/S

ad
/G

la
d;

Fl
ow

er
s –

 a
pp

re
ci

at
io

n
to

 te
am

m
at

es
 w

ho
 h

av
e

do
ne

 so
m

et
hi

ng
 m

ag
ni

fic
en

t f
or

 th
e

te
am

 o
r a

 p
ar

tic
ul

ar

te
am

 m
em

be
r;

Id
ea

s –
 su

gg
es

tio
ns

 h
ow

 to
 im

pr
ov

e
th

e
te

am
w

or
k

or
 th

e
pr

oc
es

s
St

ar
fis

h
an

 im
ag

e
of

 a
 st

ar
fis

h
w

ith
 fi

ve

ar
m

s
St

op
 D

oi
ng

 –
 a

ct
iv

iti
es

 o
r p

ra
ct

ic
es

 th
at

 d
o

no
t a

dd
 v

al
ue

, o
r e

ve
n

w
or

se
, a

re
 h

in
dr

an
ce

s t
o

pr
og

re
ss

;
Le

ss
 O

f –
 a

ct
iv

iti
es

 o
r p

ra
ct

ic
es

 th
at

 h
av

e
be

en
 d

on
e

an
d

ha
ve

 a
dd

ed
 v

al
ue

 b
ut

 h
av

e
re

qu
ire

d
m

or
e

eff
or

t
th

an
 re

al
ly

 n
ee

de
d;

K
ee

p
D

oi
ng

 –
 a

ct
iv

iti
es

 o
r p

ra
ct

ic
es

 th
at

 th
e

te
am

 is
 d

oi
ng

 w
el

l a
nd

 w
an

ts
 to

 k
ee

p;
M

or
e

O
f –

 a
ct

iv
iti

es
 o

r p
ra

ct
ic

es
 th

at
 a

re
 u

se
fu

l b
ut

 n
ot

 fu
lly

 ta
ke

n
ad

va
nt

ag
e

of
; t

he
 te

am
 b

el
ie

ve
s t

ha
t t

he
y

w
ill

 b
rin

g
m

or
e

va
lu

e
if

th
ey

 a
re

 d
on

e
ev

en
 m

or
e;

St
ar

t D
oi

ng
 –

 a
ct

iv
iti

es
 o

r p
ra

ct
ic

es
 th

at
 th

e
te

am
 b

el
ie

ve
s w

ill
 b

rin
g

va
lu

e
an

d
w

ill
 im

pr
ov

e
cu

rr
en

t p
ro

-
ce

ss
es

5L
s

fiv
e

co
lu

m
ns

Li
ke

d
–

w
ha

t d
id

 th
e

te
am

 re
al

ly
 a

pp
re

ci
at

e
ab

ou
t t

he
 S

pr
in

t?
Le

ar
ne

d
–

w
ha

t n
ew

 th
in

gs
 h

as
 th

e
te

am
 le

ar
ne

d
du

rin
g

th
e

Sp
rin

t?
La

ck
ed

 –
 w

ha
t t

hi
ng

s c
ou

ld
 th

e
te

am
 h

av
e

do
ne

 b
et

te
r i

n
th

e
Sp

rin
t?

Lo
ng

ed
 F

or
 –

 w
ha

t t
hi

ng
s d

id
 th

e
te

am
 w

is
h

fo
r b

ut
 w

er
e

no
t p

re
se

nt
 d

ur
in

g
th

e
Sp

rin
t?

Lo
at

he
d

–
w

ha
t t

hi
ng

s d
id

 th
e

te
am

 d
is

lik
e

in
 th

e
Sp

rin
t?

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

to boost retrospective meetings, while they focused on games that stimulate collaboration
and communication between the development team and its stakeholders.

In addition, considerable research has been directed at adopting, specifying, and pro-
moting collaborative games to facilitate agile retrospectives. Lamoreux (2005) reported
that in their organization, the retrospective was one of the most challenging agile practices
to implement and they encountered many roadblocks to effective reflection. Their initial
reluctance to have regular retrospectives was overcome after they adopted the Conversa-
tion Café technique, which can be considered to be a retrospective game. Derby and Larsen
(2006) presented a general agenda for retrospective meetings, i.e., set the stage, gather
data, generate insights, decide what to do, and close the retrospective, and proposed games
for each phase. Their work was continued by Gonçalves and Linders (2014), Krivitsky
(2015), Roden and Williams (2015), Caroli and Caetano (2016), and Baldauf (2018) who
described, respectively, 13, 16, 50, 44 and 130 retrospective games. Krivitsky (2015) also
provided the details of the games based on the team mood, size, and proximity. Jovanović
et al. (2016) then proposed a new classification of retrospective games based on the four-
stage group development model by Tuckman and cataloged 89 games. More recently, their
research was extended by Mesquida et al. (2019) who proposed two classification systems
based on team maturity and the stage of the meeting. They also created a ready-to-use tool-
box of 12 retrospective games with the main objective of improving communication, cohe-
sion, and coordination. In addition, Marshburn (2018) proposed an experimental design
to be used in future research to evaluate the effectiveness of game-based retrospectives vs.
non-game-based retrospectives in a controlled experiment.

However, none of the above work has evaluated how retrospective games work in prac-
tice. To the best of our knowledge, our prior pilot study (Przybyłek and Kotecka 2017)
was the first to investigate the impact of retrospective games on social factors such as par-
ticipants’ communication, motivation-and-involvement, and creativity. Recently, our pilot
study has been replicated by Ng and her team (Wawryk and Ng 2019; Ng et al. 2020; Mich
and Ng 2020) in Bluebay Poland, IHS Markit Gdańsk, and Intel. They have confirmed our
initial findings that game-based retrospectives produce better results than standard retro-
spectives and develop teamwork qualities. Nevertheless, they have not strengthened the
research rigor. Encouraged by the preliminary results, in this paper, we explore retrospec-
tive games further in a systematic way.

Finally, Kua (2013) identified common retrospective problems, while Matthies et al.
(2019) connected the problems to specific retrospective games that may address them. In
a subsequent study (Matthies and Dobrigkeit 2020), the proposed mapping was evaluated
by student as well as industry teams. The obtained results suggest that retrospective games
address retrospective problems in accordance with the mapping. The retrospective prob-
lems identified in the aforementioned work were used in the Diagnosing phase of our cur-
rent study when preparing the interview protocol. Besides, our results confirm that game-
based retrospectives at least mitigate common retrospective problems.

4 Study design

In this section, we: (1) describe the research method we adopted to conduct our study; (2)
define the research questions; (3) present the research context; and (4) discuss the data col-
lection and analysis procedures.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

4.1 Research method

The study was conducted as Action Research (AR) since this method is well suited for
studying new techniques or approaches in practitioner environments (Baskerville 1999;
Staron 2020). In AR, researchers intervene in the studied situation for the explicit pur-
pose of improving the situation (Hult and Lennung 1980; Easterbrook et al. 2007).
AR involves dual relevance objectives – conducting research relevant to the partici-
pant organization while expanding scientific knowledge (Baskerville and Myers 2004).
Accordingly, it synergistically and holistically associates research and practice so that
research informs practice and vice versa (Avison et al. 2017).

Compared to controlled experiments, AR is focused on doing research with and for
people, rather than experimenting on them (Reason and Rowan 1981; Staron 2020). It
also differs from case studies, where the researcher only observes and comments on
organizational phenomena but does not change them (Yin 2018). On the contrary, the
action researcher is concerned with planning and creating organizational change and
then reflecting on the results (Baburoglu and Ravn 1992).

AR can be initiated either by practitioners or by researchers (Root-Bernstein 1989).
The former case is problem-driven initiation, in that practitioners might be confronted
by a seemingly intractable problem and looking for help from academics (Avison et al.
2001). In this situation, the researchers have an opportunity to develop their research
program somewhat opportunistically, undertaking a series of research projects that have
a broad theoretical span (Avison et al. 2007). The latter case is research-driven initia-
tion, in that the action researchers might be in possession of ideas or general theoretical
approaches to addressing problem situations and searching for settings that are charac-
terized by such problems to apply and test their concepts in a real-world scenario (Avi-
son et al. 2001; Nguyen and Swatman 2003). In this situation, the practitioners may be
somewhat doubtful or indifferent, so the researchers must bring forward a convincing
vision of the practical benefits for the host organization. In either case, the researchers
bring their knowledge of AR and general theories, while the practitioners bring their
practical knowledge and context (Baskerville and Myers 2004).

Among the multiple forms of AR (for review, see (Baskerville and Wood-Harper 1998)),
the most popular in the information systems domain is Canonical Action Research (Bask-
erville and Wood-Harper 1998; Baskerville 1999; Davison et al. 2004; Marcinkowski and
Gawin 2019). It was originally proposed by Susman and Evered (1978) and later revised by
Susman (1983) as a cyclical process consisting of five interdependent phases (Fig. 2):

• Diagnosing. The current organizational situation is diagnosed in order to identify
the primary problems that are the underlying reasons for change (Baskerville 1999).

• Action planning. The researchers together with practitioners plan actions to address
the identified problems.

• Action taking. The planned intervention is implemented.
• Evaluating. The actors determine whether the expected effects of the intervention

were achieved, and whether these effects remedied the problems (Baskerville and
Wood-Harper 1998).

• Specifying learning. The actors reflect on the intervention and its effects and docu-
ment findings that will add to the body of knowledge of the discipline. They also
reach a decision whether to finish the project or to proceed through an additional
process cycle (Davison et al. 2004).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Canonical Action Research is carried out as one or several cycles of the above activi-
ties (Baskerville and Wood-Harper 1998; Davison et al. 2004). Further to this, Davison
et al. (2004) defined five principles (Table 2) that researchers and reviewers can use both to
ensure and to assess the rigor and relevance of canonical action research.

A severe limitation of AR is the restriction to a single organization, which hinders gen-
eralization of the results (Nguyen and Swatman 2003; Sjøberg et al. 2007a). Therefore, to
test whether the approach from our previous AR project (Przybyłek and Kotecka 2017)
can be repeated with similar results in other contexts and settings, we decided to search
for several host organizations as sites for a new study. We adopted the joint replication
approach (Krein et al. 2016) proposed in the context of a controlled experiment. Joint repli-
cation is “a multi-site study, performed by multiple research teams whose efforts are coor-
dinated, yet the researchers at each site act independently in performing their own replica-
tion” (Krein et al. 2016). The research teams still explicitly communicate about important
aspects of the study, including adopting common interview protocols, questionnaires, as

Fig. 2 The Canonical Action Research cycle (Susman 1983)

Table 2 Principles of Canonical Action Research

The Principle of the Researcher–Client Agreement (RCA)
It provides a guiding foundation for an AR project. By specifying the scope and objectives of the project

as well as the co-operation between the researcher and client and involving key stakeholders in its crea-
tion, the agreement constitutes the research environment and promotes a spirit of shared inquiry.

The Principle of the Cyclical Process Model (CPM)
It requires the project to be conducted in a precise and sequential manner according to the five phases

model by Susman and Evered (1978).
The Principle of Theory
It emphasizes the importance of applying one or more theories to guide the project activities and relate

the findings to existing theories (Davison et al. 2004).
The Principle of Change through Action
It reflects the essence of Action Research, which is to implement intervention in order to change the cur-

rent situation and its unsatisfactory conditions.
The Principle of Learning through Reflection
It guarantees that both researchers and practitioners draw insights from what they have learned and iden-

tify implications for other situations and contexts.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

well as an interventions. Nevertheless, each team carries out the intervention, collects data,
and performs the initial data analysis separately, after which the data is then merged and
analyzed together. In analogy to the multiple case study design, we call the resulting design
a multiple Action Research design. Consistent findings from multiple organizations will
not only be viewed as more compelling, but will allow us to develop a middle-range theory
(Wieringa and Daneva 2015). Moreover, the new research design will mitigate the inherent
bias of the approach due to the researchers’ subjective point of view.

Considering that a lot of software development companies had previously collaborated
with our university, we opened a call for a new AR project. We promoted our project as
an opportunity for a company to improve its work practices related to the Sprint Retro-
spective and enhance its teams’ competencies. We also brought into play both image (i.e.
companies may find it attractive to be named as research partners in research publications)
and altruistic (i.e. the study results will not only help the organization, but also the rest of
the world) benefits (Prechelt et al. 2015). According to Root-Bernstein (1989), this kind
of genesis of an AR project is referred to as research-driven initiation. Several companies’
representatives applied for our call and they were interviewed to make sure that their teams
were experiencing retrospective problems and they were willing to engage in an effort to
overcome them. At the end of the day, OKE Poland, Dynatrace, and SentiOne were chosen
as the host organizations, while their representatives (Wojciech Kowalski, Marta Albecka,
and Olga Springer, respectively) became co-researchers as well as co-authors of the study.
Thereby, according to the maturity model by Wohlin (2013), we reached the highest level
of closeness between industry and academia.

Table 3 presents the positions of the managers who sanctioned our research project in
each host company. Before approving the participation of their teams in the research, the
team leaders discussed the idea with the team members and explained how the project
might benefit them. As the idea was warmly welcomed, implicit consent was presumed
from a failure to dissent. Nevertheless, it is not clear whether individuals had the right to
refuse to participate in the research. Since the intervention was carried out at the team level
rather than at the individual level, either the entire team could participate or none could.
Still, team members could have refused to complete the survey or participate in the focus
group and they were informed that the collected data might be published.

Since AR creates organizational change, we followed Lenberg et al.’s directions (Len-
berg et al. 2017) for increasing software engineers’ support for change initiatives and, thus,
to increase the likelihood of a successful change. Lenberg et al. (2017) identified three
underlying concepts with an expected significant impact on software engineers’ attitudes
toward organizational change, i.e., their knowledge about the outcome of the planned
change, their understanding of the need for change, and their feelings of participation in
the change process. Insights on the expected benefits of game-based retrospectives were
provided to the participants based on our experience from the pilot study. As for the second
concept, the reasons behind the initiation of the change were discovered by the participants

Table 3 Companies’ consent to carry out the research at different levels of organizational hierarchy

OKE Poland Dynatrace SentiOne

top-level management CEO CTO, COO
middle-level management development lead
low-level management team leader team leader team leader

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

themselves (see Table 6). In turn, the active participation of the employees in the change
process is a crucial characteristic of AR (Baskerville and Myers 2004; Staron 2020).

4.2 Research questions

To guide our study, we defined the following research questions:

RQ1) How do game-based retrospectives impact common retrospective problems?
RQ2) How do retrospective games impact teamwork qualities?
RQ3) What are the advantages and disadvantages of the adopted games?
RQ4) What are the lessons learned in adopting retrospective games?

4.3 Research context

Describing the research context is of importance as it allows the conditions under which
the results were produced to be understood (Petersen and Wohlin 2009). Our project was
a collaborative study between Gdańsk University of Technology and three software devel-
opment companies. We followed Susman’s AR design (Susman 1983) and conducted one
complete cycle of AR. The research in each host organization took between 4 to 8 months,
and the project was carried out by three two-person research teams. Each team was dedi-
cated to one company and consisted of the company representative (an internal researcher)
and the leader of the whole project (an external researcher) who also coordinated all teams.
Two Scrum teams from each company participated in the project. Since AR requires a
breadth of pre-understanding of the organizational environment (Coghlan and Brannick

Table 4 Participating teams and their compositions (SM denotes Scrum Master, while PO denotes Product
Owner)

OKE_A 1x Lead Programmer & SM OKE_B 1x Lead Programmer & SM & Proxy PO
2x Junior Programmers 1x Senior Programmer
1x Tester & PO 3x Programmers

1x Tester

Dyna_A 1x Team leader & PO & SM Dyna_B 1x Lead Developer & SM & PO
3x Senior Developers 1x Senior Developer
4x Developers 3x Developers
2x Junior Developers

Senti_A 1x PO Senti_B 1x PO
1x Quality Manager 1x Project Coordinator
1x Product Designer 4x Senior Research Engineers
2x Senior Developers 1x Junior Research Engineer
3x Developers 1x Linguist
1x Tester

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

2005), each host organization and the participating teams are described in the subsequent
subsections, while the compositions of the teams are summarized in Table 4.

4.3.1 OKE Poland (https:// oke. pl)

OKE Poland was established in association with international partners to create user-
friendly IT solutions. Currently, the company is mainly focused on improvement and
development in the hybrid TV platforms area.

Team A (OKE_A) implements a business-to-business platform that allows compa-
nies to outsource and hire people in order to maintain a flexible workforce. Most of the
implementation tasks are carried out by 2 junior programmers. The team also comprises
a tester and a lead programmer who also plays the role of Scrum Master. Since the tester
is the originator of the platform, he has also become the product owner.

Team B (OKE_B) develops and maintains a complex system which offers customer
management, service integration and management, and content management. Their cli-
ent is M7 Group, which is a pay-tv operator offering language-specific packages to over
three million subscribers in eight European countries. M7 provides its customers with a
wide variety of programs that can be watched at any time, any place, and via any screen.
Team B consists of 2 senior programmers with 10+ years of experience, 3 program-
mers, and 1 tester. The most experience programmer also leads the team and fulfills the
role of Scrum Master and Proxy Product Owner. He communicates with the Product
Owner regularly during the sprint. The whole team travels to the Netherlands a few
times per year to meet with the Product Owner and business stakeholders.

4.3.2 Dynatrace (https:// jobs. dynat race. pl)

Dynatrace builds intelligent software designed to help companies manage their applica-
tion performance and understand how the application performance impacts the users.
The delivered tools allow DevOps and admins to leverage full stack monitoring by
collecting data from across all components of a modern application and infrastructure
stack.

Team A (Dyna_A) maintains and evolves Dynatrace Managed, which is the on-
premise deployment model offered by the Dynatrace monitoring tool. The team is
responsible for maintaining the web page that presents the accounts and licenses as
well as providing proper activation emails and installation options. The team consists
of 9 developers with experience ranging from 2 to 20 years, who are led by the Product
Owner and Scrum Master in one person. Before becoming the team leader, this person
was also a developer in the team.

Team B (Dyna_B) develops a custom sign-in page for all elements of the Dynatrace
product. Their product is still in the development stage, so they can work at their pace,
because, in contrast to Team A, they are not bothered by bugs reported by the custom-
ers. The team includes 5 developers. Each developer is responsible for the whole prod-
uct. There are no divisions for front-end programmers, back-end programmers, and test-
ers. There are two senior developers, whereas the remaining team members have no
more than 5 years experience. The most experienced developer also leads the team and
plays the role of Scrum Master and Product Owner.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://oke.pl/
https://jobs.dynatrace.pl
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

4.3.3 SentiOne (https:// senti one. com/)

SentiOne builds a Conversational AI Platform – product providing state-of-the-art cus-
tomer service automation based on social listening and data analytics.

Team A (Senti_A) maintains and develops the front-end and back-end of SentiOne’s
applications, viz. Listen, React and Automate. The team consists of 5 software develop-
ers with experience ranging from 3 to 10 years, one Quality Manager, and one Software
Tester. The team has a dedicated Product Owner and Product Designer, which are repre-
sentatives of the Product Team. There was no Scrum Master.

Team B (Senti_B) works on a grant project. The main result of their work is a natural
language understanding engine. They make experiments and try different approaches to
deliver the best results every sprint. They work closely with Linguistics to prepare data-
sets and test outcomes. The team consists of 5 Research Engineers whose experiences
range from 0.5 years to 7 years, a Project Coordinator (specialized in NLP), a Linguist
representative, and a Product Owner. There was no Scrum Master.

4.4 Data collection and analysis

As recommended by DeLuca et al. (2008) and Easterbrook et al. (2007), we used several
data collection and data analysis techniques to reduce the overall risk to validity and to
increase the overall rigor of the study. During the diagnosing phase, the data originated
from interviewing. Then, during the action-taking phase, the internal researchers con-
ducted “complete participant observations” (i.e. the researcher was totally involved as
a participant) according to Spradley’s taxonomy (Spradley 1980). According to Seaman
(1999), software developers reveal their thought processes most naturally when com-
municating with other colleagues, so this communication offers the best opportunity
for a researcher to observe the software development process. Therefore, the internal
researchers wrote field notes on the observations on how participants interacted. Unfor-
tunately, during the review process of this paper, it turned out that they had missed
out writing down some important facts (e.g. specific examples of usefulness) and when
revising the paper, they had to resort to their memories.

Finally, we used both questionnaires and focus group sessions (Kontio et al. 2008)
for evaluation of our approach to form a fuller picture from a wider range of coverage
(Kaplan and Duchon 1988). While questionnaire results revealed team members’ per-
ceptions of retrospective games, focus group discussions allowed in-depth exploration
of the reasons why the participants thought the way they did. From a variety of forms
of focus group meetings (Staron 2020), we chose “moderated discussion” as it is suit-
able for generating a common understanding or common view on a topic. In this form,
participants discuss a set of predefined ideas and issues while the facilitator assures that
everyone has an opportunity to participate, and the discussion stayed focused (Staron
2020). A brief summary of the data collection techniques used at each phase of our AR
project is summarized in Table 5.

As for the questionnaire, the attitudes of the participants were assessed using individual
Likert-type items (Clason and Dormody 1994). For each statement, there were five choices:
Strongly Disagree (1), Somewhat Disagree (2), Neither Agree nor Disagree (3), Somewhat
Agree (4), and Strongly Agree (5) accordingly. We utilized diverging stacked bar charts as
well as spider charts to analyze the Likert-type items.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://sentione.com/
http://mostwiedzy.pl

Empirical Software Engineering

1 3

Ta
bl

e
5

 D
at

a
co

lle
ct

io
n

te
ch

ni
qu

es
 (N

ot
e

th
at

 w
e

di
d

no
t c

ol
le

ct
 d

at
a

du
rin

g
ac

tio
n

pl
an

ni
ng

 a
nd

 sp
ec

ify
in

g
le

ar
ni

ng
)

A
R

 p
ha

se
D

at
a

co
lle

ct
io

n
te

ch
ni

qu
e

D
at

a
so

ur
ce

O
bj

ec
tiv

e

D
ia

gn
os

in
g

un
str

uc
tu

re
d

in
te

rv
ie

w
te

am
 le

ad
er

s a
nd

/o
r s

cr
um

m

as
te

rs
To

 fi
nd

 th
e

ad
op

tio
n

of
 S

cr
um

 p
ra

ct
ic

es
 in

 th
e

pa
rti

ci
pa

tin
g

te
am

s.

se
m

i-s
tru

ct
ur

ed
 in

te
rv

ie
w

te
am

 m
em

be
rs

To
 id

en
tif

y
re

tro
sp

ec
tiv

e
pr

ob
le

m
s i

n
th

e
pa

rti
ci

pa
tin

g
te

am
s.

A
ct

io
n

ta
ki

ng
pa

rti
ci

pa
nt

 o
bs

er
va

tio
n

re
se

ar
ch

er
s

To
 ta

ke
 a

 c
lo

se
 lo

ok
 a

t h
ow

 th
e

ga
m

e-
ba

se
d

re
tro

sp
ec

tiv
es

 p
ro

ce
ed

.

Ev
al

ua
tin

g
qu

es
tio

nn
ai

re
te

am
 m

em
be

rs
To

 a
ss

es
s t

he
 a

do
pt

ed
 g

am
es

.
fo

cu
s g

ro
up

te
am

 m
em

be
rs

To
 d

is
cu

ss
 th

e
re

su
lts

 o
f t

he
 in

te
rv

en
tio

n
an

d
co

lle
ct

 “
le

ss
on

s
le

ar
ne

d”
 re

co
m

m
en

da
tio

ns
.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

We used content analysis to analyze and interpret the data from the focus group sessions.
Content analysis is a formal type of qualitative method for “subjective interpretation of the
content of text data through the systematic classification process of coding and identify-
ing themes or patterns” (Hsieh and Shannon 2005; Defranco and Laplante 2017). Content
analysis may be used in either an inductive or deductive way depending on the purpose of
the study (Elo and Kyngäs 2008). The fundamental difference between the two approaches
centers on how the initial codes or categories are developed (Cho and Lee 2014). Inductive
content analysis is used when former knowledge regarding the phenomenon under investi-
gation is limited or fragmented (Elo and Kyngäs 2008). In this approach, codes, categories,
or themes are derived from the data. In contrast, deductive content analysis is used when
the structure of analysis is operationalized on the basis of previous knowledge understood
about the topic (Elo and Kyngäs 2008; Defranco and Laplante 2017). Accordingly, the
deductive approach starts with predetermined codes, categories, or themes derived from
prior relevant theory, research, or literature (Cho and Lee 2014). In our study, we utilized
the deductive approach following Mayring’s procedure (Mayring 2014) that consists of:

a) research question,
b) theoretical-based definitions of categories,
c) theoretical-based formulation of coding rules,
d) revision of categories,
e) final working through the text, and
f) interpretation of the results.

5 Action research cycle

This section reports on all five phases of the conducted Action Research cycle, i.e. diag-
nosing, action planning, action taking, evaluating, and specifying learning.

5.1 Diagnosing

A prerequisite to determine an appropriate intervention is a detailed understanding of not
only the problematic situations but also the surrounding environment (Davison et al. 2004).
Thereby, we started with an investigation into the current adoption of Scrum practices.
Since each internal researcher was a member of one of the participating teams, we already
had information about 3 teams. Consequently, we conducted unstructured interviews with
the team leaders, scrum masters and developers of the remaining teams. Table 6 lists the
collected information. From this table, we can see that except for Dyna_A, the teams did
not used Scrum as it is intended to be used. The implementation of new user stories to
satisfy customer needs had a higher priority than following agile practices. Besides this,
OKE_B, Dyna_A, and Senti_B worked under time pressure as well as top-down changed
targets and priorities. Although all host companies had adopted agile methods, their trans-
formation to implement agility at an organizational level was still underway. As bureau-
cratic organizations, they relied on a traditional hierarchical and command-and-control
management and did not involve the teams when making strategic project decisions, which
contradicts self-managing teams (Nerur et al. 2005; Moe et al. 2012). Overall, our findings
suggest that neither organizational culture nor managers’ mindsets can be easily changed.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Ta
bl

e
6

 A
do

pt
io

n
of

 S
cr

um
 in

 th
e

pa
rti

ci
pa

tin
g

te
am

s

Te
am

; #
 te

am
 m

em
be

rs
Sc

ru
m

 c
om

pl
ia

nc
e

Sp
rin

t l
en

gt
h;

de
ve

lo
pm

en
t /

 m
ai

nt
en

an
ce

O
K

E_
A

; 4
N

o
D

ai
ly

 S
cr

um
 d

ue
 to

 th
e

fo
llo

w
in

g
re

as
on

s:
•

te
am

 m
em

be
rs

 u
su

al
ly

 h
av

e
on

ly
 a

 fe
w

 h
ou

rs
 o

f o
ve

rla
pp

in
g

tim
e

du
rin

g
th

e
w

or
kd

ay
,

•
te

am
 m

em
be

rs
 a

re
 d

ist
rib

ut
ed

 a
m

on
g

di
ffe

re
nt

 ro
om

s i
n

th
e

offi
ce

 sp
ac

e,
•

th
e

te
ste

r a
nd

 th
e

te
am

 le
ad

er
 a

re
 a

ls
o

en
ga

ge
d

in
 o

th
er

 p
ro

je
ct

s.
Sp

rin
t P

la
nn

in
g

is
 h

el
d

at
 th

e
be

gi
nn

in
g

of
 e

ac
h

sp
rin

t.
Sp

rin
t R

ev
ie

w
 a

nd
 S

pr
in

t R
et

ro
sp

ec
tiv

e
ar

e
m

er
ge

d
in

to
 o

ne
 m

ee
tin

g,
 w

hi
ch

 u
su

al
ly

 ta
ke

s p
la

ce
 o

n
a

re
gu

la
r

ba
si

s a
t t

he
 e

nd
 o

f e
ac

h
sp

rin
t.

1
w

ee
k;

40
%

 /
60

%

O
K

E_
B

; 6
D

ai
ly

 S
cr

um
 is

 h
el

d
ev

er
y

da
y.

Sp
rin

t P
la

nn
in

g
is

 d
on

e
by

 th
e

Pr
od

uc
t O

w
ne

r a
nd

 th
e

te
am

 le
ad

er
, w

hi
le

 th
e

re
su

lts
 a

re
 c

om
m

un
ic

at
ed

 to

th
e

de
ve

lo
pe

rs
.

Sp
rin

t R
ev

ie
w

 m
ee

tin
g

is
 re

pl
ac

ed
 b

y
a

Sp
rin

t R
ev

ie
w

 re
po

rt
in

 w
hi

ch
 e

ve
ry

 d
ev

el
op

er
 d

es
cr

ib
es

 th
e

fu
nc

-
tio

na
lit

y
th

at
 h

e/
sh

e
ha

s i
m

pl
em

en
te

d
in

 th
e

sp
rin

t.
Th

e
re

po
rt

is
 se

nt
 to

 th
e

Pr
od

uc
t O

w
ne

r.
Sp

rin
t R

et
ro

sp
ec

tiv
e

is
 u

su
al

ly
 sk

ip
pe

d,
 b

ec
au

se
 th

e
te

am
 c

on
st

an
tly

 w
or

ks
 u

nd
er

 ti
m

e
pr

es
su

re
 to

 d
el

iv
er

th

e
in

cr
em

en
t.

fle
xi

bl
e,

 1
 w

ee
k

du
rin

g
th

e
re

se
ar

ch
;

50
%

 /
50

%

D
yn

a_
A

; 1
0

St
ric

tly
 a

dh
er

e
to

 S
cr

um
, b

ut
 th

ey
 a

re
 fo

rc
ed

 to
 d

o
it.

 S
om

et
im

es
 a

 si
m

pl
ifi

ed
 v

er
si

on
 o

f M
ad

/S
ad

/G
la

d
or

 S
ta

rfi
sh

 h
as

 b
ee

n
us

ed
 d

ur
in

g
th

e
Sp

rin
t R

et
ro

sp
ec

tiv
e,

 b
ut

 o
nl

y
a

fe
w

 te
am

 m
em

be
rs

 c
on

si
de

r t
hi

s
ap

pr
oa

ch
 u

se
fu

l.
W

e
tra

ce
d

th
e

un
de

rly
in

g
ca

us
e

of
 th

e
pr

ob
le

m
 to

 th
e

re
pl

ac
em

en
t o

f s
tic

ky
 n

ot
es

 fo
r

w
rit

in
g

di
re

ct
ly

 o
n

th
e

w
hi

te
bo

ar
d,

 w
hi

ch
 le

ad
s t

o
th

e
si

tu
at

io
n

w
he

re
 o

nl
y

pa
rt

of
 th

e
te

am
 is

 in
vo

lv
ed

 in

w
rit

in
g.

B
es

id
es

, a
lm

os
t h

al
f o

f t
he

 te
am

 m
em

be
rs

 w
ou

ld
 n

ot
 a

tte
nd

 re
tro

sp
ec

tiv
es

 if
 th

ei
r a

tte
nd

an
ce

 w
as

 n
ot

 o
bl

ig
a-

to
ry

.

2
w

ee
ks

;
40

%
 /

60
%

D
yn

a_
B

; 5
D

ai
ly

 S
cr

um
, S

pr
in

t P
la

nn
in

g
an

d
Sp

rin
t R

ev
ie

w
 a

re
 c

on
du

ct
ed

 in
 a

cc
or

da
nc

e
w

ith
 th

e
Sc

ru
m

 G
ui

de
.

Sp
rin

t R
et

ro
sp

ec
tiv

e
is

 d
on

e
at

 ti
m

es
 a

nd
 th

er
e

is
 n

o
sp

ec
ifi

c
tim

e
fo

r i
t.

Th
e

m
ee

tin
gs

 a
re

 c
on

si
de

re
d

ra
th

er

bo
rin

g,
 b

ec
au

se
 th

ey
 d

o
no

t g
o

be
yo

nd
 th

e
ty

pi
ca

l t
hr

ee
 re

tro
sp

ec
tiv

e
qu

es
tio

ns
. N

ev
er

th
el

es
s,

on
ly

 o
ne

te

am
 m

em
be

r w
ou

ld
 sk

ip
 th

e
m

ee
tin

g
if

it
w

as
 n

ot
 o

bl
ig

at
or

y.

2
w

ee
ks

;
65

%
 /

35
%

Se
nt

i_
A

; 9
D

ai
ly

 S
cr

um
, S

pr
in

t P
la

nn
in

g
an

d
Sp

rin
t R

et
ro

sp
ec

tiv
e

ar
e

co
nd

uc
te

d
in

 a
cc

or
da

nc
e

w
ith

 th
e

Sc
ru

m
 G

ui
de

.
M

or
eo

ve
r,

al
l t

ea
m

 m
em

be
rs

 w
ill

in
gl

y
pa

rti
ci

pa
te

 in
 re

tro
sp

ec
tiv

es
.

Sp
rin

t R
ev

ie
w

 is
 re

pl
ac

ed
 b

y
a

D
em

o
m

ee
tin

g,
 w

hi
ch

 is
 o

rg
an

iz
ed

 e
ve

ry
 q

ua
rte

r b
y

th
e

Pr
od

uc
t T

ea
m

 to

up
da

te
 th

e
st

ak
eh

ol
de

rs
 a

bo
ut

 re
ce

nt
 k

ey
 c

ha
ng

es
 a

nd
 to

 p
la

n
fo

r t
he

 n
ex

t m
on

th
s.

In
 a

dd
iti

on
, B

ac
kl

og
 R

efi
ne

m
en

t i
s o

rg
an

iz
ed

 e
ve

ry
 sp

rin
t t

o
es

tim
at

e
th

e
ca

rd
s i

n
th

e
Pr

od
uc

t B
ac

kl
og

.

2
w

ee
ks

;
70

%
 /

30
%

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Ta
bl

e
6

 (c
on

tin
ue

d)

Te
am

; #
 te

am
 m

em
be

rs
Sc

ru
m

 c
om

pl
ia

nc
e

Sp
rin

t l
en

gt
h;

de
ve

lo
pm

en
t /

 m
ai

nt
en

an
ce

Se
nt

i_
B

; 8
D

ai
ly

 S
cr

um
, S

pr
in

t P
la

nn
in

g
an

d
Sp

rin
t R

ev
ie

w
 a

re
 c

on
du

ct
ed

 in
 a

cc
or

da
nc

e
w

ith
 th

e
Sc

ru
m

 G
ui

de
.

Sp
rin

t R
et

ro
sp

ec
tiv

e
is

 h
el

d
ve

ry
 ra

re
ly

, b
ec

au
se

 th
e

te
am

 w
or

ks
 c

on
st

an
tly

 u
nd

er
 th

e
pr

es
su

re
 o

f g
ra

nt

de
ad

lin
es

.
In

 a
dd

iti
on

, B
ac

kl
og

 R
efi

ne
m

en
t i

s o
rg

an
iz

ed
 e

ve
ry

 sp
rin

t t
o

es
tim

at
e

th
e

ca
rd

s i
n

th
e

Pr
od

uc
t B

ac
kl

og
.

A
ll

m
ee

tin
gs

 a
re

 a
dd

ed
 to

 th
e

ca
le

nd
ar

, h
ow

ev
er

 th
ey

 a
re

 re
sc

he
du

le
d

ve
ry

 o
fte

n.

2
w

ee
ks

;
90

%
 /

10
%

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Next, we focused on diagnosing the retrospective meetings. We carried out a series of
face-to-face semi-structured interviews across the team members. The interview protocol
was based on common retrospective problems identified by Kua (2013) and Matthies et al.
(2019) and was structured around the following questions:

• Do your retrospectives bring added value or are they a waste of time?
• Are your retrospectives too repetitive?
• Are your retrospectives thoroughly prepared and well structured?
• Do all participants contribute to the discussion or it is dominated by a few vocal peo-

ple?
• Is there a tendency to view your retrospectives as a chance to complain instead of a

chance to improve?
• Would you attend retrospectives if your attendance was not obligatory?

We chose interviews over a focus group because we were asking about sensitive issues,
so it would be uncomfortable answering honestly in front of other teammates (especially
the Scrum Master). Besides, the interviewees were guaranteed that sensitive information
would not be possible to trace back to individuals. Note that members of Senti_B were not
able to answer the questions, because the vast majority of them were new to Scrum and had
hardly any experience in retrospectives.

Table 7 summarizes the collected information. Although the participating teams varied
according to their adoption of Scrum, all of them encountered most of the common retro-
spective problems. Nevertheless, even though the problems occurred, they were not neces-
sarily severe. For instance, some Senti_A members pointed out that neither repetitiveness
nor “too many complaints” was a big issue. Moreover, as a consequence of these problems,
the interviewers raised several other issues, such as:

• the same ideas come up every time;
• there is not enough to talk about based on a single Sprint;
• there is no good discussion on how to improve the teamwork;
• wasting time on long, ineffectual debates on one issue while neglecting other issues due

to a lack of time;
• difficulties in writing down ideas expressed in long unstructured oral statements;

Table 7 Retrospective problems in the participating teams

Frequency of problem occurrence:
+ fewer than 1/3 of team members have noticed the problem (but at least one)
++ between 1/3 and 2/3 of team members have noticed the problem
+++ more than 2/3 of team members have noticed the problem

Retrospective problem OKE_A OKE_B Dyna_A Dyna_B Senti_A Senti_B

little added value ++ + +++ ++ + n/a
too repetitive +++ ++ + +++ +++ n/a
lack of structure / preparation + + + +++ n/a
unequal participation ++ +++ ++ + n/a
too many complaints + ++ + ++ n/a

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

• retrospectives are too short to come up with solutions to complex problems, so addi-
tional meetings should be planned;

• it is hard to prioritize issues and focus on the most important ones, because team mem-
bers want to discuss and explore potential solutions for all of the problems in one meet-
ing.

Note that most of the encountered difficulties had been introduced through inadequate
practices or resulted from an ad hoc approach. Brooks (1987) refers to them as “acciden-
tal difficulties” and claims that they can be addressed by a disciplined software engineer-
ing process. He also argues that the great leaps of progress in the past were accomplished
by eliminating accidental difficulties. In this research, we planned to adopt retrospective
games as a systematic approach to conducting retrospective meetings.

5.2 Action planning

The diagnosis phase provided valuable insights into the current situation. The collected
information confirmed that our original research problem was authentic, which is a prereq-
uisite for AR, and that the participating teams were appropriate to implement retrospective
games. Initially, we suggested implementing games that we had successfully adopted in our
previous study (Przybyłek and Kotecka 2017) except for Mad/Sad/Glad, which seemed to
be superseded by Mood++. All of these games were ranked as the most popular retrospec-
tive activities (Dzieciątek 2019). We wanted each game to be implemented twice in each
team, but we did not suggest the order in which the games would be introduced, leaving
this decision to the meeting facilitators.

Fig. 3 UML Activity Diagram representing the flow of the collaborative game process

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Drawing on Paulus and Nijstad’s (2003) group creativity model as well as the state-of-
the-art in group idea generation, we proposed a generic model of running a game-board
collaborative game. The model shows how to orchestrate the flow of information and ideas
(Fig. 3). The rationale and motivations behind our approach are as follows.

Firstly, we followed Osborn’s (1957) suggestion that breaking a problem down into dif-
ferent components makes idea generation more effective. Accordingly, each category in
a game is processed separately. The order in which to process the categories is indicated
by the facilitator, but usually she/he should adhere to the order in which they are listed in
Table 1.

Secondly, we wanted to have individuals participate in both individual and group brain-
storming sessions. Following the findings of Baruah and Paulus (2008), we decided that
individuals first generate their ideas in an unconstrained fashion by brainwriting, and then
proceed to brainstorming, where exposure to the ideas of others can stimulate additional
ideas due to associative processes (Korde and Paulus 2017). In brainwriting, each team
member silently writes on separate sticky notes his/her ideas, feelings, or feedback that
could be assigned to the processed category. It is important to have one idea per sticky note
(sticky notes will be clustered into themes). After a set amount of time, the participants
post their notes. Then, the facilitator reads each note aloud so that everyone can become
aware of it. The author can briefly explain the purpose of the note to assure a common
understanding. If anyone’s idea inspires others to write more, new sticky notes may be
posted. The facilitator, with the help of the team, groups related ideas into logical themes
as they are presented. Next, the themes are discussed one-by-one and corrective actions are
proposed. Finally, participants reach a consensus and develop an action plan to be imple-
mented for the next iteration.

Thirdly, we introduced an optional activity, i.e., prioritization & filtering. If there are too
many items to proceed, participants use dot-voting to prioritize and converge on the most
important ones. It is crucial to limit the number of items, because having too many alterna-
tives can inhibit one’s search of the full range of possible aspects of a problem (Chua and
Iyengar 2008). Besides, when participants are considering a broad ranging problem, they
tend to narrow their focus in order to gain consensus (Baruah and Paulus 2008). Each par-
ticipant is entitled to the same number of votes and she/he may place any number of her/his
dots on any item. Since people tend to conform to the majority view, even when they know
it is wrong (Asch 1956), participants should cast their votes all at once. When the voting is
over, the facilitator sorts the items based on the number of votes each received.

Furthermore, we prepared a questionnaire to capture the perception of each game and
its effects. The questionnaire comprised seven Likert-type questions (see Appendix 1). The
evaluation of all games would be done using one questionnaire sheet to make it easier to
assess each game against the others. We planned to distribute the questionnaire sheets just
after the meeting is over and then collect them back and store them until the next Retro-
spective. The team members would be allowed to change their assessments of previous
games when assessing a new game. Finally, we planned to conduct a focus group with
each team to gather further insights about their perceptions, opinions, and attitudes toward
game-based retrospectives. The discussion would be structured around six predefined ques-
tions (see Appendix 2).

We arranged a series of meetings with the Scrum Masters and team leaders to present
and discuss our proposal. We were open to changes in the agenda, but our condition was
to agree with all of the teams on the same set of games and questions for the questionnaire
and focus groups. During the discussion, it turned out that some teams that worked under
considerable time pressure not only were not able to conduct retrospective after each sprint,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

but also to spent time on learning the rules of the game at the beginning of each meeting.
Thus, it would take too much time to implement all of the games twice in these teams.
Accordingly, we agreed that it would be up to the facilitator to decide whether to imple-
ment a game twice. If the facilitator deems that a game has not demonstrated its full poten-
tial due to a bland sprint, she/he will introduce it again. Someone also suggested intro-
ducing one more game, namely 360 degrees appreciation, and the proposal was approved.
OKE_A also agreed to split the Review&Retrospective meeting into two separate meetings
as specified in the Scrum Guide (Schwaber and Sutherland 2020), while OKE_B agreed
to introduce the Sprint Retrospective at the end of each sprint. The outline of the common
intervention into all participating teams is illustrated in Fig. 4.

5.3 Action taking

With the help of the Scrum Masters, we started to implement the intervention as speci-
fied in the action planning phase. Some team members were so excited about retrospective
games that they asked for the documentation on the next game to prepare ahead for the
meeting. Nevertheless, even though all team members had been familiarized with the docu-
mentation, we still explained the game, since as shown by Robey et al. (2002) effective
training strengthens employees’ commitment to change.

After the second game was deployed in OKE_A, we came across the first problem – two
programmers left and were replaced by new ones. Consequently, the team decided to dis-
card the results collected so far and to introduce both games again. Moreover, OKE_A
and OKE_B committed themselves to implementing retrospective games in all subsequent
retrospective meetings in order to reduce the risk of a similar situation happening again.
Thereby, both OKE teams completed the research process first and we even conducted a
focus group meeting with them to discuss the results when the process was still in progress
in the other teams. Since both OKE teams claimed that Mood++ took too much time when
compared to other games, we asked the other teams to also introduce the Mad/Sad/Glad
game, which is a simpler version of Mood++. Later on, it turned out that employee turno-
ver was also a problem in Dyna_B (one developer left during the research) and Senti_B.

Another problem faced mainly by big teams was sickness absence or holidays. Some
teams mitigated this problem by playing most of the games twice, while others tried to
either postpone a game when someone was absent or repeat a particular game. Besides
this, in Senti_B, one team member, who works remotely full-time, attended the meetings
via Google Hangouts. The same approach was used occasionally in both SentiOne teams

Fig. 4 UML Activity Diagram representing the planned actions

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

when someone worked from home that day. The teams believed that this approach did not
affect the quality of the meeting.

Finally, the Dyna_A Scrum Master decided not to complete the questionnaire, because
he could be biased.

5.4 Evaluating

5.4.1 Questionnaires

The responses for each question are presented with diverging stacked bar charts (Fig. 5) as
proposed by Robbins and Heiberger (2011). From the charts, we can see that Dyna_B was
the most enthusiastic about the idea of retrospective games, while Dyna_A and OKE_A,
despite being the biggest skeptics in general, still found games that improved their retro-
spectives (e.g. Sailboat for OKE_A). We can also observe that opinions usually vary signif-
icantly within each team. Moreover, it is apparent that some teams did not like some games
and therefore graded them low in almost all aspects even though individual team members
had different perceptions. Specifically, OKE_A disfavored 5Ls and Mood++, OKE_B dis-
favored Sailboat, while both Dynatrace teams disfavored 5Ls.

Although overall, the retrospective games positively affected all evaluated aspects of the
retrospective meetings (Q1, Q3–Q6), the improvements might seem to be rather slight at
first sight. Nevertheless, even if a game positively affects the performance of just a few par-
ticipants, the whole team usually benefits from the ideas put forward by those participants.
The aspect that improved the most was “communication” (Q5), while the games that were
favored in all aspects by most of the teams were Sailboat and 360 Degrees Appreciation.

Surprisingly, some games received single “strongly disagree” responses even for “com-
munication” (Q5) or “easiness to play” (Q7). Accordingly, we decided to look into the
individual questionnaire sheets and analyze them jointly with our hand-written notes taken
during the participant observations to find an explanation for the low scores. In OKE_A,
the participant who understated the results was a programmer who was probably not aware
of the added value of retrospectives due to his low commitment to the project (he was
engaged in another project at the same time). As for OKE_B, the tester was an older man
who did not speak English. Usually, he had difficulty in comprehending the names of the
categories, so he did not like the idea of playing the games and he gave low scores. In
both SentiOne teams, there were individuals who did not like some games and rated them
low in most aspects. In Dyna_A, two experienced developers evinced a negative attitude
toward retrospective games from the very beginning and their attitude was reflected in the
scores. They said that code writing is their job rather than debating over and over again.
They believed that anything other than coding is just a waste of time. On the other hand,
in Dyna_B, one team member, who was very knowledgeable in Scrum, was also very keen
on running perfect retrospective meetings with the help of retrospective games. However,
if he did not like a game, he graded it low, especially in comparison with his teammates.
Accordingly, a “disagree” response does not necessarily mean that the game had a negative
impact. It may also mean that the respondent disliked the game or did not find a positive
impact regarding the evaluated aspect.

When it comes to Q2, the question turned out to be confusing and some team members
interpreted it in a different way than we expected. What we meant by “permanently adopt
the game” was to include the game in a toolbox of possible retrospective activities. As for
Q6, most of our team members had already been willing to attend retrospectives, so this

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Q1. The game produces better results than the standard approach

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

4 2 0 2 4 6 8

O
K

E
_A

4 2 0 2 4 6 8

O
K

E
_B

4 2 0 2 4 6 8

D
yn

a_
A

4 2 0 2 4 6 8

D
yn

a_
B

4 2 0 2 4 6 8

S
en

ti_
A

4 2 0 2 4 6 8

S
en

ti_
B

Q2. The game should be permanently adopted by your team

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

6 4 2 0 2 4 6

O
K

E
_A

6 4 2 0 2 4 6

O
K

E
_B

6 4 2 0 2 4 6
D

yn
a_

A
6 4 2 0 2 4 6

D
yn

a_
B

6 4 2 0 2 4 6

S
en

ti_
A

6 4 2 0 2 4 6

S
en

ti_
B

Q3. The game fosters participants’ creativity

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

6 4 2 0 2 4 6

O
K

E
_A

6 4 2 0 2 4 6

O
K

E
_B

6 4 2 0 2 4 6

D
yn

a_
A

6 4 2 0 2 4 6

D
yn

a_
B

6 4 2 0 2 4 6

S
en

ti_
A

6 4 2 0 2 4 6

S
en

ti_
B

Q4. The game fosters participants’ motivation and involvement

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

4 2 0 2 4 6 8

O
K

E
_A

4 2 0 2 4 6 8

O
K

E
_B

4 2 0 2 4 6 8

D
yn

a_
A

4 2 0 2 4 6 8

D
yn

a_
B

4 2 0 2 4 6 8

S
en

ti_
A

4 2 0 2 4 6 8
S

en
ti_

B

Q5. The game improves communication among the team members

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

5 0 5

O
K

E
_A

5 0 5

O
K

E
_B

5 0 5

D
yn

a_
A

5 0 5

D
yn

a_
B

5 0 5

S
en

ti_
A

5 0 5

S
en

ti_
B

Q6. The game makes participants more willing to attend the meeting

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

6 4 2 0 2 4 6

O
K

E
_A

6 4 2 0 2 4 6

O
K

E
_B

6 4 2 0 2 4 6

D
yn

a_
A

6 4 2 0 2 4 6

D
yn

a_
B

6 4 2 0 2 4 6

S
en

ti_
A

6 4 2 0 2 4 6

S
en

ti_
B

Q7. The game is easy to understand and play

360 Degrees
5L’s

Mood++
Mad/Sad/Glad

Sailboat
Starfish

2 0 2 4 6 8

O
K

E
_A

2 0 2 4 6 8

O
K

E
_B

2 0 2 4 6 8

D
yn

a_
A

2 0 2 4 6 8

D
yn

a_
B

2 0 2 4 6 8

S
en

ti_
A

2 0 2 4 6 8

S
en

ti_
B

Strongly Disagree Somewhat Disagree Neither Agree nor Disagree Somewhat Agree Strongly Agree

Fig. 5 Summary of responses for each question by team. The neutral responses (i.e., “Neither Agree nor
Disagree”) are displayed in gray; while negative responses (i.e., “Strongly Disagree” and “Somewhat Disa-
gree”) and those positive (i.e., “Somewhat Agree” and “Strongly Agree”) are shown in shades of red and
blue, respectively. The width of a colored bar is proportional to the number of the corresponding responses

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

is probably the reason why “Neither Agree nor Disagree” was the most common answer
regardless of the game.

A further examination was made from the perspective of the games by using spider
charts (Fig. 6). For each game and statement, we calculated the fraction of participants
who “somewhat agree” or “strongly agree” as well as those who “somewhat disagree” or
“strongly disagree,” hereafter jointly referred to as “agree” and “disagree,” respectively.
Since all games were considered easy to understand and play by almost all respondents
(Q7), we did not visualize this category. Likewise, we did not visualize Q2, because it was
understood differently by different team members.

Figure 6 shows that 360 Degrees Appreciation performed the best overall. Neverthe-
less, since this game is not a self-contained retrospective activity, it has (except 5Ls) the
worst ratio of positive to negative responses for Q1, which states that the game produces
better results than the standard approach. Among the other games, Sailboat, Starfish, and
Mad/Sad/Glad still performed quite well. Sailboat has the best ratio of positive to negative
responses overall, Starfish has the best ratio for Q1, while Mad/Sad/Glad has the fewest
negative answers. Furthermore, 5Ls is dominated by Sailboat, because for each aspect, the
latter has a better ratio of positive to negative responses. Finally, all of the games per-
formed well as for “communication” (Q5).

5.4.2 Focus groups

To generate more understanding on the outcomes and gain deeper insights into the experi-
ences and opinions of the participants, each internal researcher conducted a focus group

Starfish

0.1

0.3

0.5

0.7
Q1

Q3

Q4 Q5

Q6

Sailboat

0.1

0.3

0.5

0.7
Q1

Q3

Q4 Q5

Q6

Mad/Sad/Glad

0.1

0.3

0.5

0.7
Q1

Q3

Q4 Q5

Q6

Mood++

0.1

0.3

0.5

0.7
Q1

Q3

Q4 Q5

Q6

5L’s

0.1

0.3

0.5

0.7
Q1

Q3

Q4 Q5

Q6

agree
disagree
neutral

360 Degrees

0.1

0.3

0.5

0.7
Q1

Q3

Q4 Q5

Q6

Fig. 6 Spider charts of the perception of the adopted games. The answers from all teams are aggregated,
giving the larger teams more weight than the smaller ones. Blue filled circles refer to the fractions of
agree responses, red circles to the fractions of disagree responses, and gray stars to the fractions of neutral
responses

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

(Kontio et al. 2008) with each team to which he/she was assigned. The meetings took place
at the office of the participating companies, lasted about 30 min, and all team members
were present. Each session started with an introduction from the facilitator about the pur-
pose and process of the session; guidelines on how the participants should discuss; and
how the results would be used. Special emphasis was given to assure participants of the
anonymity of the discussions (no one will be identified with any comments or findings that
are reported) and to make them aware about the importance that their opinions represent
the real situation. Six questions were prepared (see Appendix 2) to ensure that the appro-
priate topics were covered and the discussion stayed focused. Audio recordings were made
of all of the focus group sessions for transcription.

An initial analysis of the transcribed material revealed that for every session, the
answers to each question were scattered through the whole discussion. The material was
then processed using a deductive content analysis (Elo and Kyngäs 2008; Mayring 2014).
We started with a set of predefined themes. Each theme corresponded to one of the six
questions that guided our focus groups. Furthermore, we defined three categories of codes:
team codes to refer to the team that generated the statement; object codes to point out the
object concerned by the statement; and description codes that characterize the object. Each
category contained a preliminary set of codes, which was extended during the analysis. The
final sets of codes were (underlines denote codes that were developed during the analysis):

• team codes: all teams, OKE_A, OKE_B, Dyna_A, Dyna_B, Senti_A, Senti_B
• object codes: game-based retrospective, questionnaire results, all games, Sailboat,

Mad/Sad/Glad, Mood++, Starfish, 5Ls, 360 Degrees Appreciation
• description codes: advantage, disadvantage, recommendation, explanation, like,

dislike, improvement, declination, surprising result, unsurprising result, discovery,
preference.

We analyzed the transcription to identify units of meaning and coded each unit with
at least one code from each category. To facilitate coding, we used Microsoft Excel.
Each unit was placed in a single row in the first column. We used a separate column for
each of the three categories of codes (i.e. team codes, object codes, description codes).
Table 8 provides some illustrative examples of coding of the discussion in Senti_B when
answering the second question. Next, we developed a central descriptive narrative of the
phenomenon under study for each focus group question. Ultimately, the outcome of our
content analysis was enriched with examples coming from the participant observation in
order to back up the findings. The final result is presented in the subsequent discussion.
Note that during the focus groups, when someone expressed an opinion, some other
participants either agreed with it, possibly adding something from themselves, or voiced
different opinions. In either case, usually there were a few participants who needed
encouragement to voice their opinions; so, we asked the question – “What is the opinion
of the rest of the team members?” If the great majority of team members agreed on a
particular view, it is presented as a team-level statement in the discussion below.

1. How do you assess the new way of running retrospective meetings, i.e., by playing a
retrospective game?

All of the teams except for OKE_B enjoyed game-based retrospectives and considered
the new approach valuable even though there were single opposing voices. OKE_A agreed

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Ta
bl

e
8

 C
od

in
g

ex
am

pl
e

un
it

of
 m

ea
ni

ng
te

am
 c

od
e

ob
je

ct
 c

od
e

de
sc

rip
tio

n
co

de

Th
e

ap
pr

oa
ch

 “
di

ffe
re

nt
 g

am
e

at
 e

ac
h

m
ee

tin
g”

 is
 n

ot
 g

oo
d,

 b
ec

au
se

 I
do

 n
ot

 li
ke

 if
 so

m
et

hi
ng

 c
ha

ng
es

 a
nd

th

er
e

is
 a

 n
ee

d
to

 le
ar

n
fro

m
 sc

ra
tc

h.
 {

A
no

th
er

 p
er

so
n

ag
re

ed
 o

n
th

is
 o

pi
ni

on
.}

Se
nt

i_
B

ga
m

e-
ba

se
d

re
tro

sp
ec

tiv
e

di
sl

ik
e,

 p
re

fe
re

nc
e

It
is

 w
or

th
 c

ha
ng

in
g

th
e

ga
m

e
af

te
r a

 lo
ng

er
 ti

m
e

of
 u

sa
ge

. {
A

 fe
w

 p
eo

pl
e

ag
re

ed
 o

n
th

is
 o

pi
ni

on
.}

Se
nt

i_
B

ga
m

e-
ba

se
d

re
tro

sp
ec

tiv
e

re
co

m
m

en
da

tio
n

O
ne

 g
am

e
w

as
 u

nu
su

al
. I

t w
as

 a
bo

ut
 p

ra
is

in
g

ea
ch

 o
th

er
. {

Th
e

fa
ci

lit
at

or
 re

ca
lle

d
th

at
 it

 w
as

 3
60

 D
eg

re
es

A

pp
re

ci
at

io
n.

}
Th

is
 g

am
e

is
 c

oo
l,

be
ca

us
e

it
gi

ve
s a

 d
iff

er
en

t v
ie

w
, a

nd
 it

 is
 e

as
y

to
 u

nd
er

st
an

d.
Se

nt
i_

B
36

0
D

eg
re

es
 A

pp
re

ci
at

io
n

lik
e,

 e
xp

la
na

tio
n

H
ow

ev
er

, i
f w

e
ra

n
th

is
 g

am
e

al
l t

he
 ti

m
e,

 th
at

 w
ou

ld
n’

t b
e

go
od

. T
hi

s g
am

e
is

 w
or

th
 c

on
du

ct
in

g
on

ce
 in

 a

w
hi

le
.

Se
nt

i_
B

36
0

D
eg

re
es

 A
pp

re
ci

at
io

n
re

co
m

m
en

da
tio

n

Th
e

va
rie

ty
 o

f g
am

es
 b

affl
ed

 u
s.

Se
nt

i_
B

ga
m

e-
ba

se
d

re
tro

sp
ec

tiv
e

di
sl

ik
e

It’
s o

ka
y

to
 c

ha
ng

e
ga

m
es

 fr
om

 ti
m

e
to

 ti
m

e,
 b

ec
au

se
 d

iff
er

en
t t

ea
m

m
at

es
 h

av
e

di
ffe

re
nt

 p
re

fe
re

nc
es

. I
f w

e
sti

ck
 to

 o
ne

 g
am

e,
 so

m
e

te
am

m
at

es
 m

ay
 fe

el
 e

xc
lu

de
d.

Se
nt

i_
B

ga
m

e-
ba

se
d

re
tro

sp
ec

tiv
e

re
co

m
m

en
da

tio
n

It’
s w

or
th

 c
on

du
ct

in
g

th
e

sa
m

e
ga

m
e

fo
r a

 fe
w

 sp
rin

ts
 to

 fu
lly

 u
nd

er
st

an
d

it
an

d
to

 m
em

or
iz

e
its

 ru
le

s a
nd

th

en
 sw

itc
hi

ng
 to

 a
no

th
er

 g
am

e.
 {

A
ll

te
am

m
at

es
 a

gr
ee

d
on

 th
is

 o
pi

ni
on

.}
Se

nt
i_

B
ga

m
e-

ba
se

d
re

tro
sp

ec
tiv

e
re

co
m

m
en

da
tio

n

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

that the games allowed them to improve their work efficiency as well as the Scrum pro-
cess. Among other things, they started to run the Daily Scrum; they decreased the pull
request evaluation latency by granting the approval permission to another programmer; the
availability of the Product Owner for the development team was increased; the Product
Owner became aware of many problems that the development team faced; the need to hire
a graphic designer was identified (this need was met shortly after the research process was
completed); MVC controllers were refactored to REST API with Angular. Finally, playing
the games also created a sense of community in the team.

OKE_B was the only team in which the new approach did not bring much value since
most of the game sessions ended with a similar conclusion, i.e., the main problems were
due to a communication gap between the Product Owner and the Development Team. Tak-
ing into account that the team worked under time pressure, playing games was consid-
ered too time-consuming. Furthermore, the Scrum Master viewed most of the games as
too childish. Nevertheless, the team agreed that retrospective games should be played at
times, for instance every third sprint, because the games still helped them to generate novel
insights, e.g. how to customize JIRA (shortly before our research started, the team under-
went a migration from TFS to JIRA).

As for Dyna_A, two team members would prefer not to use retrospective games in the
future. They believed that similar conclusions could be made in the course of standard ret-
rospectives, so there was no point in learning retrospective games. However, the rest of
the team members were in favor of the new approach. The team also suggested exploring
new retrospective games, such as Three little pigs and SWOT.1 They said that playing the
same game over and over brings similar comments, but when a new game with different
categories is introduced, it makes the participants think more deeply and results in novel
outcomes. As for Dyna_B, all team members were uniformly positive about the overall
experience.

In both SentiOne teams, only one team member did not like game-based retrospectives.
Senti_A said that the new way of running retrospective meetings gets participants engaged
and stimulates the imagination, which in turn generates more ideas to discuss. Thanks to
retrospective games, they began to specify backlog items more accurately and made devel-
opers be more involved in testing. Senti_B agreed that each game improved the meetings
as well as the teamwork regardless of whether it was liked or disliked by someone, because
it allowed them to elicit insights in a systematic way. They also concluded that they should
conduct retrospective meetings, but not necessarily after each sprint.

2. Should we use the games alternately from one meeting to another, or should we choose
any particular game to play all the time?

Both OKE teams, Dyna_A and Senti_A said that different games should be played inter-
changeably, because playing the same game over and over would be boring, while play-
ing a variety of games increases the chances of identifying a variety of issues. In contrast,
Dyna_B and Senti_B concluded that they would prefer to play the same game for several
sprints to fully comprehend it. Only after this learning period, they would like to switch to
another game. Senti_B also noticed that using the games alternately is desirable, because

1 If SWOT is run using the procedure presented in Fig. 3, it can be considered a collaborative game.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

team members have different preferences, so it would be hard to choose one game that sat-
isfies everyone.

3. What are your comments on the results (at that time, we presented a summary of the
responses using diverging stacked bar charts)?

OKE_A said that a game board in the form of a table is not attractive, so Mood++
and 5Ls received low scores. OKE_B claimed that in their project, the goal, threats and
problems usually remain the same. Accordingly, playing Sailboat more than once would
generate very similar results, thus they graded the game low. Both OKE teams agreed that
360 Degrees Appreciation produces worse results than the standard approach, because it
forecloses a full retrospective. Consequently, they graded the game negatively regarding
Q1 and Q2, even though they appreciated the positive influence of the game on the other
aspects. In contrast, Dyna_B gave 360 Degrees Appreciation high scores because it met
their expectations – they always left the meeting in a good mood.

Team members of Dyna_A and Senti_A were surprised that Sailboat was assessed mod-
erately, while, in fact, they liked the game as well as drawing its game board. For Dyna_A,
action items generated during the game also helped the team to elaborate a systematic
approach to analyzing and prioritizing bugs reported by customers. When it comes to
Dyna_B, they liked Sailboat so much that they were surprised that someone graded it nega-
tively with regard to Q1 and Q2.

Some Dyna_A members were also surprised that 5Ls received low scores even for com-
munication (Q5), since the game not only helped them to identify problems in communica-
tion within the development team as well as between the team and the Product Owner, but
also to solve these problems. However, other Dyna_A members as well as Dyna_B were not
surprised and stated that this was due to the fact that 5Ls has weird and confusing categories.

Senti_B said that the scores would have been better if they had played the same game
continuously for several sprints and only then moved on to the next one.

Finally, some Dyna_A members admitted that they had a negative attitude toward the
research, because they knew that they were going to be moved to other teams. Accordingly,
they had no interest in improving the teamwork, so they did not put much effort into the
assessment.

4. Are any of the games particularly useful in some situations/circumstances?

OKE_A said that 360 Degrees Appreciation is a great way to acknowledge program-
mers’ efforts and boost the motivation, while OKE_B and Dyna_B suggested that the game
seems to be suitable during the forming stage of team building, when members are discreet
with their behavior. Besides this, Dyna_B switched to a standard approach after the game
finished in order to continue the retrospective and to develop action items. In turn, most of
the Dyna_A members had been reluctant to play this game. However, after the first session,
they admitted that the game resulted in a better atmosphere. Moreover, they said that the
game is particularly useful when there are misunderstandings or arguments between team
members. During one of their implementations of that game, they found out that some ten-
sions between them were due to different approaches to developing a particular feature.
Thanks to the game, they also agreed on a solution that combined both approaches. Nev-
ertheless, all teams agreed that 360 Degrees Appreciation should be used less often than
other games, for instance, every two months.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Both Dynatrace teams also suggested that Mad/Sad/Glad and Sailboat are suitable
to start the adventure with retrospective games, since they are easy to learn and play. In
Dyna_A, playing Mad/Sad/Glad revealed that communication between them and another
team that was supposed to help with some part of the project was inadequate because of the
other team. As an action item, the team leader started to talk to that team, which resulted in
better communication and a faster development process. Moreover, Dyna_B recommended
using Starfish when the team wants to discuss a specific issue in a systematic way. This
game helped them to realize that they had wasted too much time on up-front analysis and
planning instead of implementing a feature and then discussing it with the users. Thanks
to Starfish, they shifted into more agile ways of developing software. Subsequently, they
figured out that some features that they had considered as worthless, in fact, had only been
used in a wrong way.

When it comes to Senti_A, they stated that it is difficult to choose one game over
another because all of them except 360 Degrees Appreciation are of the same type with
just slightly different formats.

5. What are the advantages and disadvantages of each game and why did some games
perform better than the others?

Answers to this question were given throughout the whole meeting. Recurring opinions
are summarized in Table 9. There were also some individual opinions, e.g. “Sailboat pre-
vents team members from expressing their personal feelings on what they liked or disliked
about the Sprint,” but we discarded them. Interestingly, the Dynatrace teams suggested
extensions to the games they used during the research. They proposed converting 360
Degrees Appreciation into 360 Degrees Feedback by allowing for negative comments. In
addition, Dyna_B proposed extending Sailboat and Starfish with an Appreciation category.

6. Have retrospective games helped your team mitigate some of your retrospective prob-
lems?

At this point, we asked each team to look back at the retrospective problems they had
encountered before our project started (Table 7) and consider whether retrospective games
helped them to mitigate the problems. All of the teams indicated that the introduction of
retrospective games only partially solved the “little added value” problem. Actually, we
expected such answers. As a side effect of our project, we found out that the main causes
of reducing the frequency of retrospective meetings were not the retrospective itself, but
organizational dysfunctions. Issues such as difficulties in communication between develop-
ers and the Product Owner or between different teams, forcing teams to overload the Sprint
Backlog, and assigning people to multiple Scrum teams were raised during retrospectives
before our project started, but nothing was done since the solution would either violate the
corporate governance or required corrective actions at the organizational level. This impos-
sibility caused frustration, which in turn caused teams to skip retrospective meetings. We
also did not try to deal with these issues, since it was out of the scope of our research and
the agreement with the host organizations on carrying out the project did not authorize
such intervention.

On the other hand, we expected our intervention to solve other retrospective problems
faced by the teams. However, only one problem, namely “unequal participation,” was fully
solved in all of the teams. As for the other problems, they were mitigated to some degree.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Ta
bl

e
9

 A
dv

an
ta

ge
s a

nd
 d

is
ad

va
nt

ag
es

 o
f s

ix
 re

tro
sp

ec
tiv

e
ga

m
es

G
am

e
A

dv
an

ta
ge

s
D

is
ad

va
nt

ag
es

Sa
ilb

oa
t

- c
le

ar
, d

ist
in

ct
iv

e
ca

te
go

rie
s

- u
se

s m
et

ap
ho

rs
 to

 st
im

ul
at

e
cr

ea
tiv

ity
- h

el
ps

 te
am

 m
em

be
rs

 to
 a

lig
n

go
al

s

- m
ay

 b
ec

om
e

bo
rin

g
if

us
ed

 to
o

of
te

n,
 b

ec
au

se
 th

e
vi

si
on

 a
nd

 ri
sk

s
ra

re
ly

 c
ha

ng
e

th
ro

ug
h

th
e

pr
oj

ec
t

M
ad

/S
ad

/G
la

d
- l

et
s b

ad
 e

m
ot

io
ns

 a
nd

 to
xi

c
fe

el
in

gs
 o

ut
- s

im
pl

e
ru

le
s

- n
ot

 ti
m

e-
co

ns
um

in
g

- M
ad

 c
at

eg
or

y
is

 to
o

si
m

ila
r t

o
Sa

d
ca

te
go

ry
- r

es
tri

ct
s t

he
 d

is
cu

ss
io

n

M
oo

d+
+

- m
ak

es
 te

am
 m

em
be

rs
 k

in
de

r t
ow

ar
d

ea
ch

 o
th

er
- a

llo
w

s t
he

 te
am

 d
is

cu
ss

 a
ny

 id
ea

s
- t

im
e-

co
ns

um
in

g

St
ar

fis
h

- n
am

es
 o

f t
he

 c
at

eg
or

ie
s e

xp
lic

itl
y

ca
ll

to
 a

ct
io

ns
- s

om
et

im
es

 it
 is

 n
ot

 o
bv

io
us

 to
 w

hi
ch

 c
at

eg
or

y
an

 id
ea

 sh
ou

ld
 b

el
on

g
- t

im
e-

co
ns

um
in

g

5L
s

- n
am

es
 o

f t
he

 c
at

eg
or

ie
s a

re
 c

on
fu

si
ng

 fo
r n

on
-E

ng
lis

h
na

tiv
es

- f
uz

zy
 b

ou
nd

ar
ie

s b
et

w
ee

n
th

e
ca

te
go

rie
s

- t
im

e-
co

ns
um

in
g

36
0

D
eg

re
es

 A
pp

re
ci

at
io

n
- s

tre
ng

th
en

s t
ea

m
 re

la
tio

ns
hi

ps
 a

nd
 tr

us
t

- f
os

te
rs

 se
lf-

es
te

em
- a

lle
vi

at
es

 c
on

fli
ct

s

- a
 te

am
 b

ui
ld

in
g

ac
tiv

ity
 ra

th
er

 th
an

 a
 S

pr
in

t r
et

ro
sp

ec
tiv

e
- p

re
cl

ud
es

 c
on

str
uc

tiv
e

cr
iti

ci
sm

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Dyna_B and Senti_A benefited the most from the new approach to the Sprint Retrospective
since 3 out of 5 identified problems were fully solved. Note that although Senti_A originally
believed that their participation in the discussion had been even, they acknowledged that
retrospective games improved the situation. Besides this, Dyna_A claimed that the introduc-
tion of games did not reduce the number of complaints, but this was not a problem because
their complaints usually revealed actual problems, while our approach allowed them to see
the importance of the problems (e.g. when all team members wrote almost the same com-
ment). Consequently, it was easier to decide which problems should be tackled first.

5.5 Specifying learning

In this section, we derive eight lessons learned based on the findings from the
interviews (Section 5.1), questionnaires (Section 5.4.1), focus groups (Section 5.4.2)
as well as our impressions from the participant observations. The sources of evidence
for each lesson learned can be traced in Table 10. We believe that our lessons will be
useful for practitioners interested in improving their retrospectives as well as for other
researchers interested in investigating other collaborative games. In short, they suggest
that game-based retrospectives are usable and useful even though not everyone likes
them.

5.5.1 Lesson 1: Retrospective games provide meeting diversity, which encourages
new perspectives and helps teams bring up new ideas

By changing the way retrospectives are run, not only retrospective games break
the habitual routine, but they also encourage teams to look back at the Sprint from
varying viewpoints. In our experience, the former prevents anyone to be half-asleep
(all participating teams occasionally experienced such situations during traditional
retrospectives), while the latter allows teams to generate new insights, uncover new
opportunities, and identify novel solutions. The overall result is that more ideas
are generated. Nevertheless, according to the Cognitive Network Model (Santanen
et al. 2000), people always like to use familiar solutions to resolve the problems they
encounter. Our experience confirms that introducing a new game at every meeting may
be overwhelming for some teams, hence we advise Scrum Masters to ask the team
whether they are ready to learn a new game or would prefer to continue practicing the
previous one(s).

Table 10 Sources of evidence that inform our lessons learned

LL Lesson Learned, PO Participant Observation, I Interview, a Analysis of individual questionnaire sheet

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

5.5.2 Lesson 2: Retrospective games drive participants into a collaborative mindset,
but do not lead to breakthrough findings

In our view, although retrospective games have not proved to be enjoyable enough to trig-
ger a flow state, they still keep participants more engaged and focused as they require par-
ticipants to perform a specific task at each stage of the meeting. Moreover, according to
our observations retrospective games elicit fun (participants smiled more often) and posi-
tive emotions (there was no mutual hostility even if difficult issues were discussed), which
improves work satisfaction, breaks down barriers, and drives participants into a collabora-
tive mindset. Consequently, more ideas are brought out. Furthermore, the closer and more
intensive interaction between team members is a good way to socialize, and improves the
team spirit (it was much easier to find volunteers to pursue action items). Unfortunately,
even though playfulness and interaction are central in stimulating creativity, our findings
suggest that the role of retrospective games in discovering speculative breakthrough oppor-
tunities is exaggerated.

5.5.3 Lesson 3: Retrospective games encourage equal participation

As retrospective games require each participant to write down his/her ideas on post-it
notes, it is our experience that they not only challenge less vocal people who do not feel
comfortable raising issues, but also some participants with passive attitude to take a more
active role. As for the former, they appreciated that finally they had an opportunity to voice
out. In turn, when it comes to participants with passive attitude, the majority were acti-
vated by games, but two individuals with a negative attitude toward retrospective meet-
ings still remained withdrawn. Besides, by encouraging equal participation, retrospective
games seem to contribute to the divergence of views, which in turn creates the potential for
constructive controversy. Overall, as a result of game-based retrospectives, more ideas are
contributed and more opinions are voiced out.

5.5.4 Lesson 4: Retrospective games organize both the meeting as well
as the discussion

Retrospective games provide structure for retrospective meetings and focus the discussion.
As a consequence, we observed a paradigm shift from complaint-orientation to constructive
solution-oriented discussions. Before implementing retrospective games in Dynatrace as well
as SentiOne teams, barren discussions and complaints sometimes went on so long that there
was not enough time to discuss all essential problems, thoroughly identify the sources of the
problems or propose action items. Thereby, there was often an impression of unfinished discus-
sion. Thanks to retrospective games, it was easier to identify essential problems (usually those
that were raised by a number of post-it notes) and discuss them in the context of their potential
resolutions, which enhanced the meeting productivity. On the other hand, in both OKE teams,
game-based retrospectives usually lasted longer than their traditional counterparts as the discus-
sions were much more comprehensive. Nevertheless, this may be considered as a disadvantage
by some traditional managers especially if they control the team with the help of metrics.

According to our observations, retrospective games also make it easier to facilitate the
meeting and reduce the preparation effort. Indeed, to some degree, game-based retrospectives
are self-facilitated. For instance, during the second round of game-based retrospectives, when
all the rules and steps were known, different developers voluntarily took over the role of a

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

moderator and facilitated the meeting. This approach was especially welcomed by Dyna_A,
whose some team members had complained that their Scrum Master had overcontrolled the
retrospective meetings.

5.5.5 Lesson 5: Not all agile team members have an agile mindset

Based on our experience, we think that developers who perceive retrospective meetings as a
waste of time probably will not change their minds after implementing retrospective games,
especially if their companies focus too intently on short-term efficiency gains (indeed, in all
participating teams, retrospective meetings were sometimes canceled or postponed because of
a more important meeting or the time pressure to complete the work). Furthermore, retrospec-
tive games may be perceived as childish and be embarrassing for reserved people. Indeed,
some participants who considered themselves as “serious developers” insisted that they “could
have contributed more to the project by coding instead of playing retrospective games”. As
such, we believe that it is better not to force them to take part in retrospectives, because they
may bring negative energy and even sabotage the meeting. However, agile coaches may per-
ceive our view to be too simplistic and even dangerous as conducting a retrospective without
the whole team present goes against the Scrum Guide. Accordingly, this issue requires further
investigation. We also found that there are usually some individuals who do not contribute
to the meeting, but take a free ride on those who do contribute. Probably, the best solution
for both issues would be to find the right people – those who can leverage agile practices in
the way that they are intended – at the stage of team building. Our discussion may be sup-
plemented by a reference to Ellis et al. (2014) who stated that the effectiveness of systematic
reflection depends on person-based factors and is higher for learning-oriented people who are
conscientious and emotionally stable, can accurately evaluate their performance, and enjoy
effortful cognitive activity.

5.5.6 Lesson 6: If participants are not afraid to voice their opinions, data obtained
through a focus group is more reliable than through a questionnaire

In our judgment, the feedback on our intervention obtained during the focus groups is more
positive than that obtained through the questionnaires. The reason for this difference is prob-
ably that opinions put forward during a focus group must be supported by a reasonable expla-
nation and hence they must be genuine. On the contrary, if no justification is required in a
questionnaire, it is likely that some participants may try to sabotage the results or they simply
do not reflect deeply on the results.

5.5.7 Lesson 7: Scrum masters should have a toolbox of possible retrospective games
and help their teams empirically determine which games are effective for them

The variability in the responses of individuals as well as the teams to the games is quite
high. This means that what works for some may not work for others and that the prefer-
ence of the game probably depends on the personality of the person. Nonetheless, some
general findings on the advantages and disadvantages of each investigated game are pre-
sented in Table 9, while below we present further guidelines for Scrum Masters. In our
view, Sailboat is a good choice for teams who are starting their adventure with game-
based retrospectives. It is simple, but it keeps all team members pulling in the same
direction and helps them think outside of the box, which results in fresh new ideas.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Besides, drawing a sailboat together promotes a sense of community. However, after a
few sessions, we advise teams to switch to Mad/Sad/Glad or Starfish, because otherwise
Sailboat may become boring. Mad/Sad/Glad has the most straightforward rules and the
quickest play time. In contrast to Sailboat, it allows the team to discuss the past Sprint
from the feeling perspective and release negative emotions. Nevertheless, according to
the participants’ experience, the game does not cover all of the topics that should be
discussed during a retrospective, while running the game does not directly generate con-
structive suggestions for improvements. Mood++ addresses the latter and provides an
opportunity for team members to compliment each other. In contrast to Mad/Sad/Glad,
Starfish covers all aspects of the traditional agile retrospective and allows for a straight-
forward application of the findings, as stated by some participants. Another game that
also covers all aspects of the traditional agile retrospective is 5Ls. However, according
to our findings, its category names may cause confusion and anger among participants,
so we do not recommend it to teams who have just started running game-based retro-
spectives. Finally, a completely different type of game is 360 Degrees Appreciation. It
helps the team to loosen up a bit and relax after a stressful sprint. It is our experience
that the generated feedback is usually enthusiastically welcomed and boosts the team
spirit. Nevertheless, the game is not a standalone retrospective technique.

5.5.8 Lesson 8: Organizational culture and managers’ mindsets are still significant
barriers to the successful adoption of agile practices

Our observations agree with findings of other researchers (Nerur et al. 2005; Fruhling
and Tarrell 2008; Cao et al. 2009; Hanslo and Mnkandla 2018; Gupta et al. 2019; Ver-
sionOne, 2020; Spiegler et al. 2021) that organizational culture is a significant barrier
to the successful adoption of agile practices especially for bureaucratic organizations
steeped in plan-driven methods. Due to the tayloristic past, project managers tend to
stick with traditional viewpoints on hierarchy in terms of reporting, resource allocation,
decision-making, etc. and are reluctant to grant leadership roles to the teams (Moe et al.
2012; Spiegler et al. 2021). However, agile methods require a shift from command-and-
control project management to shared decision-making and self-management teams,
where project managers are facilitators who coordinate collaborative efforts and create a
supportive organizational context (Nerur et al. 2005; Dybå et al. 2014b; Theobald et al.
2020). Therefore, in order to enjoy the full benefits of Scrum, agile values and princi-
ples must be adopted not only at the team level but also at the organizational level.

Moreover, we found that continuous process improvement is hard to achieve even
though inspect-and-adapt cycles and reflection are central concepts in agile develop-
ment. In 5 out of 6 teams participating in the project, the implementation of Scrum
deviated from the framework. In all cases, the deviations covered up organizational dys-
functions which, if addressed and removed, would allow the team to be more effec-
tive and efficient. What is more, in our opinion such dysfunctions can be discovered
in the course of traditional retrospectives. In turn, the main reason for reducing the
frequency of retrospective meetings was not the way in which the meetings were run,
but unproductive discussions on recurring problems that were beyond the control of the
team (e.g. unavailability of the Product Owner for requirements clarification, lack of
communication between Scrum teams, or distribution of team members across multiple
rooms). Indeed the phenomenon of repeating discussions was also experienced by teams

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

investigated by Lehtinen et al. (2017). This again indicates that making the transition
to the agile mindset (Schön et al. 2017; Miler and Gaida 2020; Özkan et al. 2020) and
understanding agile values is still challenging for some companies. Taking into account
that we were also not authorized to fix organizational dysfunctions (the scope of our
agreement was limited to improving retrospectives), we decided not to start a new AR
cycle, because we believed that this would not bring much added value.

6 Threats to validity

Although the concept of research validity has been discussed widely in the context of
controlled experiments, surveys, and case studies, as for AR, the literature is very scarce.
Admittedly, Baskerville and Wood-Harper (1998) identified seven validity criteria for AR
in Information Systems, but their set of criteria is not in line with any of the well-known
validity systems and thus it is probably difficult to use. No wonder action research studies
do not typically discuss possible threats.

Recently, Staron (2020) proposed a validity system for AR in the context of software
engineering, which is based on the taxonomy by Cook and Campbell (1979). Accordingly,
his taxonomy distinguishes between four types of validity, i.e. construct, internal, external,
and statistical conclusion validity. However, the campbellian validity system was designed
from the viewpoint of quantitative research; thus, in order to be adopted by action research-
ers, it must be refined to include one more aspect of the validity, namely reliability, which
has been commonly used in qualitative research such as case studies (Yin 2018). Thereby,
in the context of AR, we propose to evaluate the validity from five perspectives that can be
summarized as follows:

• construct validity reflects to what extent the operational measures truly represent the
underlying realities of the intervention;

• internal validity describes the extent to which the observed effect (intervention out-
puts) is caused only by the intervention;

• external validity concerns to what extent the results of the study can be applied to
other settings, and to what extent the results are of interest to other people outside of
the participating organizations;

• reliability considers the extent to which the data and the analysis are dependent on the
specific researchers;

• statistical conclusion validity refers to the appropriate use of statistics to infer about
the correlation between treatment and outcome.

In the following subsections, we discuss the validity of our research from the first four
perspectives. The fifth perspective, i.e., the statistical conclusion validity, is not relevant to
our research as we did not employ inferential statistics.

6.1 Construct validity

The main limitation of our study is that the impact of retrospective games was evaluated
based on the perceptions, feelings, experience, and memory of the participants rather than

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

more objective measurements (e.g., the number of evidence-based valuable ideas gen-
erated). However, objective measurements would be useless in our study. Each sprint is
unique; thus even conducting retrospectives with the same method must generate different
outputs for each sprint.

Relying on human input creates several social threats to construct validity. As the partic-
ipants were pre-informed about the aim of the intervention as well as the kind of improve-
ments we expected, they could have adjusted their behavior accordingly or answered what
the researchers wanted to find (Staron 2020). Moreover, some people tend to provide
positive feedback regardless of their real opinion (Robson 2002). To mitigate the social
threats, all participants were informed up-front that only honest responses were useful for
us because we wanted to filter out those games that do not improve retrospective meetings.
Besides, during the focus groups, the participants were encouraged to criticize the games
and to point out the difficulties and limitations faced by them when running the game-
based retrospectives.

Another limitation related to the trustworthiness of the participants is that they could
have intentionally tried to influence the results to sabotage the study. For instance, those
who hated retrospective meetings might have been interested in findings that retrospec-
tive meetings are not productive regardless of being run in the traditional or game-based
approach. In addition, some individuals just did not put much effort into giving thoughtful
feedback.

Apart from the gaming activity, we also introduced other improvements to retrospec-
tive meetings (e.g., a hybrid brainwriting/brainstorming approach). Accordingly, the “real”
intervention that the teams received was actually a combination of introducing both (1)
retrospective games; and (2) the generic model of orchestrating the flow of information
and ideas in the course of the game. Furthermore, in both OKE teams, our main interven-
tion was taken in parallel with other improvement activities. In OKE_A, the joint Sprint
Review/Retrospective meeting was split into two separate meetings, while in OKE_B, the
Sprint Retrospective began to occur regularly. Nevertheless, OKE_A turned out to be the
greatest skeptics, while the results from OKE_B did not significantly differ from the others.

Another potential threat to construct validity is researcher expectancy bias, meaning that
we could have interpreted evidence collected according to our expectations and beliefs.

Lastly, a misunderstanding of the questionnaire statements could have influenced the
responses. Actually, this was the case for statement Q2 and thus we did not interpret the
corresponding responses, which is a limitation of our study.

To mitigate all of the aforementioned threats, we also utilized investigator, data source,
and method triangulation (Denzin 1970; Cook and Campbell 1979; Jick 1979; Davison
et al. 2004). Three different investigators collected the data from three different companies
using interviews, questionnaires, focus groups, and participant observations.

6.2 Internal validity

Whenever conducting research in a real-life industry setting, not all variables can be con-
trolled. The main threat to internal validity is that factors other than our intervention could
have influenced the results. Firstly, different runs of a game naturally produce richer or
poorer outputs depending on what has happened in the sprint as well as the commitment
and mood of the team members in the reflection process (Poth and Riel 2020 have observed
that participants’ moods and engagements heavily influence the quality of the brainstorm-
ing session). Secondly, there were a few developers who hated the meetings and so gave

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

low scores to all games. If such a developer was absent, the game automatically avoided
one “disagree” response. In order to reduce both of these threats, we recommended imple-
menting each game twice.

Thirdly, the order in which the games were introduced could also have biased the
results, e.g. in favor of games that were introduced later when the generic flow orchestra-
tion model was known or in favor of the first presented game due to the novelty effect. To
reduce this threat, we did not suggest the order in which the games were introduced but left
this decision to the meeting facilitators. In this way, the order was different for each team.

Fourthly, the facilitators of the retrospectives varied among the teams. There is a threat
that the facilitator involvement influenced team members in generating more ideas, which
in turn affected the outcome of the retrospective meetings. However, variation in the facili-
tators is unavoidable in a study conducted in three companies.

Fifthly, the diagnosing phase might have biased the participants because we asked about
the problems with their retrospectives and therefore we indicated that the practice needed
to be improved.

Sixthly, our participants were subject to Hawthorne Effect, i.e., they might have
improved their behavior simply because they were being observed.

Finally, as action research takes a longer period of time, people join or quit teams, which
biases the comparison before and after the intervention. Indeed, we lost single participants
during the project.

6.3 External validity

The problem of generalizability from single cases is a common and recurrent problem in
industry (Sjøberg et al. 2007b; Ghaisas et al. 2013). Wieringa and Daneva (2015) argue
that the variability of the real world implies that we will never have universal theories in
software engineering. At the same time, they emphasize the utility of middle-range theo-
ries that balance generality with practicality. Practitioners who want to apply a middle-
range theory to their particular case should evaluate whether the theory is true for their
case, or perhaps needs to be adapted (Wieringa and Daneva 2015).

Generalization from an AR project depends on contextual similarity and is usually referred
to as transferability (Meyer 2000). A prerequisite for transferability is a rich and relevant con-
text description. Thereby, much attention in our paper is devoted to this. Not only did we
report all steps of our AR project as well as the procedure to conduct a game-based retrospec-
tive, but also the interview protocol, focus group questions, and questionnaire items which we
used in the different phases of our research. We believe that the provided details will allow
other researchers or practitioners to easily replicate our study in another organization.

The key question is to which contexts our findings are applicable. To conduct our
research, we chose a context which was suited to the adoption of retrospective games, i.e.,
all participating teams had experienced common problems with retrospectives. Therefore,
our findings are not representative for teams that do not encounter obstacles to effective
retrospective meetings. Besides, 5 out of 6 participating teams suffered organizational dys-
functions. Furthermore, our intervention was implemented in on-site teams that conducted
face-to-face meetings. As observed by Griffin (2021) conducting an effective remote meet-
ing is more challenging than a face-to-face one. Thereby, our findings are also not rep-
resentative for distributed teams that run online remote retrospectives. Nevertheless, the
concept of analytic generalization allows us to claim that our findings are generalizable to
teams using any agile method, even though we studied only Scrum teams.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

We are aware that a replication of our study for different teams will likely lead to dif-
ferent game profiles simply because the new participants will have different preferences.
However, the approach itself is systematic and generic; a team experiencing problems with
retrospectives may follow our procedure to find retrospective games that suit them best and
improve their retrospective practice. Besides, we believe that the lessons learned that we
draw are directly applicable to other agile teams with similar contexts to ours.

6.4 Reliability

An important question in qualitative research is whether the findings are consistent with
the data collected. In order to improve reliability, we developed and reported both the inter-
view protocol as well as the focus group protocol. All focus group sessions were audio
recorded and then transcribed. The transcripts from each host company were first indepen-
dently coded and analyzed by the internal and the external researcher (investigator trian-
gulation), and then the results were jointly discussed while the differences in coding were
resolved. We also provided information on how to code the collected data. The final narra-
tion was proposed by the external researcher and reviewed by and agreed with all internal
researchers.

Nevertheless, some of our findings are based on data collected in an ad hoc, unsystem-
atic manner. Each internal researcher as an employee of one of the host companies, often
received spontaneous feedback on the intervention during their daily work on different
occasions (e.g. chatting during lunch time and breaks). Because such chats were unplanned
and initiated by the teammates, they did not follow any protocol. This kind of feedback
was then documented superficially as the internal researchers were usually busy with their
professional duties and responsibilities in the workplace. Although this approach to data
collection is something inevitable during participatory observation, which is an inherent
part of AR (Baskerville and Wood-Harper 1998), it compromises the reliability since the
process of data collection and analysis cannot be repeated in exactly the same manner.

7 Implications for research and practice

This study extends the body of knowledge on the Sprint Retrospective. Prior literature has
mainly focused on: (1) the process and steps of a retrospective (Derby and Larsen 2006;
Rubin 2012; Kua 2013; Andriyani et al. 2017; Schwaber and Sutherland 2020; Loeffler
2017; Mas et al. 2018); (2) specifying the techniques of conducting a retrospective meeting
(Gonçalves and Linders 2014; Roden and Williams 2015; Krivitsky 2015; Lehtinen et al.
2015; Caroli and Caetano 2016); and (3) recommendations on how to make retrospectives
effective (Babb et al. 2014; Lehtinen et al. 2017; Gaikwad et al. 2019; Mesquida et al.
2019; Marshburn 2018; Matthies et al. 2019). However, there is little research evidence on
the effects of collaborative games on retrospective meetings. In this paper, we start to fill
in this gap. Our research contributes to the awareness of the challenges in conducting suc-
cessful retrospectives. It also provides practical guidance of how agile teams may mitigate
common retrospective problems by introducing game-based retrospectives. Further, we
present the advantages and disadvantages of six games and created their profiles to show
the potential of each game to stimulate participants’ communication (which was found to
be strongly correlated with the effectiveness of agile teams (Ramírez-Mora et al. 2020)),
motivation-and-involvement, and creativity. Finally, we provide eight lessons learned that

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

could be of interest for both researchers and practitioners. The knowledge may be used
not only by Scrum Masters, but by everyone whose goal is to improve software develop-
ment processes. We hope that our experience will motivate others to adopt retrospective
games in their teams and share the outcomes. With time, the accumulation of new feed-
back should provide opportunities for identifying additional lessons learned and update the
profiles.

Our study also opens up new directions for research. Researchers can use our interven-
tion design to investigate the applicability of collaborative games to other Scrum meetings.
For instance, there are several collaborative games for user story estimation, which, to the
best of our knowledge, have not been previously evaluated. For those who are interested
in continuing our research, we recommend implementing retrospective games in all sub-
sequent meetings. This will make it easier for participants to compare the effects of the
adopted games and will increase the chance of evaluating all of the games in the same team
composition. We would also like to highlight that the fact that one member of each partici-
pating organization became the action researcher, contributing to the success of our AR. It
was not only much easier for the researcher to understand the background in which the AR
was conducted, but also to get acceptance from the AR participants.

We also make a contribution to the software engineering (SE) body of knowledge regard-
ing the use of AR. Although empirical methods have received much attention in SE research
and the community has matured in its use of controlled experiments and case studies, action
research seems almost absent in SE research venues. According to Sjøberg et al. (2007a),
one of the reasons for this situation is that “the understanding of what Action Research
means in the context of SE is little understood.” In 2009, Santos and Travassos (2009) con-
ducted a systematic literature review to identify action research studies in the SE context in
the period of 1993 to June 2009. They identified only eight studies that could be classified
as genuine action research. Over the last decade, the situation has not much improved, and
more recently Garousi et al. (2020) have explicitly called for more AR studies in SE, while
Staron (2020) has presented the theory and practice of AR in the SE domain.

However, the “industry-as-laboratory” research concept, which in fact is addressed
by Action Research, has been advocated by the SE community for about 30 years. On the
25th-year anniversary of SE, Colin Potts (1993) asked “why most of the research done so
far is failing to influence industrial practice” and argued that “an artificial barrier between
industry’s problems and the problems that many researchers choose to address” is the main
cause for the limited impact of SE research. As a remedy, he called for a paradigm shift from
“research-then-transfer” to “industry-as-laboratory” where “researchers identify problems
through close involvement with industrial projects, and create and evaluate solutions in an
almost indivisible research activity.” Since then, the need for tighter links between academia
and industry has been echoed many times by the community. In 1994, Robert Glass (1994)
envisioned that in the year 2020 “a researcher is working alongside a practitioner, being open
to adjusting and improving ideas in order to make them useful in practice.” 18 years later,
Briand (2012) argued that SE research must be carried out in practical settings with collab-
oration with actual software development organizations. To steer the community toward a
more successful future, in his succeeding paper, Briand et al. (2017) appealed for context-
driven research, which means research “driven by concrete needs in specific domains and
development projects.” They also called for developing guidelines on how to carry out and
review context-driven research. Sadly, in this day and age, significant challenges for a suc-
cessful industry-academia collaboration are still observed (Marijan and Gotlieb 2021).

Being submitted in the year targeted by Glass’ vision, not only does the current paper
meet the expectation of “software practice and research work together” (Glass 1994), but

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

also answers Briand et al.’s request (Briand et al. 2017) and provides implicit guidelines on
how to evaluate new technologies in context-driven research by demonstrating the usage of
AR in SE research and reporting on our collaboration with the industry.

Lastly, we also provided two contributions to AR methodology. We proposed a multiple
Action Research design, which allows for better generalization of the findings. Having a
broader range of empirical approaches in their arsenal, software engineering researchers
are able to pick the most suitable one depending on the research problem at hand. We also
refined the validity system for AR introduced by Staron (2020). Given the qualitative nature
of AR (Baskerville and Wood-Harper 1998), along with four validities already adopted
from the campbellian system (Cook and Campbell 1979) by Staron, our revised system also
includes reliability, which we borrowed from the validity system for case study research
(Yin 2018).

8 Evaluation of our action research project

In this section, we report on how we adhere to the principles of Canonical Action Research
by Davison et al. (2004). Not only did the principles help us to assure both rigor and rel-
evance, but they also may be helpful for reviewers who assess the execution and presenta-
tion of this research.

8.1 The principle of the researcher–client agreement

During pre-project discussions with the host organizations, we explained the idea of game-
based retrospectives and the expected benefits of its implementation. We also presented the
AR method and its potential to support parallel academic and practical objectives. The host
organizations agreed that the game-based approach and the research method suit the organ-
izational situation and we had a shared interest in running the project. Subsequently, we
developed a framework that was mutually acceptable to the organizations and the research-
ers. The researchers’ responsibility was to guide the overall process. We also obtained per-
mission from management to publish the research results. The host organizations commit-
ted themselves to adopting game-based retrospectives within their teams and engaging in
a process of critical reflection on the approach under study as well as the research results.
The framework then specified the research focus, data collection techniques, and evaluation
measures. In the spirit of Agile, we did not sign any contract, but we had a solid word-of-
mouth agreement on carrying out the project.

8.2 The principle of the cyclical process model

Our project followed the Canonical Action Research process model defined by Susman
and Evered (1978). We started our project with a diagnosis of the situation in the par-
ticipating teams. The diagnosis directly informed the planning of actions which were
subsequently implemented. Then, the intervention was evaluated and analyzed. Finally,
we reflected on the project outcomes. Since the specified objectives were achieved, we
finished the project after one cycle. Nevertheless, we identified opportunities for future
research.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

 Empirical Software Engineering

1 3

8.3 The principle of theory

We thoroughly reviewed existing theories pertaining to the domain of our project to sug-
gest actions that may be effective and to position the research within the accumulated
scholarly knowledge. Consequently, we relied on the theory for diagnosis (the interview
protocol was based on common retrospective problems identified by Kua 2013 and Mat-
thies et al. 2019) as well as intervention (flow theory (Csikszentmihalyi 1991), group flow
theory (Sawyer 2007), group creative theory (Sawyer 2007), broaden-and-build theory
(Fredrickson 1998), social influence theory (Paulus and Dzindolet 1993), and game theory
(von Neumann and Morgenstern 1944)). Based on Paulus and Nijstad’s (2003) group crea-
tivity model, we proposed a generic model of running a retrospective game. We explicitly
paid attention to the relevance of our AR project for the host organizations and agile practi-
tioners in general as well as the research community.

8.4 The principle of change through action

The researchers and the host organizations were motivated to alleviate the retrospective
problems that were identified during the diagnosis of the participating teams. As a rem-
edy to the diagnosed problems, the researchers suggested adopting retrospective games.
The planned actions were approved by the host organizations. After the intervention was
enacted, the degree of problem resolution was discussed, while all research phases and
results were properly documented.

8.5 The principle of learning through reflection

Together with the participating teams, we reflected on the outcomes of the project. As
a result of our collaborative reflection, we specified eight lessons learned as well as the
implications for both further research and practice. Besides this, we refined AR itself by
revising its validity system and proposing a multiple AR design, which helps AR research-
ers to overcome the difficulty in the generalization of AR results.

9 Conclusions and future work

In this paper, we report our progress on a long-term research aiming at integrating col-
laborative games with Scrum. The current findings pertain to the Sprint Retrospective
and come from an AR project conducted in three software development companies. Our
main interest in this project was to investigate whether the promised benefits of collabora-
tive games are materialized during retrospectives, while the interest of the participating
organizations was to revise and enhance their retrospective practices. With this in mind,
we formulated four research questions to guide our work: RQ1 – How do game-based ret-
rospectives impact common retrospective problems?; RQ2 – How do retrospective games
impact teamwork qualities?; RQ3 – What are the advantages and disadvantages of the
adopted games? (answered in Table 9); and RQ4 – What are the lessons learned in adopt-
ing retrospective games? (answered in Section 5.5). To answer the questions, we adopted

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

six retrospective games in three organizations and examined how the games could benefit
retrospective meetings. The feedback received from six teams indicates that the approach is
usable and useful, but the hype around collaborative games is exaggerated.

When it comes to RQ1, retrospective games helped the teams mitigate many of the
“accidental difficulties” bearing on the Sprint Retrospective, such as a lack of structure,
dullness, too many complaints, and unequal participation. They also made the meetings
more productive. As a side effect of our study, we found that the main problem with ret-
rospectives was not the way in which the meetings were run, but unproductive discussions
on recurring issues that were beyond the control of the team, while the management was
not supportive of corrective actions at the organizational level. On the one hand, this could
have discouraged teams from being fully engaged in the retrospective meetings and thereby
hindered them from taking full advantage of retrospective games. On the other hand, if
organizational-level corrective actions had been implemented, the teams might have
avoided some of their retrospective problems without introducing retrospective games.

As for RQ2, different participants perceived different games as having a positive impact
on their communication, motivation-and-involvement, creativity, and/or willingness to
attend the meeting but there was no single game that would satisfy a whole team. The
teamwork qualities that improved the most were “communication” and then “motivation-
and-involvement.” As for “creativity,” it was substantially improved by Sailboat, 5Ls, and
360 Degrees Appreciation. Nonetheless, a few developers who were unwilling to attend
retrospectives did not change their minds after the adoption of retrospective games. Moreo-
ver, the teams generally appreciated the variety in retrospective meetings which allowed
them to reflect on the past from different perspectives, but the variety was too great for two
teams. Therefore, Scrum Masters should have a toolbox of possible retrospective games,
help their teams empirically determine which games are effective for them, and switch
the game when the team wishes so. In this way, everyone will have a chance to play their
favorite game by which they can contribute the most to the process improvement. We also
recommend that teams who have not used collaborative games should start with the Sail-
boat game, which received predominantly positive feedback.

Although all participating teams intended to keep running game-based retrospectives
after the project finished, only 4 out of 6 have managed to do so. Both Dyna_A and Senti_A
have used different games interchangeably with regularly held retrospectives after every
sprint. Dyna_B have also retained retrospective games, which has helped them to identify
and solve a variety of problems, and have been holding retrospective meetings more often
since participating in the research. After the research project finished, OKE_A tried all of
the games again at least once to develop a better understanding of which games suit them
the best. They have been playing retrospective games only when all team members are
participating in the meeting. Only OKE_B and Senti_B have not permanently adopted ret-
rospective games. When it comes to OKE_B, the prolonged stagnation in the project made
the team lose faith that anything could be improved. In turn, Senti_B had no Scrum Master
and no one was willing to facilitate game sessions.

We hope that the reported experience will also inspire other practitioners to leverage retro-
spective games. We encourage the Agile community to reuse our intervention design in their
teams and adjust our initial profiles of retrospective games in the form of spider charts (Fig. 6).
To make future research easier, we provide what is called a “reproducible package” (Madeyski
and Kitchenham 2017; de Oliveira Neto et al. 2019). The package (https://github.com/przybylek/
retros) includes the collected data as well as R scripts to aggregate and visualize the data.

Recently, online tools for running remote retrospectives have gained in importance
due to the COVID-19 pandemic that has reshaped the way software engineers work (Butt

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://github.com/przybylek/retros
https://github.com/przybylek/retros
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

et al. 2021b; Griffin 2021; Marek et al. 2021; Neumann et al. 2021). Thereby, we call
for future work to investigate retrospective games in the context of virtual retrospectives
with a distributed team. Employing online retrospective tools provides some opportuni-
ties. Nunamaker et al. (1987) and Davis et al. (2003) demonstrated that electronic idea
generation sessions may reduce the negative effects of evaluation apprehension by provid-
ing anonymity to team members as well as production blocking. Accordingly, we have
just started a new AR project that aims to introduce anonymity in the idea-generation
phase of virtual retrospectives. We expect that anonymity will encourage participants to
express their true feelings and critical thinking, which in turn will increase the quality
and quantity of ideas generated. Additionally, future work may explore other collaborative
games and investigate their application not only to the Sprint Retrospective, but also to
other Scrum ceremonies.

Appendix 1 – Questionnaire for the assessment of collaborative games

Below are eight statements with which you may agree or disagree. Please, provide a
response for each statement using a scale of 1 to 5, where:

1 – “Strongly Disagree,”
2 – “Somewhat Disagree,”
3 – “Neither Agree nor Disagree,”
4 – “Somewhat Agree,”
5 – “Strongly Agree.”

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Empirical Software Engineering

1 3

Appendix 2 – Focus group protocol

Purpose: to construct a common understanding of the results of the intervention.
Environment: the same location as where the retrospective meetings took place.
Moderator: the researcher who introduced the games during the retrospective meetings.
Participants: all members of the team that participated in the research.
Format: a semi-structured “moderated discussion” (Staron 2020).
Discussion questions:

1. How do you assess the new way of running retrospective meetings, i.e. by playing a
retrospective game?

2. Should we use the games alternately from one meeting to another, or should we choose
any particular game to play all the time?

3. What are your comments on the results (at that time, we presented a summary of the
responses using diverging stacked bar charts)?

4. Are any of the games particularly useful in some situations/circumstances?
5. What are the advantages and disadvantages of each game and why did some games

perform better than the others?
6. Have retrospective games helped your team mitigate some of your retrospective prob-

lems?

Acknowledgements The authors warmly thank the participating companies, i.e. OKE Poland (https:// oke. pl),
Dynatrace (https:// jobs. dynat race. pl), and SentiOne (https:// senti one. com/ pl) for their cooperation. They also
appreciate the reviews of this manuscript by Lutz Prechelt and anonymous reviewers.

Data availability Available.

Code availability Not applicable.

Declarations

Conflicts of interest/competing interests The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abt CC (1970) Serious games. Viking Press
Amabile TM (1983) The social psychology of creativity: a componential conceptualization. In: Journal of

Personality and Social Psychology 45(2):357–376
Andriyani Y, Hoda R, Amor R (2017) Reflection in Agile Retrospectives. In: In: 18th International Confer-

ence, XP, Cologne, Germany. https:// doi. org/ 10. 1007/ 978-3- 319- 57633-6_1
Akarsu Z, Metin ÖO, Gungor D, Yilmaz M (2018) Towards a Role Playing Game for Exploring the Roles in

Scrum to Improve Collaboration Problems. In: 18th European Systems Software and Service Process

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://oke.pl
https://jobs.dynatrace.pl
https://sentione.com/pl
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-57633-6_1
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Improvement and Innovation (EuroSPI), Bilbao, Spain. https:// doi. org/ 10. 1007/ 978-3- 319- 97925-0_
21

Asch SE (1956) Studies of independence and conformity: a minority of one against a unanimous majority.
In: Psychological Monographs, 70 (9, whole no. 416)

Avison D, Baskerville R, Myers M (2001) Controlling action research projects. In: Information Technology
and People 14(1):28–45. https:// doi. org/ 10. 1108/ 09593 84011 03847 62

Avison D, Baskerville R, Myers MD (2007) The structure of power in action research projects. In: Kock
N. (eds) Information Systems Action Research. Integrated Series in Information Systems, vol 13.
Springer, Boston, MA

Avison DE, Davisonb RM, Malaurenta J (2017) Information systems action research: debunking myths and
overcoming barriers. In: Information & Management

Babb J, Hoda R, Norbjerg J (2014) Embedding Reflection and Learning into Agile Software Development.
In: IEEE Software, Vol. 31(4)

Baburoglu ON, Ravn I (1992) Normative Action Research In: Organization Studies 13(1):19–34. https:// doi.
org/ 10. 1177/ 01708 40692 01300 104

Baldauf C (2018) Retromat - Run great agile retrospectives! Leanpub
Baruah J, Paulus PB (2008) Effects of training on idea generation. In: Small Group Research 39(5):523–

541. https:// doi. org/ 10. 1016/j. jesp. 2011. 04. 007
Braun V, Clarke V (2006) Using thematic analysis in psychology. In: Qualitative research in psychology

3(2):77–101
Baskerville R (1999) Investigation Information Systems with Action Research. In: Communications of the

Association for Information Systems, Vol. 2(19)
Baskerville R, Myers MD (2004) Special issue on action research in information systems: making IS

research relevant to practice—foreward. In: MIS Quart 28(3):329–335
Baskerville R, Wood-Harper AT (1998) Diversity in information systems action research methods. In: Euro-

pean Journal of Information Systems 7(2):90–107. https:// doi. org/ 10. 1057/ palgr ave. ejis. 30002 98
Beck K (2004) Extreme programming explained: embrace change. Addison-Wesley, Boston
Boden M (1990) The creative mind - myths and mechanisms. Weidenfeld and Nicolson, London, UK
Boehm B, Grunbacher P, Briggs RO (2001) Developing groupware for requirements negotiation: lessons

learned. In: IEEE Software 18(3):46–55
Boehm B, Rombach HD, Zelkowitz MV (2005) Foundations of empirical software engineering: the legacy

of victor R. Basili. Springer-Verlag Berlin Heidelberg
Briand L (2012) Embracing the engineering side of software engineering. In: IEEE Software 29(4):96–96.

https:// doi. org/ 10. 1109/ ms. 2012. 86
Briand L, Bianculli D, Nejati S, Pastore F, Sabetzadeh M (2017) The case for context-driven software engi-

neering research: generalizability is overrated. In: IEEE Software 34(5):72–75. https:// doi. org/ 10.
1109/ ms. 2017. 35715 62

Brooks F (April 1987) No silver bullet: essence and accidents of software engineering. In: Computer
20(4):10–19

Butt SA, Tariq MI, Jamal T, Ali A, Díaz Martinez JL, De-La-Hoz-Franco E (2019) Predictive variables for
agile development merging cloud computing services. In: IEEE Access 7:99273–99282. https:// doi.
org/ 10. 1109/ ACCESS. 2019. 29291 69

Butt SA, Gochhait S, Andleeb S, Adeel M (2021a) Games features for health disciplines for patient learning
as entertainment. In: Das S, Gochhait S (eds) Digital entertainment. Palgrave Macmillan, Singapore.
https:// doi. org/ 10. 1007/ 978- 981- 15- 9724-4_4

Butt SA, Misra S, Anjum MW, Hassan SA (2021b) Agile project development issues during COVID-19.
In: Przybyłek A, Miler J, Poth A, Riel A (eds) Lean and agile software development. LASD 2021.
Lecture notes in business information processing, vol 408. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 030- 67084-9_4

Campbell J, Kurkovsky S, Liew ChW, Tafliovich A (2016) Scrum and Agile Methods in Software Engineer-
ing Courses. In: 47th ACM Technical Symposium on Computing Science Education, Memphis, TN

Cao L, Mohan K, Xu P, Ramesh B (2009) A framework for adapting agile development methodologies.
In: Eur J Inf Syst 18:332–343

Carlson R (2013) Retrospectives are healthy. Agile & Lean Education Associates
Caroli P, Caetano T (2016) Fun retrospectives - activities and ideas for making agile retrospectives more

engaging. Leanpub
Cho JY, Lee E (2014) Reducing confusion about grounded theory and qualitative content analysis: simi-

larities and differences. In: The Qualitative Report 19(32):1–20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1007/978-3-319-97925-0_21
https://doi.org/10.1007/978-3-319-97925-0_21
https://doi.org/10.1108/09593840110384762
https://doi.org/10.1177/017084069201300104
https://doi.org/10.1177/017084069201300104
https://doi.org/10.1016/j.jesp.2011.04.007
https://doi.org/10.1057/palgrave.ejis.3000298
https://doi.org/10.1109/ms.2012.86
https://doi.org/10.1109/ms.2017.3571562
https://doi.org/10.1109/ms.2017.3571562
https://doi.org/10.1109/ACCESS.2019.2929169
https://doi.org/10.1109/ACCESS.2019.2929169
https://doi.org/10.1007/978-981-15-9724-4_4
https://doi.org/10.1007/978-3-030-67084-9_4
https://doi.org/10.1007/978-3-030-67084-9_4
http://mostwiedzy.pl

Empirical Software Engineering

1 3

Chua RY-J, Iyengar SS (2008) Creativity as a matter of choice: prior experience and task instruction as
boundary conditions for the positive effect of choice on creativity. In: Journal of Creative Behavior
42:164–180. https:// doi. org/ 10. 7916/ D8223 0Z1

Clason DL, Dormody TJ (1994) Analyzing Data Measured By Individual Likert-Type Items. In: Journal
of Agricultural Education, vol. 35(4). https:// doi. org/ 10. 5032/ jae. 1994. 04031

Coghlan D, Brannick T (2005) Doing action research in your own organization. SAGE, London
Collier B, DeMarco T, Fearey P (1996) A defined process for project postmortem review. In: IEEE Soft-

ware 13(4):65–72
Cook T, Campbell D (1979) Quasi-experimental design and analysis issues for field settings. Rand Mc-

Nally College Publishing Co, Chicago
Csikszentmihalyi M (1991) Flow: the psychology of optimal experience. New York, NY, Harper Collins
Dal Sasso T, Mocci A, Lanza M, Mastrodicasa E (2017) How to gamify software engineering. In: 24th

International Conference on Software Analysis, Evolution and Reengineering (SANER’17), Kla-
genfurt, Austria. https:// doi. org/ 10. 1109/ SANER. 2017. 78846 27

Davis J, Zaner M, Farnham S, Marcjan C, McCarthy BP (2003) Wireless brainstorming: overcoming sta-
tus effects in small group decisions. In: 36th Annual Hawaii International Conference on System
Sciences, Big Island, HI. https:// doi. org/ 10. 1109/ HICSS. 2003. 11738 12

Davison RM, Martinsons MG, Kock N (2004) Principles of canonical action research. In: Information
Systems Journal 14(1):65–86

Daylamani-Zad D, Agius H, Angelides MC (2020) Reflective agents for personalisation in collaborative
games. In: Artif Intell Rev 53:429–474. https:// doi. org/ 10. 1007/ s10462- 018- 9665-8

De Dreu CKW, Nijstad BA, Van Knippenberg D (2008) Motivated information processing in group
judgment and decision making. In: Personality and Social Psychology Review 12:22–49

Defranco JF, Laplante PA (2017) A content analysis process for qualitative software engineering
research. In: Innov Syst Softw Eng 13(2–3):129–141. https:// doi. org/ 10. 1007/ s11334- 017- 0287-0

DeLuca D, Gallivan JJ, Kock N (2008) Furthering information systems action research: a post-positivist
synthesis of four dialectics. In: Journal of the Association for Information Systems vol 9(2):48–72

Denzin NK (1970) The research act in sociology: a theoretical introduction to sociological methods.
Butterworths, Chicago

Derby E, Larsen D (2006) Agile Retrospectives: Making Good Teams Great. Pragmatic Programmers
Diehl M, Stroebe W (1987) Productivity loss in brainstorming groups: toward the solution of a riddle.

In: Journal of Personality and Social Psychology 53(1):497–509
Dingsøyr T, Hanssen GK (2003) Extending agile methods: postmortem reviews as extended feedback.

In: Henninger S, Maurer F (eds) Advances in learning software organizations. LSO 2002. Lecture
notes in computer science, vol 2640. Springer, Berlin, Heidelberg

Dingsøyr T, Mikalsen M, Solem A, Vestues K (2018) Learning in the large - an exploratory study of
retrospectives in large-scale agile development. In: 19th International Conference, XP, Porto, Por-
tugal. https:// doi. org/ 10. 1007/ 978-3- 319- 91602-6_ 13

Drægert A, Petersen D (2016) ScrumBut in professional software development. MSc thesis, Department
of Computer Science, Aalborg University

Drury M, Conboy K, Power K (June, 2012) Obstacles to decision making in agile software development
teams. In: J Syst Softw 85(6):1239–1254. https:// doi. org/ 10. 1016/j. jss. 2012. 01. 058

Dybå T, Maiden N, Glass R (2014a) The reflective software engineer: reflective practice. In: IEEE Soft-
ware 31(4):32–36. https:// doi. org/ 10. 1109/ MS. 2014. 97

Dybå T, Dingsøyr T, Moe NB (2014b) Agile Project Management. In: Ruhe G, Wohlin C (eds) Software
Project Management in a changing world. Springer, Berlin, Heidelberg. https:// doi. org/ 10. 1007/
978-3- 642- 55035-5_ 11

Dzieciątek A (2019) Analysis of the techniques for retrospectives in scrum projects. Gdansk University
of Technology, MSc thesis

Easterbrook SM, Singer J, Storey MA, Damian D (2007) Selecting Empirical Methods for Software
Engineering Research. In: F. Shull, J. Singer and D. Sjøberg (eds) Guide to Advanced Empirical
Software Engineering, Springer

Ellis S, Carette B, Anseel F, Lievens F (2014) Systematic reflection: implications for learning from failures
and successes. In: Current Directions in Psychological Science 23:67–72. https:// doi. org/ 10. 1177/
09637 21413 504106

Elo S, Kyngäs H (April 2008) The qualitative content analysis process. In: Journal of Advanced Nursing
62(1):107–115. https:// doi. org/ 10. 1111/j. 1365- 2648. 2007. 04569.x

Eloranta V, Koskimies K, Mikkonen T (June 2016) Exploring ScrumBut — an empirical study of scrum
anti-patterns. In: Information and Software Technology 74:194–203

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.7916/D82230Z1
https://doi.org/10.5032/jae.1994.04031
https://doi.org/10.1109/SANER.2017.7884627
https://doi.org/10.1109/HICSS.2003.1173812
https://doi.org/10.1007/s10462-018-9665-8
https://doi.org/10.1007/s11334-017-0287-0
https://doi.org/10.1007/978-3-319-91602-6_13
https://doi.org/10.1016/j.jss.2012.01.058
https://doi.org/10.1109/MS.2014.97
https://doi.org/10.1007/978-3-642-55035-5_11
https://doi.org/10.1007/978-3-642-55035-5_11
https://doi.org/10.1177/0963721413504106
https://doi.org/10.1177/0963721413504106
https://doi.org/10.1111/j.1365-2648.2007.04569.x
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Fredrickson BL (1998) What good are positive emotions? In: Review of General Psychology 2:300–319.
https:// doi. org/ 10. 1037/ 1089- 2680.2. 3. 300

Fruhling AL, Tarrell AE (2008) Best practices for implementing agile methods: a guide for DOD software
developers. IBM Center for the Business of Government

Gaikwad PK, Jayakumar CT, Tilve E, Bohra N, Yu W, Spichkova M (2019) Voice-activated solutions for
agile retrospective sessions. In: Procedia Computer Science 159:2414–2423

Garousi V, Borg M, Oivo M (2020) Practical relevance of software engineering research: synthesiz-
ing the community’s voice. In: Empir Software Eng 25:1687–1754. https:// doi. org/ 10. 1007/
s10664- 020- 09803-0

Gelperin D (2011) Increase requirements understanding by playing cooperative games. In: INCOSE Inter-
national Symposium, Denver, CO

Ghaisas S, Rose P, Daneva M, Sikkel K, Wieringa RJ (2013) Generalizing by similarity: Lessons learnt
from industrial case studies. In: 1st International Workshop on Conducting Empirical Studies in
Industry, San Francisco, CA, doi: https:// doi. org/ 10. 1109/ CESI. 2013. 66184 68

Ghanbari H, Similä J, Markkula J (November 2015) Utilizing online serious games to facilitate distributed
requirements elicitation. In: Journal of Systems and Softwar 109:32–49

Glass RL (Nov. 1994) The software-research crisis. In: IEEE Software 11(6):42–47. https:// doi. org/ 10. 1109/
52. 329400

Gonçalves L, Linders B (2014) Getting value out of agile retrospectives: a toolbox of retrospective exer-
cises. Leanpub

Gray D, Brown S, Macanufo J (2010) Gamestorming. A Playbook for innovators rulebreakers and change-
makers. O’Reilly

Griffin L (2021) Implementing Lean Principles in Scrum to Adapt to Remote Work in a Covid-19 Impacted
Software Team. In: Przybyłek A., Miler J., Poth A., Riel A. (eds) Lean and Agile Software Devel-
opment. LASD 2021. Lecture notes in business information processing, vol 408. Springer, Cham.
https:// doi. org/ 10. 1007/ 978-3- 030- 67084-9_ 11

Guckenbiehl P, Theobald S (2020) Impediment Management of Agile Software Development Teams. In:
Morisio M, Torchiano M, Jedlitschka A (eds) Product-focused software process improvement. PRO-
FES 2020. Lecture notes in computer science, vol 12562. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 030- 64148-1_4

Gupta M, George JF, Xia W (February 2019) Relationships between IT department culture and agile soft-
ware development practices: an empirical investigation. In: International Journal of Information Man-
agement 44:13–24

Hanslo R, Mnkandla E (2018) Scrum Adoption Challenges Detection Model: SACDM. In: 2018 Federated
Conference on Computer Science and Information Systems (FedCSIS’18), Poznan, Poland, 2018.
https:// doi. org/ 10. 15439/ 2018F 270

Highsmith J, Fowler M (2001) The agile manifesto. In: Softw Dev Mag 9:29–30
Hoda R, Babb J, Nørbjerg J (2013) Toward learning teams. IEEE Softw 30(4):95–98. https:// doi. org/ 10.

1109/ MS. 2013. 90
Hoegl M, Parboteeah KP (2007) Creativity in innovative projects: How teamwork matters. In: J. Eng. Tech-

nol. Manag. 24, 1–2, 148–166, 2007. https:// doi. org/ 10. 1016/j. jengt ecman. 2007. 01. 008
Hohmann L (2006) Innovation games: creating breakthrough products through collaborative play. Addison-

Wesley Professional
Hsieh HF, Shannon SE (Nov 2005) Three approaches to qualitative content analysis. In: Qualitative Health

Research 15(9):1277–1288. https:// doi. org/ 10. 1177/ 10497 32305 276687
Hult M, Lennung S-Å (1980) Towards a definition of action research: a note and bibliography. In: Journal of

Management Studies 17:241–250. https:// doi. org/ 10. 1111/j. 1467- 6486. 1980. tb000 87.x
International Institute of Business Analysis: A Guide to the Business Analysis Body of Knowledge v3

(BABOK Guide), Toronto, Canada (2015)
Ilyés E (2019) Create your own agile methodology for your research and development team. In: 2019 Feder-

ated Conference on Computer Science and Information Systems (FedCSIS’19), Leipzig, Germany
Jarzębowicz A, Sitko N (2019) Communication and documentation practices in agile requirements engineer-

ing: a survey in polish software industry. In: Wrycza S, Maślankowski J (eds) Information systems:
research, development, applications, education. SIGSAND/PLAIS 2019. Lecture notes in business
information processing, vol 359. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 29608-7_ 12

Jeffries R (2013) Fractional Scrum, or “Scrum-But”. AgileAtlas,
Jick TD (1979) Mixing qualitative and quantitative methods: triangulation in action. In: Administrative Sci-

ence Quarterly 24(4):602–611
Jovanović M, Mesquida AL, Radaković N, Mas A (2016) Agile retrospective games for different team

development phases. In: Journal of Universal Computer Science 22(12):1489–1508

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1037/1089-2680.2.3.300
https://doi.org/10.1007/s10664-020-09803-0
https://doi.org/10.1007/s10664-020-09803-0
https://doi.org/10.1109/CESI.2013.6618468
https://doi.org/10.1109/52.329400
https://doi.org/10.1109/52.329400
https://doi.org/10.1007/978-3-030-67084-9_11
https://doi.org/10.1007/978-3-030-64148-1_4
https://doi.org/10.1007/978-3-030-64148-1_4
https://doi.org/10.15439/2018F270
https://doi.org/10.1109/MS.2013.90
https://doi.org/10.1109/MS.2013.90
https://doi.org/10.1016/j.jengtecman.2007.01.008
https://doi.org/10.1177/1049732305276687
https://doi.org/10.1111/j.1467-6486.1980.tb00087.x
https://doi.org/10.1007/978-3-030-29608-7_12
http://mostwiedzy.pl

Empirical Software Engineering

1 3

Kaplan B, Duchon D (1988) Combining Qualitative and Quantitative Methods in Information Systems
Research: A Case Study. In: MIS Quarterly, vol. (12)4, pp. 571–587

Karau SJ, Williams KD (1993) Social loafing: a meta-analytic review and theoretical integration. J Pers Soc
Psychol 65(4):681–706. https:// doi. org/ 10. 1037/ 0022- 3514. 65.4. 681

Khanna D Experiential team learning in software startups. In: 19th international conference on agile soft-
ware development: companion, 2018, Porto. Portugal. https:// doi. org/ 10. 1145/ 32341 52. 33149 92

Khorram F, Taromirad M, Ramsin R (2021) SeGa4Biz: Model-Driven Framework for Developing Serious
Games for Business Processes. In: 9th International Conference on Model-Driven Engineering and
Software Development, Online event. https:// doi. org/ 10. 5220/ 00101 98801 390146

Kidder LH, Fine M (1987) Qualitative and quantitative methods: when stories converge. In: Mark MM,
Shotland RL (eds) New directions for program evaluation, N.35. Multiple Methods in Program Evalu-
ation. Jossey-Bass, Inc., CA

Kontio J, Bragge J, Lehtola L (2008) The focus group method as an empirical tool in software engineering.
In: Shull F, Singer J, Sjøberg DIK (eds) Guide to advanced empirical software engineering. Springer,
London. https:// doi. org/ 10. 1007/ 978-1- 84800- 044-5_4

Korde R, Paulus PB (2017) Alternating individual and group idea generation: finding the elusive synergy. J
Exp Soc Psychol 70:177–190. https:// doi. org/ 10. 1016/j. jesp. 2016. 11. 002

Krein JL, Prechelt L, Juristo N, Nanthaamornphong A, Carver JC, Vegas S, Knutson CD, Seppi KD, Eggett
DL (2016) A Multi-Site Joint Replication of a Design Patterns Experiment Using Moderator Vari-
ables to Generalize across Contexts. In: IEEE Transactions on Software Engineering 42(4):302–321.
https:// doi. org/ 10. 1109/ TSE. 2015. 24886 25

Krivitsky A (2015) Agile retrospective Kickstarter. Leanpub
Kua P (2013) The retrospective handbook: a guide for agile teams. Leanpub
Küpper S, Pfahl D, Jürisoo K, Diebold P, Münch J, Kuhrmann M (2019) How has SPI changed in times of

agile development? Results from a multi-method study. In: J Softw Evol Proc 31(11). https:// doi. org/
10. 1002/ smr. 2182

Lamoreux M (2005) Improving agile team learning by improving team reflections. In: Agile Development
Conference, Denver, CO. https:// doi. org/ 10. 1109/ ADC. 2005. 29

Lamrani R, Abdelwahed EH, Chraibi S, Qassimi S, Hafidi M, El Amrani A (2017) Serious game to enhance
and promote youth entrepreneurship. In: Rocha Á, Serrhini M, Felgueiras C (eds) Europe and MENA
cooperation advances in information and communication technologies. Advances in intelligent sys-
tems and computing, vol 520. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 319- 46568-5_8

Lamrani R, Abdelwahed EH (2020) Game-based learning and gamification to improve skills in early years
education. In: Computer Science and Information Systems Vol 17(1):339–356. https:// doi. org/ 10.
2298/ CSIS1 90511 043L

Lehtinen TOA, Virtanen R, Viljanen JO, Mäntylä MV, Lassenius C (2014) A tool supporting root cause anal-
ysis for synchronous retrospectives in distributed software teams. In: Inf Softw Technol 56(4):408–437

Lehtinen TOA, Mäntylä MV, Itkonen J, Vanhanen J (May 2015) Diagrams or structural lists in software
project retrospectives – an experimental comparison. In: Journal of Systems and Software 103:17–35.
https:// doi. org/ 10. 1016/j. jss. 2015. 01. 020

Lehtinen TOA, Itkonen J, Lassenius C (2017) Recurring opinions or productive improvements—what agile
teams actually discuss in retrospectives. Empir Software Eng 22:2409–2452. https:// doi. org/ 10. 1007/
s10664- 016- 9464-2

Lenberg P, Wallgren Tengberg LG, Feldt R (2017) An initial analysis of software engineers’ attitudes
towards organizational change. In: Empir Software Eng 22:2179–2205. https:// doi. org/ 10. 1007/
s10664- 016- 9482-0

Lin LH, Lin WH, Chen CY, Teng YF (2010) Playfulness and innovation - A multilevel study in individuals
and organizations. In: 5th IEEE International Conference on Management of Innovation and Technol-
ogy, Singapore

Loeffler M (2017) Improving agile retrospectives: helping teams become more efficient. Addison-Wesley,
Boston

López-Martínez J, Juárez-Ramírez R, Huertas C, Jiménez S, Guerra-García C (2016) Problems in the
adoption of agile-scrum methodologies: A systematic literature review. In: 4th International con-
ference in software engineering research and innovation, Puebla, México. https:// doi. org/ 10. 1109/
conis oft. 2016. 30

Madeyski L, Kitchenham B (2017) Would wider adoption of reproducible research be beneficial for
empirical software engineering research? In: Journal of Intelligent & Fuzzy Systems 32(2):1509–
1521. https:// doi. org/ 10. 3233/ JIFS- 169146

Madsen DB, Finger JR (1978) Comparison of a written feedback procedure, group brainstorming, and
individual brainstorming. In: Journal of Applied Psychology 63:120–123

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1037/0022-3514.65.4.681
https://doi.org/10.1145/3234152.3314992
https://doi.org/10.5220/0010198801390146
https://doi.org/10.1007/978-1-84800-044-5_4
https://doi.org/10.1016/j.jesp.2016.11.002
https://doi.org/10.1109/TSE.2015.2488625
https://doi.org/10.1002/smr.2182
https://doi.org/10.1002/smr.2182
https://doi.org/10.1109/ADC.2005.29
https://doi.org/10.1007/978-3-319-46568-5_8
https://doi.org/10.2298/CSIS190511043L
https://doi.org/10.2298/CSIS190511043L
https://doi.org/10.1016/j.jss.2015.01.020
https://doi.org/10.1007/s10664-016-9464-2
https://doi.org/10.1007/s10664-016-9464-2
https://doi.org/10.1007/s10664-016-9482-0
https://doi.org/10.1007/s10664-016-9482-0
https://doi.org/10.1109/conisoft.2016.30
https://doi.org/10.1109/conisoft.2016.30
https://doi.org/10.3233/JIFS-169146
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Mannix, E.A., Goncalo, J.A, Neale, M.A. eds.: Creativity in groups. Emerald Group Publishing, 2009.
https:// doi. org/ 10. 1108/ S1534- 0856(2009) 12

Marcinkowski B, Gawin B (2019) A study on the adaptive approach to technology-driven enhance-
ment of multi-scenario business processes. In: Information Technology & People 32(1):118–146.
https:// doi. org/ 10. 1108/ ITP- 03- 2018- 0142

Marek K, Wińska E, Dąbrowski W (2021) The state of agile software development teams during the
Covid-19 pandemic. In: Przybyłek A, Miler J, Poth A, Riel A (eds) Lean and agile software devel-
opment. LASD 2021. Lecture notes in business information processing, vol 408. Springer, Cham.
https:// doi. org/ 10. 1007/ 978-3- 030- 67084-9_2

Marijan D, Gotlieb A (2021) Industry-Academia Research Collaboration in Software Engineering: The
Certus Model. In: Information and Software Technology 132. https:// doi. org/ 10. 1016/j. infsof.
2020. 106473

Marshburn D (2018) Scrum Retrospectives: Measuring and Improving Effectiveness. In: SAIS 2018 Pro-
ceedings, https:// aisel. aisnet. org/ sais2 018/ 26

Mas A, Poth A, Sasabe S (2018) SPI with Retrospectives: A Case Study. In: 18th European Systems
Software and Service Process Improvement and Innovation (EuroSPI), Bilbao, Spain

Matthies Ch (2020) Playing with your project data in scrum retrospectives. In: 42nd International Con-
ference on Software Engineering: Companion Proceedings (ICSE’20), Seoul, Korea. https:// doi.
org/ 10. 1145/ 33778 12. 33821 64

Matthies Ch, Dobrigkeit F (2020) Towards Empirically Validated Remedies for Scrum Retrospective
Headaches. In: 53rd Hawaii International Conference on System Sciences (HICSS’20), Honolulu,
Hawaii

Matthies C, Dobrigkeit F (2021) Experience vs Data: A Case for More Data-Informed Retrospective
Activities. In: Przybyłek A., Miler J., Poth A., Riel A. (eds) Lean and Agile Software Develop-
ment. LASD. Lecture notes in business information processing, vol. 408. Springer, Cham. https://
doi. org/ 10. 1007/ 978-3- 030- 67084-9_8

Matthies C, Dobrigkeit F, Ernst A (2019) Counteracting Agile Retrospective Problems with Retrospec-
tive Activities. In: 19th European Systems Software and Service Process Improvement and Inno-
vation (EuroSPI), Edinburgh, UK

Matthies Ch, Dobrigkeit F, Hesse G (2020) Mining for Process Improvements: Analyzing Software
Repositories in Agile Retrospectives. In: 42nd International Conference on Software Engineering
Workshops (ICSEW’20), Seoul, Korea. https:// doi. org/ 10. 1145/ 33879 40. 33921 68

Mayring P (2014) Qualitative content analysis: Theoretical Foundation. Basic Procedures and Software
Solution, Klagenfurt, Austria

McGonigal J (2011) Reality is broken. Penguin, London
Mesquida AL, Jovanović J, Jovanović M, Mas A (April 2019) Agile software process improvement: a

collaborative game toolbox. In: IET Software 13(2):106–111
Meyer J (2000) Evaluating action research. In: Age and Ageing, Vol. 29, Issue suppl_2: pp. 8–10, doi:

https:// doi. org/ 10. 1093/ oxfor djour nals. ageing. a0081 04
Mich D, Ng YY (2020) Retrospective games in Intel Technology Poland. In: 15th Conference on Com-

puter Science and Information Systems (FedCSIS’20), Sofia, Bulgaria, 2020. https:// doi. org/ 10.
15439/ 2020F 62

Michinov N (2012) Electronic brainstorming and Brainwriting. In: J Appl Soc Psychol 42:E222–E243.
https:// doi. org/ 10. 1111/j. 1559- 1816. 2012. 01024.x

Miler J, Gaida P (2020) Identification of the agile mindset and its comparison to the competencies of
selected agile roles. In: Przybyłek A, Morales-Trujillo M (eds) Advances in agile and user-Centred
software engineering. LASD 2019, MIDI 2019. Lecture notes in business information processing,
vol 376. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 37534-8_3

Moe NB, Aurum A, Dybå T (2012) Challenges of shared decision-making: a multiple case study of agile
software development. In: Inform Softw Technol 54(8):853–865. https:// doi. org/ 10. 1016/j. infsof.
2011. 11. 006

Mundra A, Misra S, Dhawale CA (2013) Practical Scrum-Scrum Team: Way to Produce Successful and
Quality Software. In: 13th International Conference on Computational Science and Its Applications,
Ho Chi Minh City, Vietnam, doi: https:// doi. org/ 10. 1109/ iccsa. 2013. 25

Nerur S, Mahapatra RK, Mangalaraj G (May 2005) Challenges of migrating to agile methodologies. In:
Commun ACM 48(5):72–78

Neumann M, Bogdanov Y, Lier M, Baumann L (2021) The Sars-Cov-2 pandemic and agile methodologies
in software development: a multiple case study in Germany. In: Przybyłek A, Miler J, Poth A, Riel A
(eds) Lean and agile software development. LASD 2021. Lecture notes in business information pro-
cessing, vol 408. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 67084-9_3

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1108/S1534-0856(2009)12
https://doi.org/10.1108/ITP-03-2018-0142
https://doi.org/10.1007/978-3-030-67084-9_2
https://doi.org/10.1016/j.infsof.2020.106473
https://doi.org/10.1016/j.infsof.2020.106473
https://aisel.aisnet.org/sais2018/26
https://doi.org/10.1145/3377812.3382164
https://doi.org/10.1145/3377812.3382164
https://doi.org/10.1007/978-3-030-67084-9_8
https://doi.org/10.1007/978-3-030-67084-9_8
https://doi.org/10.1145/3387940.3392168
https://doi.org/10.1093/oxfordjournals.ageing.a008104
https://doi.org/10.15439/2020F62
https://doi.org/10.15439/2020F62
https://doi.org/10.1111/j.1559-1816.2012.01024.x
https://doi.org/10.1007/978-3-030-37534-8_3
https://doi.org/10.1016/j.infsof.2011.11.006
https://doi.org/10.1016/j.infsof.2011.11.006
https://doi.org/10.1109/iccsa.2013.25
https://doi.org/10.1007/978-3-030-67084-9_3
http://mostwiedzy.pl

Empirical Software Engineering

1 3

Ng YY, Skrodzki J, Wawryk M (2020) Playing the sprint retrospective: a replication study. In: Przybyłek A,
Morales-Trujillo ME (eds) LASD/MIDI-2019. LNBIP, vol 376. Springer, Cham, pp 133–141. https://
doi. org/ 10. 1007/ 978-3- 030- 37534-8_7

Nguyen L, Swatman PA (June 2003) Managing the requirements engineering process. In: Requirements
Engineering 8(1):55–68

Nijstad BA, Paulus PB (2003) (2003). Group creativity: common themes and future directions. In: Paulus
PB, Nijstad BA (eds) Group creativity: innovation through collaboration (pp. 326–339). Oxford Uni-
versity Press, New York. https:// doi. org/ 10. 1093/ acprof: oso/ 97801 95147 308. 003. 0015

Nijstad BA, Stroebe W (2006) How the group affects the mind: a cognitive model of idea generation in
groups. In: Personality and Social Psychology Review 10(3):186–213. https:// doi. org/ 10. 1207/ s1532
7957p spr10 03_1

Nijstad BA, Stroebe W, Diehl M (2003) Cognitive stimulation and interference in idea-generating groups.
In: Paulus PB, Nijstad BA (eds) Group creativity: innovation through collaboration (pp. 137–159).
Oxford University Press, New York. https:// doi. org/ 10. 1093/ acprof: oso/ 97801 95147 308. 003. 0007

Nikitina N, Kajko-Mattsson M, Stråle M (2012) From Scrum to Scrumban: A Case Study of a Process
Transition. In: International Conference on Software and System Process (ICSSP’12), Zurich,
Switzerland

von Neumann J, Morgenstern O (1944) Theory of games and economic behavior. Princeton University Press
Nunamaker JF, Applegate LM, Konsynski BR (1987) Facilitating group creativity: experience with a group

decision support system. In: Journal of Management Information Systems 3(4):5–19. https:// doi. org/
10. 1080/ 07421 222. 1987. 11517 775

Olgun S, Yilmaz M, Clarke PM, O’Connor RV (2017) A Systematic Investigation into the Use of Game
Elements in the Context of Software Business Landscapes: A Systematic Literature Review. In: 17th
International Conference on Software Process Improvement and Capability Determination (SPICE),
Spain, doi: https:// doi. org/ 10. 1007/ 978-3- 319- 67383-7_ 28

de Oliveira Neto FG, Torkar R, Feldt R, Gren L, Furia CA, Huang Z (2019) Evolution of statistical analysis
in empirical software engineering research: current state and steps forward. In: Journal of Systems
and Software 156:246–267

Osborn AF (1957) Applied imagination. Scribner, New York
Özkan N, Gök MŞ, Köse BÖ (2020) Towards a Better Understanding of Agile Mindset by Using Principles

of Agile Methods. In: 15th Conference on Computer Science and Information Systems (FedCSIS),
Sofia, Bulgaria, doi: https:// doi. org/ 10. 15439/ 2020F 46

Pallot M, Le Marc C, Richir S, Schmidt C, Mathieu J (2012) Innovation gaming: an immersive experience
environment enabling co-creation. In: M. Cruz-Cunha (Ed.), handbook of research on serious games
as educational, business and research tools (pp. 1–24). Hershey, PA: Information Science Reference

Paulus PB, Brown VR (2003) Enhancing ideational creativity in groups: lessons from research on brain-
storming. In: Paulus PB, Nijstad BA (eds) Group creativity: innovation through collaboration (pp.
110–136). Oxford University Press, New York. https:// doi. org/ 10. 1093/ acprof: oso/ 97801 95147 308.
003. 0006

Paulus PB, Brown VR (2007) Toward more creative and innovative group idea generation: a cognitive-
social motivational perspective of brainstorming. In: Social and Personality Compass 1(1):248–265.
https:// doi. org/ 10. 1111/j. 1751- 9004. 2007. 00006.x

Paulus PB, Dzindolet MT (1993) Social influence processes in group brainstorming. In: Journal of Personal-
ity and Social Psychology 64(4):575–586. https:// doi. org/ 10. 1037/ 0022- 3514. 64.4. 575

Paulus PB, Dzindolet M (2008) Social influence, creativity and innovation. In: Social Influence 3(4):228–
247. https:// doi. org/ 10. 1080/ 15534 51080 23410 82

Paulus PB, Nijstad BA (2003) Group creativity: innovation through collaboration. Oxford Scholarship
Online. https:// doi. org/ 10. 1093/ acprof: oso/ 97801 95147 308. 001. 0001

Paulus PB, Nijstad BA (eds) (2019) The Oxford handbook of group creativity and innovation. Oxford
Library of Psychology. https:// doi. org/ 10. 1093/ oxfor dhb/ 97801 90648 077. 001. 0001

Petersen K, Wohlin C (2009) Context in industrial software engineering research. In: 3rd International Sym-
posium on Empirical Software Engineering and Measurement (ESEM 2009), pp. 401–404

Poth A, Riel A (2020) Quality Requirements Elicitation by Ideation of Product Quality Risks with Design
Thinking. In: 28th International Requirements Engineering Conference (RE), Zurich, Switzerland.
https:// doi. org/ 10. 1109/ RE485 21. 2020. 00034

Potts C (Sept. 1993) Software-engineering research revisited. In: IEEE Software 10(5):19–28. https:// doi.
org/ 10. 1109/ 52. 232392

Prechelt L, Zieris F, Schmeisky H (2015) Difficulty Factors of Obtaining Access for Empirical Studies in
Industry. In: IEEE/ACM 3rd International Workshop on Conducting Empirical Studies in Industry,
Florence, Italy, doi: https:// doi. org/ 10. 1109/ CESI. 2015. 11

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1007/978-3-030-37534-8_7
https://doi.org/10.1007/978-3-030-37534-8_7
https://doi.org/10.1093/acprof:oso/9780195147308.003.0015
https://doi.org/10.1207/s15327957pspr1003_1
https://doi.org/10.1207/s15327957pspr1003_1
https://doi.org/10.1093/acprof:oso/9780195147308.003.0007
https://doi.org/10.1080/07421222.1987.11517775
https://doi.org/10.1080/07421222.1987.11517775
https://doi.org/10.1007/978-3-319-67383-7_28
https://doi.org/10.15439/2020F46
https://doi.org/10.1093/acprof:oso/9780195147308.003.0006
https://doi.org/10.1093/acprof:oso/9780195147308.003.0006
https://doi.org/10.1111/j.1751-9004.2007.00006.x
https://doi.org/10.1037/0022-3514.64.4.575
https://doi.org/10.1080/15534510802341082
https://doi.org/10.1093/acprof:oso/9780195147308.001.0001
https://doi.org/10.1093/oxfordhb/9780190648077.001.0001
https://doi.org/10.1109/RE48521.2020.00034
https://doi.org/10.1109/52.232392
https://doi.org/10.1109/52.232392
https://doi.org/10.1109/CESI.2015.11
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Przybylek A, Olszewski M (2016) Adopting collaborative games into Open Kanban. In: 2016 Federated
Conference on Computer Science and Information Systems (FedCSIS’16), Gdansk, Poland. https://
doi. org/ 10. 15439/ 2016F 509

Przybyłek A, Kotecka D (2017) Making agile retrospectives more awesome. In: 2017 Federated Conference
on Computer Science and Information Systems (FedCSIS’17), Prague, Czech Republic, 2017, https://
doi. org/ 10. 15439/ 2017F 423

Przybyłek A, Kowalski W (2018) Utilizing online collaborative games to facilitate Agile Software Develop-
ment. In: 2018 Federated Conference on Computer Science and Information Systems (FedCSIS’18),
Poznan, Poland, 2018, doi: https:// doi. org/ 10. 15439/ 2018F 347

Przybyłek A, Zakrzewski M (2018) Adopting Collaborative Games into Agile Requirements Engineer-
ing. In: 13th International Conference on Evaluation of Novel Approaches to Software Engineering
(ENASE’18), Funchal, Madeira, Portugal, doi: https:// doi. org/ 10. 5220/ 00066 81900 540064

Ramírez-Mora SL, Oktaba H, Patlán Pérez J (2020) Group maturity, team efficiency, and team effectiveness
in software development: A case study in a CMMI-DEV Level 5 organization. In: J Softw Evol Proc
32(4). https:// doi. org/ 10. 1002/ smr. 2232

Reason P, Bradbury H (2001) Introduction: inquiry and participation in search of world worthy of human
aspiration. In: Reason P, Bradbury H (eds) Handbook of action research: participative inquiry and
practice (pp. 1–14). Sage, London

Reason P, Rowan J (1981) Human inquiry: a sourcebook of new paradigm research. Wiley
Ringstad MA, Dingsøyr T, Brede Moe N (2011) Agile Process Improvement: Diagnosis and Planning to

Improve Teamwork. In: 18th European Conference on Software Process Improvement (EuroSPI),
Roskilde, Denmark

Robbins NM, Heiberger RM (2011) Plotting Likert and other rating scales. In: JSM Proceedings of the Sec-
tion on Survey Research Methods. American Statistical Association, pp. 1058–1066, Alexandria, VA

Robey D, Ross JW, Boudreau MC (2002) Learning to implement enterprise systems: an exploratory study
of the dialectics of change. J Manag Inf Syst 19(1):17–46

Robson C (2002) Real world research: a resource for social scientists and practitioners-researchers, 2nd edn.
Blackwell, Oxford

Roden T, Williams B (2015) Fifty quick ideas to improve your retrospectives. Leanpub
Root-Bernstein RS (1989) Discovering: inventing and solving problems at the Frontiers of scientific knowl-

edge. Harvard University Press, Cambridge, Mass
Rubin KS (2012) Essential scrum: a practical guide to the most popular agile process. Addison-Wesley
Santanen EL, Briggs RO, de Vreede GJ (2000) The cognitive network model of creativity: a new causal

model of creativity and a new brainstorming technique. In: 33rd Annual Hawaii International Confer-
ence on System Sciences, Maui, HI, doi: https:// doi. org/ 10. 1109/ HICSS. 2000. 926895

Santos PSMD, Travassos GH (2009) Action research use in software engineering: An initial survey. In: 3rd
International Symposium on Empirical Software Engineering and Measurement, Lake Buena Vista,
FL, 2009. doi: https:// doi. org/ 10. 1109/ ESEM. 2009. 53160 13

Sawyer K (2007) Group genius: the creative Power of collaboration. Cambridge, MA
Seaman CB (1999) Qualitative methods in empirical studies of software engineering. In: IEEE Transactions

on Software Engineering 25(4):557–572. https:// doi. org/ 10. 1109/ 32. 799955
Sjøberg DIK, Dyba T, Jørgensen M (2007a) The future of empirical methods in software engineering

research. In: Future of Software Engineering, Minneapolis, MN. https:// doi. org/ 10. 1109/ fose. 2007. 30
Spiegler SV, Heinecke C, Wagner S (2021) An empirical study on changing leadership in agile teams. In:

Empir Software Eng 26:41. https:// doi. org/ 10. 1007/ s10664- 021- 09949-5
Stettina CJ, Offerman T, De Mooij B, Sidhu I (2018) Gaming for Agility: Using Serious Games to Enable

Agile Project & Portfolio Management Capabilities in Practice. In: 2018 IEEE International Confer-
ence on Engineering, Technology and Innovation (ICE/ITMC), Stuttgart, Germany, doi: https:// doi.
org/ 10. 1109/ ICE. 2018. 84363 84

Schön EM, Winter D, Escalona MJ, Thomaschewski J (2017) Key challenges in agile requirements engi-
neering. In: Baumeister H, Lichter H, Riebisch M (eds) Agile processes in software engineering
and extreme programming. XP 2017. Lecture notes in business information processing, vol 283.
Springer, Cham

Schwaber K (2004) Agile Project Management with scrum. Microsoft Press
Schwaber K, Sutherland J (2017) The Scrum Guide — The Definitive Guide to Scrum: The Rules of the

Game. www. scrum guides. org
Schwaber K, Sutherland J (2020) The Scrum Guide — The Definitive Guide to Scrum: The Rules of the

Game. www. scrum guides. org

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.15439/2016F509
https://doi.org/10.15439/2016F509
https://doi.org/10.15439/2017F423
https://doi.org/10.15439/2017F423
https://doi.org/10.15439/2018F347
https://doi.org/10.5220/0006681900540064
https://doi.org/10.1002/smr.2232
https://doi.org/10.1109/HICSS.2000.926895
https://doi.org/10.1109/ESEM.2009.5316013
https://doi.org/10.1109/32.799955
https://doi.org/10.1109/fose.2007.30
https://doi.org/10.1007/s10664-021-09949-5
https://doi.org/10.1109/ICE.2018.8436384
https://doi.org/10.1109/ICE.2018.8436384
http://www.scrumguides.org
http://www.scrumguides.org
http://mostwiedzy.pl

Empirical Software Engineering

1 3

Shin Y (2014) Positive group affect and team creativity: mediation of team reflexivity and promotion
focus. Small Group Res 45(3):337–364. https:// doi. org/ 10. 1177/ 10464 96414 533618

Sjøberg DIK, Dyba T, Jørgensen M (2007b) The future of empirical methods in software engineering
research. In: Future of Software Engineering, Minneapolis, MN, doi:https:// doi. org/ 10. 1109/ fose.
2007. 30

Spradley JP (1980) Participant observation. Harcourt College Publishers, FL
Staron M (2020) Action research in software engineering. Springer, Cham. https:// doi. org/ 10. 1007/

978-3- 030- 32610-4
Sternberg RJ (1999) Handbook of creativity. Cambridge University Press, New York
Susman G (1983) Action research: a sociotechnical systems perspective. In: Beyond Method: Strategies

for Social Research (Morgan G, Ed), pp 95–113, Sage, Newbury Park
Susman GI, Evered RD (1978) An assessment of the scientific merits of action research. Administrative

Science Quarterly vol 23(4):582–603
Sutherland J (2015) Scrum: the art of doing twice the work in half the time. Cornerstone
Taylor DW, Berry PC, Block CH (1958) Does group participation when using brainstorming facilitate or

inhibit creative thinking? Administrative Sciences Quarterly 3:23–47
Theobald S, Prenner N, Krieg A, Schneider K (2020) Agile leadership and agile management on organi-

zational level - a systematic literature review. In: Morisio M, Torchiano M, Jedlitschka A (eds)
Product-focused software process improvement. PROFES 2020. Lecture notes in computer sci-
ence, vol 12562. Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 030- 64148-1_2

Trujillo MM, Oktaba H, González JC (2014) Improving Software Projects Inception Phase Using
Games: ActiveAction Workshop. In: 9th International Conference on Evaluation of Novel
Approaches to Software Engineering (ENASE’14), Lisbon, Portugal

Trujillo MM, García-Mireles GA, Maslova P (2018) What Can Go Wrong in a Software Project? Have
Fun Solving It. In: 2018 Federated Conference on Computer Science and Information Systems
(FedCSIS’18), Poznan, Poland

Üsfekes Ç, Tüzün E, Yılmaz M, Macit Y, Clarke P (2019) Auction-based serious game for bug tracking.
In: IET Softw, Vol. 13(5), pp. 386-392, 2019. https:// doi. org/ 10. 1049/ iet- sen. 2018. 5144

VersionOne: 14th Annual State of Agile Report. Tech. report (2020)
Wawryk M, Ng YY (2019) Playing the Sprint Retrospective. In: 14th Federated Conference on Com-

puter Science and Information Systems, Leipzig, Germany, 2019, doi: https:// doi. org/ 10. 15439/
2019F 284

Westera W (January 2017) How people learn while playing serious games: a computational modelling
approach. In: Journal of Computational Science 18:32–45. https:// doi. org/ 10. 1016/j. jocs. 2016. 12. 002

Wieringa R, Daneva M (2015) Six strategies for generalizing software engineering theories. In: Science
of Computer Programming 101:136–152. https:// doi. org/ 10. 1016/j. scico. 2014. 11. 013

Wohlin C (2013) Software engineering research under the lamppost. In: 8th International Joint Confer-
ence on Software Technologies, Reykjavík, Iceland

Yilmaz M (2013) A software process engineering approach to understanding software productivity and team
personality characteristics: an empirical investigation. Phd thesis, Dublin City University, 2013

Yilmaz M, O’Connor RV (2016) A Scrumban integrated gamification approach to guide software pro-
cess improvement: a Turkish case study. In: Technical Gazette 23(1):237–245

Yilmaz M, O’Connor R, Mora M (2016) Improving social aspects of the software development pro-
cess: games. Gamification and Related Approaches In: Journal of Universal Computer Science
22(12):1487–1488

Yilmaz M, O’Connor RV, Colomo-Palacios R, Clarke PM (2019) Guest editorial: gamification and per-
suasive games for software engineering. In: IET Software 13(2):97–98. https:// doi. org/ 10. 1049/
iet- sen. 2019. 0052

Yin RK (2018) Case study research and applications: design and methods, 6th edn. Sage Publications,
Inc., Thousand Oaks, CA

Yu X, Petter S (2014) Understanding agile software development practices using shared mental models
theory. In: Information and Software Technology 56(8):911–921. https:// doi. org/ 10. 1016/j. infsof.
2014. 02. 010

Zagal JP, Rick J, Hsi I (2006) Collaborative games: Lessons learned from board games. In: Simulation &
Gaming, vol. 37(1), pp. 24–40, March 2006

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.1177/1046496414533618
https://doi.org/10.1109/fose.2007.30
https://doi.org/10.1109/fose.2007.30
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.1007/978-3-030-64148-1_2
https://doi.org/10.1049/iet-sen.2018.5144
https://doi.org/10.15439/2019F284
https://doi.org/10.15439/2019F284
https://doi.org/10.1016/j.jocs.2016.12.002
https://doi.org/10.1016/j.scico.2014.11.013
https://doi.org/10.1049/iet-sen.2019.0052
https://doi.org/10.1049/iet-sen.2019.0052
https://doi.org/10.1016/j.infsof.2014.02.010
https://doi.org/10.1016/j.infsof.2014.02.010
http://mostwiedzy.pl

 Empirical Software Engineering

1 3

Adam Przybyłek is an Assistant Professor at Gdańsk University of
Technology, Poland, where he has been working since October 2012.
Between 2002 and 2011 he was a network consultant and instructor at
Cisco Networking Academy. He obtained his Ph.D. degree in Software
Engineering in 2011. He also holds a master’s degree in Management
Information Systems. His main research interests are in empirical
software engineering with a focus on software modularity, post object-
oriented paradigms, and agile methods. Adam is the founder of the
International Conference on Lean and Agile Software Development
(https:// lasd. pl). He has also served on the program committees for
ENASE and ACM SAC since 2015, and MADEISD@ADBIS since its
origin in 2019.

Marta Albecka received Master of Science degree in Computer
Science from Gdańsk University of Technology, Poland in 2019. She
is currently working in IHS Markit in Automotive Mastermind as a
Software Developer. She is also a Certified Scrum Master and is
fulfilling this role in her team. Her research interests include Agile
Methodologies (Scrum in particular).

Olga Springer is a PhD Student at Gdańsk University of Technology,
Faculty of Electronics and Telecommunications, Department of
Software Engineering. She holds a Master’s degree in Computer
Science. She focuses her research on software product management.
Besides academic related activities, she also has experience working as a
Product Manager and running a blog: www. produ ctvis ion. pl.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://lasd.pl
https://productvision.pl/
http://mostwiedzy.pl

	Game-based Sprint retrospectives: multiple action research
	Abstract
	1 Introduction
	2 Theoretical and Practical Background
	2.1 Agile retrospective
	2.2 Team creativity
	2.3 Serious games
	2.4 Retrospective games

	3 Related work
	4 Study design
	4.1 Research method
	4.2 Research questions
	4.3 Research context
	4.3.1 OKE Poland (https:oke.pl)
	4.3.2 Dynatrace (https:jobs.dynatrace.pl)
	4.3.3 SentiOne (https:sentione.com)

	4.4 Data collection and analysis

	5 Action research cycle
	5.1 Diagnosing
	5.2 Action planning
	5.3 Action taking
	5.4 Evaluating
	5.4.1 Questionnaires
	5.4.2 Focus groups

	5.5 Specifying learning
	5.5.1 Lesson 1: Retrospective games provide meeting diversity, which encourages new perspectives and helps teams bring up new ideas
	5.5.2 Lesson 2: Retrospective games drive participants into a collaborative mindset, but do not lead to breakthrough findings
	5.5.3 Lesson 3: Retrospective games encourage equal participation
	5.5.4 Lesson 4: Retrospective games organize both the meeting as well as the discussion
	5.5.5 Lesson 5: Not all agile team members have an agile mindset
	5.5.6 Lesson 6: If participants are not afraid to voice their opinions, data obtained through a focus group is more reliable than through a questionnaire
	5.5.7 Lesson 7: Scrum masters should have a toolbox of possible retrospective games and help their teams empirically determine which games are effective for them
	5.5.8 Lesson 8: Organizational culture and managers’ mindsets are still significant barriers to the successful adoption of agile practices

	6 Threats to validity
	6.1 Construct validity
	6.2 Internal validity
	6.3 External validity
	6.4 Reliability

	7 Implications for research and practice
	8 Evaluation of our action research project
	8.1 The principle of the researcher–client agreement
	8.2 The principle of the cyclical process model
	8.3 The principle of theory
	8.4 The principle of change through action
	8.5 The principle of learning through reflection

	9 Conclusions and future work
	Acknowledgements
	References

