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ABSTRACT
A novel idea to perform evolutionary computations (ECs) for solving highly
dimensional multi-objective optimization (MOO) problems is proposed.
Following the general idea of evolution, it is proposed that information
about gender is used to distinguish between various groups of objectives
and identify the (aggregate) nature of optimality of individuals (solutions).
This identification is drawn out of the fitness of individuals and applied
during parental crossover in the processes of evolutionary multi-objective
optimization (EMOO). The article introduces the principles of the genetic-
gender approach (GGA) and virtual gender approach (VGA), which are not
just evolutionary techniques, but constitute a completely new rule (philos-
ophy) for use in solvingMOO tasks. The proposed approaches are validated
against principal representatives of the EMOO algorithms of the state of
the art in solving benchmark problems in the light of recognized EC perfor-
mance criteria. The research shows the superiority of the gender approach
in terms of effectiveness, reliability, transparency, intelligibility and MOO
problem simplification, resulting in the great usefulness and practicabil-
ity of GGA and VGA. Moreover, an important feature of GGA and VGA is
that they alleviate the ‘curse’ of dimensionality typical ofmany engineering
designs.
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1. Introduction

Optimal systems can be designed by following evolutionarymechanisms fromnature, which allow the
elimination of detrimental features and the inheritance, or development, of desirable features in the
course of genetic computations. An important determinant for the use of evolutionary algorithms in
learning and optimization is the experience acquired in universal realizations of iterative procedures
of stochastic exploration. Elaborate evolutionary algorithms simulate the natural laws connected with
inheritance, crossover and mutation. They make highly efficient tools for gaining optimal solutions
of a practical nature. However, the approach proposed here is not just another evolutionary tech-
nique, but a completely new philosophy of posing and solving multi-objective optimization (MOO)
tasks. Note that this article will not discuss all of the possible implemental distinctions that can
be found between genetic algorithms (GAs) and evolutionary computations (ECs) (Goldberg 1989;
Michalewicz 1996).

Evolutionary algorithms (Holland 1975; Goldberg 1989;Michalewicz 1996;Man et al. 1997) have a
large number of applications (Holland 1975; Goldberg 1989; Michalewicz 1996; Man et al. 1997). The
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significance of such optimization methods emulating the evolution of biological systems is proved by
their usefulness and effectiveness. Features of biological systems include their ability to regenerate,
perform self-control, reproduce and adapt to the variable conditions of existence. On a similar basis,
analogous features are required to characterize technical systems designed in terms of adaptation,
optimality, immunity, etc. Thus, tasks can be formulated concerning the optimality of solutions and
their robustness to small changes in environmental conditions and parameters, and to disturbances
that allow effective and reliable engineering systems to be obtained.

In such decision-making and design processes it is essential to globally optimize several objectives
at the same time (Goldberg 1989; Michalewicz 1996; Chen, Patton, and Liu 1996; Viennet, Fontiex,
and Marc 1996; Man et al. 1997; Kowalczuk, Suchomski, and Białaszewski 1999). Such MOO tasks
are, however, difficult to perform, as the notion of optimality is not obvious.

To join a number of objectives together, it is necessary to define relations between the partial objec-
tives being considered, which can be done by setting suitable weights. Various methods have been
proposed to solve such problems of optimality (Michalewicz 1996), including (1) weighted profits, (2)
distance functions, (3) sequential inequalities (Zakian and Al-Naib 1973), (4) lexicographic ordering
(Coello, Lamont, and Van Veldhuizen 2007) and (5) ranking with the use of Pareto optimality (Gold-
berg 1989; Srinivas and Deb 1994; Man et al. 1997; Kowalczuk, Suchomski, and Białaszewski 1999;
Kowalczuk and Białaszewski 2006a, 2006b, 2006c; Białaszewski and Kowalczuk 2016). The substance
of the first three methods lies in the direct integration of many objectives into one criterion, which
is submitted to optimization using an arbitrary choice of weighting vector, demand vector or limit
values for partial objective functions. Such choices are not straightforward, and they also restrict and
simplify the MOO problem. The fourth method, of lexicographic ordering, relies on optimization
with respect to each objective function in a sequence, starting with the most important one and pro-
ceeding according to the assigned order of importance of partial objective functions (Coello, Lamont,
and Van Veldhuizen 2007).

In contrast, the fifth method, using ranking with respect to a measure of Pareto optimality,
avoids the arbitrary weighting of objectives. Instead, a constructive classification of solutions is
applied that takes particular goals into account more objectively. Although (on a common basis)
this idea of optimality does not give any hints as to the choice of a single solution from a gener-
ated set of Pareto-optimal solutions (lying on the same Pareto-optimal front), the designer always
has a chance to make an independent judgement of all the ‘best’ offers. The above-mentioned
methods of qualifying the multi-objective solutions can be easily utilized in GAs (Goldberg 1989;
Michalewicz 1996).

There are two basic reasons for and consequences of the evolution of gender in nature:

• in the long term: in the search for new mutations, beneficial improvements and adaptation
• in the short term: for genetic variation, significant in terms of resistance to parasites, bacteria and

viruses.

In the above context, this article presents a newmethod, referred to as the genetic-gender approach
(GGA), which was initiated in Kowalczuk and Białaszewski (2001). This method solves MOO prob-
lems by an evolutionary search with Pareto-optimal ranking, where information about the degree
of membership to a given gender is attributed to each newly generated solution under examination.
This information is used in the process of parental crossover, in which only individuals of different
genders are allowed to create offspring. Another gender-related mechanism, called the virtual gender
approach (VGA), concerns solely a specific method of fitness assessment of the generated individuals
(Kowalczuk and Białaszewski 2006a; Białaszewski and Kowalczuk 2016).

To study the effectiveness of the gender approach, synthetic examples of the application of the
proposed approaches and some known competitors are considered in computational experiments
on popular multi-objective benchmark problems (Zitzler and Thiele 1999). These take into account
binary and real mechanizations without elitism, as well as native implementations, and binary and
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real representations using elitism. Averaging and median statistics are compared, and the issues of
true Pareto fronts and computation time are illustrated.

Strong points of the approach analysed and proved in this article are summarized in Section 5.
The weak points of previous studies concern their inefficiency, uncertainty, ambiguity, incomprehen-
sibility and high complexity, which generally result in practical limitations on the application and
implementation of highly dimensional evolutionary multi-objective optimization (EMOO) tasks.

2. Evolutionary solutions to themulti-objective optimization problem

There are many forms of life that have resulted from natural evolution. On the basis of the exist-
ing variety of life, it can be inferred that each species is optimal with respect to a certain subset of
survival criteria.

An analogy can also be found within different products of human activity and productivity. There
are various goods and their variants, many kinds of constructions, bridges, buildings, automotive
vehicles, aircraft, home appliances and diverse equipment. Usually, a specific set of technical criteria
is defined, with respect to which a given product should be optimal, and this simplifies the choice
from among all the ‘equivalent’ solutions. Frequently, trade-offs are made between price, reliabil-
ity and safety. Thus, considering equally optimal solutions and making final decisions are part of
human nature. Furthermore, based on a given (non-weighted) set of criteria, one is often stuck with
a selection of solutions that are merely ‘mutually non-inferior’ (Kowalczuk and Białaszewski 2006a).

From a formal viewpoint, a MOO task (Goldberg 1989; Michalewicz 1996; Viennet, Fontiex, and
Marc 1996) can be defined by means of the followingm-dimensional vector of objective functions:

f (x) = [f1(x) f2(x) . . . fm(x)]T ∈ Rm (1)

where x = [x1 x2 . . . xn]T ∈ Rn means a vector of the parameters searched for, and fj(x), j =
1, 2, . . . , m, denotes a certain partial objective function. Assuming that all coordinates of the cri-
terion vector (1) are profit functions, the MOO task analysed can be formulated as a multi-profit
maximization task without constraints:

max
x

f (x) (2)

In recent decades, a great number of multi-objective genetic algorithms (MOGAs), also referred
to as EMOO methods (Schaffer 1985; Goldberg 1989; Hajela and Lin 1992; Horn, Nafpliotis, and
Goldberg 1994; Srinivas and Deb 1994; Viennet, Fontiex, and Marc 1996; Zitzler and Thiele 1999;
Cotta and Schaefer 2004; Korbicz et al. 2004; Deb, Mohan, and Mishra 2005; Deb and Gupta 2006;
Deb 2007; Coello, Lamont, and Van Veldhuizen 2007; Bader and Zitzler 2009; Zitzler, Thiele, and
Bader 2010; Liu et al. 2010; Zhang and Li 2007; Kukkonen and Lampinen 2005; Emmerich, Beume,
and Naujoks 2005; Yazdi 2016), has been proposed for solving multi-objective problems in multi-
dimensional spaces, including the vector-evaluated genetic algorithm (VEGA), lexicographic order-
ing genetic algorithm (LOGA), vector-optimized evolution strategy (VOES), Hajela-Lin’s genetic
algorithm (HLGA), MOGA, niched Pareto genetic algorithm (NPGA and NPGA2), non-dominated
sorting genetic algorithm (NSGA and NSGA2), distance-based Pareto genetic algorithm (DPGA),
thermo-dynamical genetic algorithm (TDGA), multi-objective messy genetic algorithm (MOMGA),
Pareto-archived evolutionary strategy (PAES), Pareto envelope-based selection algorithm (PESA and
PESA2), strength Pareto evolutionary algorithm (SPEA and SPEA2), micro-genetic algorithm (μGA
and μGA2), multi-objective Bayesian optimization algorithm (MOBOA), S-metric selection evo-
lutionary multi-objective algorithm (SMS-EMOA), harmony search–multi-objective evolutionary
algorithm based on decomposition (HS-MOEA/D) and, finally, the object of this presentation, the
GGA and VGA. A summary of the EMOO algorithms is shown in Table 1.

Applying a GA to MOO problems using the Pareto approach consists of selecting all the Pareto-
optimal solutions to a common parental pool, which is then submitted to the selection, crossover and
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mutation operations. A typical cycle of a GA using a stochastic remainder choice (SRC), applied for
a multi-objective genetic algorithm (MOGA), is briefly presented as Procedure 1.

Procedure 1 Multi-objective Genetic Algorithm (MOGA) - a sketch
Generate randomly an initial population V containing N individuals
{xi}Ni=1;

while t ≤ tmax
Compute the fitness: xi→ f (xi)
Assign ranks according to the fitness: xi→ r(xi) (see Equations (3)

and-(4))
Select the parental pool with the use of SRC
Create the offspring V’ by making:

Multi-point crossover
Binary mutation

Replace the old population: V ← V’
Cycle: t ← t+1.

Details of the applied genetic operations (selection/SRC, crossover, mutation) are given in the sup-
plementary Appendix A. The evolutionary approaches stem directly from nature, in a similar way to
how the entire domain of artificial intelligence does, although the term ‘intelligence’ is not appropriate
in this context.

3. Genetic-gender approaches

Many and various mechanisms for generating new solutions and decision-making processes have
been proposed and implemented in genetic and evolutionary algorithms. On the other hand, only
a few isolated attempts at applying sexual categories in the genetic reproduction mechanisms are
known from the literature, namely, the multi-sexual genetic algorithm (MSGA) (Lis and Eiben 1997),
gendered genetic algorithm (G-GA) (Rejeb and AbuElhaija 2000), genetic algorithm with gendered
selection (GAGS) (Sanchez-Velazco and Bullinaria 2003a, 2003b), adaptive genetic algorithm sim-
ulating human reproduction model (HRAGA) (Yan 2010), genetic algorithm with sexual selection
(GASS) (Song Goh, Lim, and Rodrigues 2003), gender separation with genetic algorithm (GSGA)
(Vrajitoru 2002) andmulti-objective genetic algorithmwith sexual selection (MOGASS) (Sodsee et al.
2008). Features of these algorithms are presented in Table 2.

In contrast to previous approaches (Lis andEiben 1997; Rejeb andAbuElhaija 2000;Vrajitoru 2002;
Sanchez-Velazco andBullinaria 2003a, 2003b; SongGoh, Lim, andRodrigues 2003; Sodsee et al. 2008;
Yan 2010), this section presents a novel method for solving multi-criteria optimization tasks using
the EMOO approach with a genetic-gender concept, which consists of assigning to each individual
a specific gender relating to the degree of its membership to certain subpopulations associated with
their respective subcriteria. The gendered individuals are submitted to a ‘natural’ crossover process
of mating. To deliver a suitable view of the GGA concept and the resulting algorithm, basic issues and
mechanisms of the MOOmachinery (including rank estimation and global optimality concepts) are
first explained, before the reasoning behind and details of the gender approach are given.

3.1. Pareto-optimal ranking

The mechanism being considered avoids arbitrary weighting of partial objectives. Instead, it uses a
classification of the analysed solutions that takes into account particular objectives in a more effec-
tive way. The most important representatives of the objectives are ranks relating to Pareto optimality
(Schaffer 1985; Goldberg 1989; Horn, Nafpliotis, andGoldberg 1994; Srinivas andDeb 1994; Viennet,
Fontiex, andMarc 1996;Man et al. 1997; Kowalczuk, Suchomski, andBiałaszewski 1999;Deb,Mohan,
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andMishra 2005; Kowalczuk and Białaszewski 2006a, 2006b, 2006c; Deb and Gupta 2006; Deb 2007;
Coello, Lamont, andVanVeldhuizen 2007), which allow the assessment ofmulti-profit-maximization
solutions as dominated or non-dominated (Pareto optimal).

The assessment of solutions concerning their Pareto optimality not only determines the Pareto-
optimal set of solutions, but also allows some ranking of all possible solutions with respect to the
degree of domination. Thus, each solution can be assigned a certain scalar quantity called a rank
(Goldberg 1989; Man et al. 1997), which can have different definitions, interpretations and appli-
cations (Horn, Nafpliotis, and Goldberg 1994; Srinivas and Deb 1994; Coello, Lamont, and Van
Veldhuizen 2007). In general, though, such a rank more or less directly relates to the number of
individuals in the current population that dominate the analysed individual (or over which the anal-
ysed individual dominates) in the sense of Pareto (Kowalczuk and Białaszewski 2006a). Here, the
rank ρ(xi) of a given solution xi among N possible solutions is calculated according to the following
formulae:

ρ(xi) = μmax − μ(xi)+ 1 (3)

μmax = max
i=1,2,...,N

μ(xi) (4)

whereμ(xi) is the degree of domination, i.e. the number of solutions by which xi is dominated in the
same population, while μmax is the maximum value from among all μ(xi). The important point is
that this kind of ranking transforms the vector of profit functions into a scalar space.

3.2. Global optimality

Although, in the above ranking method, with respect to Pareto optimality, the profit vector is trans-
formed into a scalar value, the concept of optimality does not give any directions as to the choice of a
single solution from among all the Pareto-optimal solutions. Therefore, the designer has to make an
independent and ultimate judgement of the offers obtained.

To utilize that freedom, a useful development of the ranking method has been proposed (Kowal-
czuk and Białaszewski 2001) that uses the idea of a global optimality level (GOL). In particular, the
vector profit function value of each solution is transformed into a scalar (GOL) value, which allows
practical ordering of the solutions. There is still a (very small) chance of obtaining equal indices
of global optimality for several solutions, which constrains the opportunity of obtaining the ideal
sequential ordering of all solutions without additional interference by the designer. Nevertheless, this
approach significantly limits the number of ‘most desired’ Pareto-optimal solutions.

The method of estimating the GOL can be expressed by Procedure 2, representing a typical
min–max operator (Kowalczuk and Białaszewski 2004; Białaszewski and Kowalczuk 2016):

Procedure 2 Global Optimality (GOL)
Determine a maximal acquired partial gain fimax as a maximum value

of the partial profit function over all N solutions (or only
the Pareto-optimal ones)

∀
i=1,2,...,m

fimax = max
j=1,2,...,N

{fi(xj)} (5)

Assign each of the solutions xj, j = 1, . . . , N, its global optimality
level as a minimum value of its relative partial profits
(i.e. over all profits):

η(xj) = min
i=1,2,...,m

fi(xj)
fimax

(6)
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The above procedure is not completely objective, as it includes normalization (otherwise, a typical
act inmost engineering considerations), which dynamically and locally refers to a current population,
cycle or epoch (EN). The partial gain fimax , instead of characterizing a current generation of solutions,
may be globally set as a constant for a whole evolutionary run, on a static, a priori (AN) or a posteriori
(PN) normalization basis.

Ordering of solutions with respect to the GOL index (using one of the EN, AN or PN settings)
results in a considerable minimization of the problem of ambiguity of the Pareto solutions, which
can be a pain for designers using the apparatus of Pareto optimality. The ordering method in terms
of the GOL is very powerful both in current observation of the progress in EMOO and in the final
assessment of the set of either all individuals or the Pareto-optimal ones. It also appears that the above
methods of ranking and ordering are both universal and practical. They can be used in evolutionary
optimization processes, as shown in the following.

3.3. High-dimensionality problem and studymotivations

When considering MOO problems, one always has to be aware of the issue of dimensionality. It is a
well-known fact that when the space of the optimized objectives has a higher dimension, many indi-
viduals fall within the category of being Pareto optimal, i.e. mutually equivalent in the Pareto sense
(within a given Pareto front). As such, they are assigned the same rank, which, in turn, implies that
they are indistinguishable from the Pareto-optimality viewpoint. A side-effect of such a state of the
Pareto assessment is the low number of Pareto fronts, which obstructs the distinction, estimation and
ordering of solutions in evolutionary cycles. This alsomeans that during the process of selecting indi-
viduals for new generations, the Pareto-based ranking is ineffective, leading to a strongly stochastic
behaviour of the GA with no ‘conscious’ movements.

On the other hand, when the scope of optimality is confined by a reduction (in some way) of the
dimension of the analysed objectives’ space, the ability of the Pareto-optimality method to differenti-
ate between different individuals is also facilitated (Kowalczuk and Białaszewski 2006b; Białaszewski
and Kowalczuk 2016).

Another motivation for the following development proposed for EC is the fact that in most cases
(except for some sporadic fragmentary attempts mentioned in the introduction to this section) only
integrated estimates of the fitness functions have been applied in the reproduction process of the
GA/EC algorithms. This also means using the concept of one ‘unisex’ parental pool, unlike the usual
pattern followed by species in nature.

By estimating the GOL of searched solutions, it would be easy to find a difference if one was look-
ing only for the isolation of solutions from the same Pareto front. This, however, need not lead to
whatever qualitative change in the effects of the evolutionary computations considered (Kowalczuk
and Białaszewski 2006b).

3.4. Concept of genetic gender

In nature, the gender division of a species appears to differentiate individuals with reference to repro-
ductive functions. According to this division, the concept of an artificial genetic gender consists of
dividing the set of objective functions into several subsets, each of which has an attributed genetic
gender Xj, j = 1, 2, . . . , s (Figure 1), and portrays an assumed partial scope (sub)optimality value
of a certain utility in the designer’s interpretation (Kowalczuk and Białaszewski 2001):

GENDERS = {X1, X2, . . .Xj, . . . ., Xs} (7)

For example,

GENDERS = {XX, XY} (8)
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Figure 1. The overall concept of the genetic-gender approach: a gender (set) with a variant (the name of the gender) and its
attributes.

symbolizes the native two-element set of the XX and XY chromosomes, or certain ‘species’ attributes,
which are associated with some distinguishable characteristics of the individuals estimated in terms
of the considered objectives.

In a particular context, a gender (a set) and a variant (a label assigned to such a gender) are asso-
ciated with both a subset of criteria and a subset of individuals (best, in this context). Basically, the
applied division of the set of attributes should be rational and distinctive to achieve the realization of
the global optimization goal (survival) as a result of the synergy of different genders. Nevertheless,
obtaining such an effect is not critical.

In this way, one gender set (Xj) can embrace the objectives of a similar character that are only in
a kind of internal (secondary) rivalry in terms of an approximately equal meaning to the user, from
some pertinent point of view. Such an assortment can thus effectively discharge the designer from
the cumbersome task of isolating a single solution from among all the Pareto-suboptimal solutions
obtained in the course of iterative MOO.

On the other hand, different gender sets (Xj) can express various groups of interests that the user
would find difficult to judge in advance. In general, this division can be used to represent an external
(primary) rivalry, which is not simple to resolve. Usually in such cases, the best method is to use the
notion of Pareto optimality.

Thus, in the consequent GGA, the mechanism of gender allotment during the whole computa-
tional evolution is proposed, for the purpose of creating a few parental pools of different genders
and generating new offspring by mating only apparently dissimilar individuals. Despite such a frac-
tional perspective, the notion of the set-fitting Pareto suboptimality appears to be entirely clear and
sufficient. In similar contexts, such an artificial gender is even referred to as ‘sex’ by several authors
(Lis and Eiben 1997; Rejeb and AbuElhaija 2000; Kowalczuk and Białaszewski 2001; Vrajitoru 2002;
Sanchez-Velazco andBullinaria 2003a, 2003b; SongGoh, Lim, andRodrigues 2003; Sodsee et al. 2008;
Yan 2010).

The vector of the profit functions (1) can therefore be divided into s subvectors (Kowalczuk and
Białaszewski 2001, 2013; Białaszewski and Kowalczuk 2016):

f (x) = [f 1(x) f 2(x) . . . f s(x)]
T ∈ Rm (9)

f j(x)
T ∈ Rmi , m =

s∑

i=1
mi (10)

where the latter describes the jth subvector (j = 1, 2, . . . , s) defining the genetic-gender perspective,
which by means of some measure will be used to specify the genetic-gender set of individuals all
labelled byXj.Within each of these sets, Pareto-suboptimality-based ranking of individuals is applied.
In effect, each of the individuals is allotted a vector of ranks

r(xi) = [r1(xi) r2(xi) . . . rs(xi)]T ∈ Rs (11)
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where rj(xi), j = 1, 2, . . . , s, represents the rank of the ith individual (xi) within the jth genetic
gender (Xj).

According to the proposed GGA, the assignment of the genetic gender li to each individual xi in
the population is performed by computing the following procedural quantities:

ϕi = max
j=1,2,...,s

ϕ
j
i , li = arg max

j=1,2,...,s
ϕ
j
i (12)

based on

ϕ
j
i =

rj(xi)
rjmax

, rjmax = max
i=1,2,...,N

{rj(xi)} (13)

where ϕi is the obtained highest degree of suboptimality, meaning a (fuzzy) measure of the mem-
berships of the ith individual to the lith variant of the genetic gender, while the symbol rjmax
denotes the maximum rank from among all individuals with respect to the jth subcriterion Xj (used
for the purpose of normalizing suboptimality). As can be seen from Equation (12), the index of
the maximal degree of suboptimality ϕi determines the gender of a solution under estimation in
an unambiguous way.

As suggested above, it is assumed that only individuals of different genders create their off-
spring in the crossover process of the GGA algorithm, i.e. crossing individuals of the same gender
is avoided. The method of selecting the parental pool is carried out according to the method known
as stochastic sampling without replacement (Goldberg 1989) or stochastic remainder (Kowalczuk,
Suchomski, and Białaszewski 1999), based on the highest degree ofmembership to the gender set (Xj)
considered.

In the GGA, the number of individuals in each of the gender groups can change in the process
of evolution. Only a minimum power (cardinality) of the gender sets (e.g. N/(3s)) is monitored. The
missing positions (this problem occurs only when initializing the GGA procedure) can be supple-
mented by individuals from the lowest Pareto front of another gender set, which are left out in the
course of the GGA selection process.

The sizes of the gender parental pools are similar. For instance, in the case of three genders
with a population of 60 members, the cardinality of each parental genetic-gender set (pool) is
equal to 60/3 = 20, where each genetic-gender parental pool consists of individuals with one spec-
ified attribute (gender). This mechanism means that in the case of a small (N/3s) genetic-gender
subpopulation the rivalry between these individuals is weak. Weaker individuals will then have a
greater chance of survival (entering the parental pool). For large subpopulations, the rivalry is much
stronger and therefore only ‘truly’ best individuals will appear in the parental pool. This mecha-
nism is similar to niching, or uniform breeding (Kowalczuk and Białaszewski 2006b). The full cycle
of the GGA algorithm, including preselection of the genetic-gender (GG) sets, is briefly sketched
as Procedure 3:

Procedure 3 Genetic-Gender Algorithm (GGA) - a sketch
Divide the vector of profit functions into s-subvectors
Generate randomly an initial population V of N individuals {xi}Ni=1;
while t ≤ tmax

Compute the fitness: xi → f (xi)
Assign the GG ranks according to each s-subcriterion: xi → r(xi)
Compute the degree of suboptimality based on Equation (13)
Recognizethe individual’s gender(GG) according to Equation (12)
Assemble the GG sets {Xj}sj=1 of individuals of highest

suboptimality (12)
Select the parental GG pools {X′j}sj=1 with the use of SRC
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Create the new offspring V’ by making:
Crossover of different GG
Mutation of the offspring

Replace the population: V ← V’
Cycle: t ← t+1.

As can be seen from Procedure 3, the presented GGA is unique and simple to implement. The
innovative parameterization associated with GGA is confined to the ‘merit’ decision concerning the
sense and number of genders applied. For the reader’s convenience, more details are given in the
supplementary Appendix A. The effectiveness of GGA was analysed and proven for various abstract
challenges associatedwithmulti-objective problems and several designs taken fromengineering prac-
tice (Kowalczuk, Suchomski, and Białaszewski 1999; Kowalczuk and Białaszewski 2013). Complex
standard benchmarks are analysed in Section 4.

It is thus clear that by introducing the idea of genetic gender, the issue of dimensionality by atom-
izing the scope of optimality and restricting the dimension of the objective spaces can largely be
alleviated. Thismanipulationwould be expected to produce a greater number of Pareto fronts (Kowal-
czuk and Białaszewski 2006b), leading to a measurable diversity of the generated subpopulations and
to an improved effectiveness of the genetic search in the direction of both partial and total objectives
(e.g. in the GOL sense).

Examples supporting the GGA can be found in nature; for instance, in some sexual behaviour
among cuttlefish, which are particular about the transfer of two unique characteristics to their
offspring (size and intelligence).

From a human point of view, and considering social characteristics and roles, ‘child’ can be distin-
guished as a ‘third gender’. The three aspects of human functioning have linguistic and grammatical
contexts.

3.5. Concept of hierarchical virtual gender and Pareto ranking

The idea of hierarchical Pareto ranking (HPR) or hierarchical virtual gender (HVG) of the analysed
solutions (Kowalczuk and Białaszewski 2011) is based on another use of the principle of genders, and
observations that human decisions performed in a process of multi-objective problem solving often
have the nature of hierarchical evaluation. It is important that such an approach to MOO, referred to
as the VGA, is also based on Pareto suboptimal ranking. But, this time, in contrast to GGA, during
evolutionary cycles the dynamic assignment of genders to individuals is not executed, and no gender
restrictions are imposed on the crossover process (thus implementing the classical ‘universal-sex’
scheme).

The original, individual scalar criteria are treated as primary. In the process of creating the hier-
archy, first, the complete set of criteria is partitioned into disjoint subsets, referred to as secondary
virtual genders. The genders (ranks), quantitatively (for a particular individual) representing the sub-
sets of the primary criterion functions, can be marked with labels, called secondary virtual variants
(labels). Next, a similar treatment is carried out with respect to the obtained set of secondary virtual
genders. As a result, a master collection of some secondary virtual genders, uniquely representing a
greater group of primary genders, is obtained. The resulting construction can be described as a tree
structure, where lower level assessments (ranks) turn into higher level virtual individuals.

Figure 2(a) shows an example of a complete distribution of 12 primary objective functions into
four disjoint secondary virtual genders. In the second step, the aggregation of two secondary virtual
genders into two (disjoint) sets of third rate virtual genders (high level) is performed. Although the
higher level virtual genders play a pure tool function in the Pareto ranking, suitable labels (variants)
can be assigned to them. A simple case is shown in Figure 2(b), which illustrates a virtual-gender
distribution of nine criterion functions using three classes (corresponding to the one-level genetic-
gender resolution applied in GGA). The vector of s = 3 ranks of Equation (11) is applied here as
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Figure 2. Exemplary distribution of objective functions into (a) four-level and (b) three-level hierarchical virtual genders.

the representation of three secondary virtual genders (‘classes’ or ‘breeds’ estimated by their own
ranks), which are next subject to aggregation into a one-element set of a third rate variant. At
all levels, the assessment of virtual individuals, representing fitness and ranks, is completed in the
Pareto sense.

According to this scheme, at the second (II) level the assessment is performed (as in GGA) with
respect to the degree ϕ

j
i of suboptimality (Equation (13)) within each variant. Taking into account

the three resulting assessments (relative ranks) gained at this level (II) that constitute the secondary
virtual genders, or virtual variants, the final distinct Pareto-optimal estimation can readily be done at
the third level.

The above-described process of the sequential-derivative Pareto assessment can easily be devel-
oped for any necessary number of levels (e.g. up to a scalar estimation), if such an HPR with many
levels willmore closelymatch the user’s needs and the nature of the analysed set of criterion functions.

Explicit hierarchies matched to the accepted way of distributing the criterion functions of Figure 2
are shown in Figure 3. Figure 3(a) describes the assessment process concerning 12 criteria, which are
divided into the four groups of Figure 2(a). Inside each of them, Pareto ranking (II-level assessment)
is carried out. As a result, a corresponding assessment vector of four normalized ranks is obtained.
These ranks, based on the Pareto-optimal assessment of two two-fold ranks, are next used in the con-
struction of the third rate (two-fold) level of assessment. In theVGA course of the third rate level HPR
evaluation performed on the four secondary estimators (II-level virtual genders measured by four
ranks, each aggregating three primary subcriteria), each individual in the analysed population will
achieve a two-fold rank, which again needs normalization to be considered a III-order suboptimality
degree.

Figure 3(b) presents another case of a simple two-step analysis of Figure 2(b), where nine crite-
rion functions are divided into three virtual genders of the II level, and Pareto ranking is carried
out as above. With the adopted hierarchy of multi-criteria evaluation, the III-level Pareto reranking
assessment of EMOO-problem solutions concerns a corresponding (to the figure) three-dimensional
criterion vector, and leads to a final scalar evaluation (already normalized).

It is clear that the use of HPR can always be extended to a desirable highest level of aggregation
(IV and III, for the two examples presented in Figures 2 and 3, respectively), meaning a scalar global
estimation of solutions. This ultimate application of HPR thus makes a new proposition for defining
global optimality, and is a challenger to GOL.
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Figure 3. Hierarchical Pareto ranking according to the (a) four-level and (b) three-level hierarchical virtual genders of Figure 2.

In summary, the elaborated hierarchy represents a simple sequential procedure of assessing a scalar
fitness of the considered individuals for the purpose of selecting a parental pool. This procedure is
more developed than GOL, but leads to an effect similar to GOL.

3.6. Evolution quality and implemental remarks

The scalar ranks of individuals achieved in HPR can be used in a number of ways in the selection
of individuals into the parental pool. This process can be supported, for example, by means of the
SRC method (Kowalczuk, Suchomski, and Białaszewski 1999). In addition, the GOL can be used as
a supporting measure for selecting the ultimate solution; in other words, GOL is still suitable here as
a final optimality criterion for user selection. Several standard EMOO performance indices can be
applied to evaluate the MOGA runs, such as the hypervolume ratio (HVR), maximum spread (MS),
generational distance (GD) and spacing (SP) (Coello, Lamont, and Van Veldhuizen 2007;While et al.
2006; Bader and Zitzler 2009). Some of these methods will be included in the study presented here,
although their use in some cases can be problematic.

Considering, for instance, the HVR measure, it must be kept in mind that the objective space
needs to be convex, which is a hard condition to fulfil in practice. If it is not convex, the results may
be misleading and, moreover, a true Pareto front has to be known (Cotta and Schaefer 2004; Bader
and Zitzler 2009). The GD measures the mean distance between the computed Pareto front and the
true one. When seeking optimal parameters in continuous search domains, the Pareto front or the
Pareto-optimal solution set (Cotta and Schaefer 2004) is infinite and often difficult to find for practical
optimization tasks.

The EMOO indices HVR and GD need an external (archive) population consisting of non-
dominated individuals. Similarly, to determine the rate ofMS the GAsmust store the non-dominated
solutions found during evolutionary cycles in an archive population, called a known Pareto front.
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The GGA, however, does not utilize any external population, and only one set of individuals evolving
through the generations is applied.

In contrast to the various other approaches and measures, the GGA algorithm returns ‘good’ rep-
resentatives of the Pareto front of non-dominated solutions in a natural process of inheritance, and
can also be assessed by other tools, such as the proposed GOL index.

Computational applications of EMOO algorithms, including those presented in this article, illus-
trate that determination of the true Pareto front would be computationally expensive, owing to either
the form of the criteria, requiring simulation of the optimized system, or the complex numerical com-
putations necessary for obtaining the value of the vector criterion. The final assessment of solutions
could be a topic for further research studies.

Most of the known benchmarks forMOO concern only a few objectives, and they are not interest-
ing patterns in the context of GGA and VGA, which are meant for truly multi-dimensional problems.
Nevertheless, even the sample of results presented below appears to be sufficient to illustrate both the
nature and power of the gender approach that is revealed in highly dimensional objective spaces.

4. Illustrative benchmark examples

This section presents the results of optimization for exemplarymulti-objective problems. Two groups
of evolutionary algorithms were selected for this comparative study: (1) four non-gender represen-
tatives: SMS-EMOA, multi-objective evolutionary algorithm based on decomposition–differential
evolution (MOEA/D-DE), generalized differential evolution 3 (GDE3) and NSGA2; and (2) three
gender-based (multi-sexual) algorithms: the gender propositions, i.e. GGA and VGA with HPR, and
MSGA (Lis and Eiben 1997), most similar to GGA. All can be run in attended mode, using elitism.
Keeping in mind that the EC methodology is to a great extent resistant in this field, the parameters
of the analysed algorithms were rationally related to the considered optimization tasks and estab-
lished according to experience, as suggested by Zhang and Li (2007). These implemental factors were
thus set as follows: type of arithmetic, floating point; population size, 120; crossover probability, 0.8;
mutation probability, 0.2; maximal number of generations, 200; and number of repeated runs, 30 (for
statistical averaging). All of the algorithms start their execution from the same initial population.

4.1. Optimization results

All of the considered algorithms, both gendered and non-gendered, were compared using several
optimization tasks, designated as UF1–UF10 and DTLZ1–DTLZ7 (Zitzler and Thiele 1999; Coello,
Lamont, and Van Veldhuizen 2007; Qingfu et al. 2009). In most cases in this study, two relatively
difficult sample tasks from each group, UF7, UF10, and DTLZ4, DTLZ5, are exercised.

The number of matching criteria not only represents the overall complexity of a given problem,
but is also important for the structure of the gender mechanism used in the GGA/VGA. The UF7
describes a two-objective optimization test (with 30 decision variables/parameters). Such a simple
set of criterion functions leads to the natural division into two one-dimensional attributes (and two
genetic-gender sets), where the first gender set is characterized by the first objective f1(x) and the
other is determined by the second function f2(x). This set of criterion functions can be innately
divided into three one-dimensional attributes, or three genders. The UF10 is a three-objective opti-
mization test (with 30 parameters). This set of criterion functions can be innately divided into three
one-dimensional attributes, or three genders: {f1(x), f2(x), f3(x)}. The DTLZ4 and DTLZ5 problems
were designed for 10-dimensional criteria. In both cases, the functions of 10 objectives and 20 deci-
sion variables are divided into three default subsets (gender variants), where the first gender is set
according to [f1(x) f2(x) f3(x)], the second gender is associated with [f4(x) f5(x) f6(x)] and
the third gender is constructed via the criterion subset [f7(x) f8(x) f9(x) f10(x)]. Moreover, in
programming the VGA, the most simple III-level fitness hierarchy is applied (see Figures 2(b) and
3(b) for details of HVG/HPR), corresponding to the above-described genetic-gender distribution.
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Table 3. Evolutionarymechanisms applied in the unattended evolutionarymulti-objective optimization algorithms (with-
out elitism) using real number representation.a

Mechanism Crossover Mutation Selection

M.1 AX UniM SRC
M.2 SBX PolyM SRC
M.3 SBX PolyM TourS

Note: aexcluding the multi-sexual genetic algorithm (MSGA), having binary representation.
AX = arithmetic crossover; SBX = simulated binary crossover; UniM = uniform mutation; PolyM = polynomial muta-
tion; SRC = stochastic remainder choice; TourS = tournament selection.

In the experimental study concerning complex multi-dimensional and multi-parameter tasks,
another choice is also exercised, of distributing the 10 objectives into the assumed three genders
(variants), where the first gender is built according to [f1(x) f2(x) f3(x) f4(x) f5(x)], the second
gender is determined by [f6(x) f7(x) f8(x)] and the third gender is defined as [f9(x) f10(x)].

All of the algorithms were compared in terms of the basic GOL (i.e. the maximal GOL) and the
dispersion or standard spacing metric (SP), which measures the spread or dispersion of the solutions
contained in the derived Pareto front (Coello, Lamont, and Van Veldhuizen 2007). The third quality
index is hypervolume (HV). Owing to the computational complexity in determining the HV indica-
tor, an offlineMonte Carlo method (While et al. 2006) was used, which is necessary especially for the
demanding multi-objective problems spanned by three to 10 objectives. When using SMS-EMOA,
the HV contribution must always be determined online.

In the simplest case of UF7, it is quite easy to compute the GD index (Coello, Lamont, and Van
Veldhuizen 2007) and refer the analysed solutions to a known true Pareto front. When dealing with
complex problems (UF10, DTLZ4–DTLZ7), however, this index appears to be too computation-
ally complex and therefore impractical (mainly because of the need to determine the true Pareto
front). Therefore, in more complex cases, in place of the GD the median GOL is applied as the fourth
indicator.

In some computations, the applied EMOO algorithms are executed without elitism, which means
that the no-gender algorithms, NSGA2, MOEA/D-DE, GDE3 and SMS-EMOA, are deprived of their
internal mechanism of elitism. This type of experimentation is referred to as unattended.

Apart from the easy-to-calculate index GOL, all quality indicators were estimated offline. For
statistical analysis of the obtained results, the median approach was primarily used.

Consequently, the running statistical results of multi-objective unattended optimization for UF7
are shown below in terms of the following indicators: maximal GOL, SP, normalized HV and GD,
whereas for the complex MOO tasks (UF10, DTLZ4–DTLZ7), maximal GOL, SP, HV and median
GOL are used.

4.1.1. First experiment: three real mechanizations
In the first experiment, the floating-point representation (GGA, VGA, NSGA2, GDE3, MOEA,
EMOA) is applied, except for theMSGA, which uses the binary description (by definition). In Table 3,
three evolutionary mechanisms (performed without elitism) are characterized as follows:

(1) All algorithms use arithmetic crossover (AX), uniformmutation (UniM) and selection bymeans
of SRC; the exceptions are the algorithms GDE3, MOEA and EMOA, which by definition have
no selection mechanism.

(2) Simulated binary crossover (SBX) and polynomial mutation (PolyM) are exercised.
(3) Tournament selection (TourS) is implemented.

The numerical results obtained with the three mechanism cases (M.1, M.2 and M.3) applied to
solve the four selected problems (UF7, UF10, DTLZ4, DTLZ5) can be seen in the supplementary
material in Figures S1–S12.
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Table 4. Characteristics of the operators applied in the unattended evolutionarymulti-objective optimization algorithms (without
elitism) using binary number representation (GGA, VGA, MSGA) and real representation (GDE3, NSGA2, MOEA, EMOA).

Mechanism Crossover Mutation Selection

M.4 Native Native TourS

Note: GGA = genetic-gender approach; VGA = virtual gender approach; MSGA = multi-sexual genetic algorithm;
GDE3 = generalized differential evolution 3; NSGA2 = non-dominated sorting genetic algorithm 2; MOEA = multi-objective
evolutionary algorithm; EMOA = evolutionary multi-objective algorithm; TourS = tournament selection.

Table 5. Evolutionary scheme applied in the evolutionary multi-objective optimization algorithms with local elitisma

(attended) and using floating-point (real) representation (GGA, VGA, GDE3, NSGA2, MOEA, EMOA) and a binary one (MSGA).

Mechanism Crossover Mutation Selection

M.5 Native Native TourS

Note: aGDE3, NSGA2, MOEA and EMOA use their native mechanisms of elitism.
GGA = genetic-gender approach; VGA = virtual gender approach; GDE3 = generalized differential evolution 3;
NSGA2 = non-dominated sorting genetic algorithm 2;MOEA = multi-objective evolutionary algorithm; EMOA = evo-
lutionary multi-objective algorithm; MSGA = multi-sexual genetic algorithm; TourS = tournament selection.

As can be seen in Figures S3(b) and S7(b), in some generations the spacing value SP for
NSGA2 (and sometimes for GGA and VGA) is not visible. This is due to the fact that in
subsequent populations these algorithms produce only one Pareto-optimal solution, whichmakes the
spacing incalculable.

The results (Figure S11) concerning the EMOO solving of problem DTLZ4 and the gendered
approaches GGA and VGA were obtained using the alternative choice of distributing the 10
objectives of DTLZ4 into three (virtual) genders defined by {[f1(x) f2(x) f3(x) f4(x) f5(x)],
[f6(x) f7(x) f8(x)] and [f9(x) f10(x)]}. In the applied theoretical benchmark optimization prob-
lems, the choice does not appear to be critical, although it does not seem to be especially fruitful
(compare the data in Figures S11 and S12).

In general, the simpler the MOO problem, the more similar the results. The best performance was
observed using mechanismM.3; in this way, the combination of mechanisms SBX+PolyM+TourS
can be considered a decisive factor.

4.1.2. Second experiment: binary representations
In many cases, the sheer binary algorithm MSGA appears to perform well, and sometimes even
very well (see Figure S1 and the results for task UF7). Therefore, in the second experiment, atten-
tion is focused on comparison of the algorithms using binary (GGA, VGA, MSGA) and real (GDE3,
NSGA2, MOEA, EMOA) representations. All of the algorithms have mechanized their native genetic
operators. Binary tournament selection was applied if the algorithm needed a mechanism of selec-
tion. The implemented mechanism (still without elitism) is characterized in Table 4. ‘Native’ means
that each algorithm uses its inborn genetic mechanisms (i.e. cross multi-point crossover and binary
mutation). The results of mechanismM.4 used in solving problems UF10 and DTLZ5 can be seen in
supplementary Figures S13 and S14.

4.1.3. Third experiment: native implementations with elitism
The third experiment represents another comparative study of the floating-point representations of
all algorithms (except for MSGA), which use their native (inborn) genetic operators and elitism.
In GGA, VGA and MSGA, local elitism is applied, which means that a few individuals with the
best local optimality, GOL, are taken from each (virtual) gender subpopulation to the next gen-
eration. Table 5 describes the mechanisms executed using local elitism for the extra control. As
above, ‘native’ means that each algorithm uses its inborn genetic mechanisms. The quality results of
implementing mechanism M.5 for solving tasks UF10 and DTLZ5 are illustrated in supplementary
Figures S15 and S16.
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Table 6. Characteristics of the operators applied in the evolutionary multi-objective optimization algorithms (controlled
by local elitisma) using binary number representation (GGA, VGA, MSGA) and real representation (GDE3, NSGA2, MOEA,
EMOA).

Mechanism Crossover Mutation Selection

M.6 Native Native TourS

Note: aGDE3, NSGA2, MOEA and EMOA use their native mechanisms of elitism.
GGA = genetic-gender approach; VGA = virtual gender approach; MSGA = multi-sexual genetic algorithm;
GDE3 = generalized differential evolution 3; NSGA2 = non-dominated sorting genetic algorithm 2; MOEA = multi-
objective evolutionary algorithm; EMOA = evolutionary multi-objective algorithm; TourS = tournament
selection.

Table 7. Characteristics of the operators applied in the evolutionary multi-objective optimization algorithms (controlled
by overall elitisma) GGA, VGA, GDE3, NSGA2, MOEA and EMOA, using real representation, plus binary MSGA.

Case Crossover Mutation Selection

M.7 Native Native TourS

Note: aGDE3, NSGA2, MOEA and EMOA use their native mechanisms of elitism.
GGA = genetic-gender approach; VGA = virtual gender approach; GDE3 = generalized differential evolution 3;
NSGA2 = non-dominated sorting genetic algorithm 2; MOEA = multi-objective evolutionary algorithm; EMOA =
evolutionary multi-objective algorithm; MSGA = multi-sexual genetic algorithm; TourS = tournament selection.

4.1.4. Fourth experiment: binary representations with elitism
To verify the capabilities of the binary implementations, the fourth experiment considers the perfor-
mance of binary mechanizations of the gender algorithms (GGA and VGA) compared to the other
(real) algorithms using their native genetic operators, all with local/native elitism (similarly to M.5).
The mechanisms are explained in Table 6. Again, ‘native’ concerns the inborn genetic mechanisms
and elitism. The quality results of implementing mechanismM.6 for solving tasks UF10 and DTLZ5
can be seen in supplementary Figures S17 and S18.

4.1.5. Fifth experiment: real representations with (overall) elitism
At the end of this experimental review of the EMOO mechanisms and the quality of their per-
formance, a fifth experiment on all floating-point algorithm mechanisms (and the binary MSGA)
was conducted. The algorithms were implemented based on both their native genetic operators and
elitism. In the GGA, VGA and MSGA, a typical mechanism of the overall (total) elitism is applied,
which means that a few individuals with the best local GOLs in the whole population are carried over
to the next generation. Table 7 describes the EMOOmechanisms used, along with overall elitism. The
estimated results of implementing mechanismM.7 for solving tasks UF10 and DTLZ5 are illustrated
in supplementary Figures S19 and S20.

The above experimental computations were carried out in view of the possibilities of implement-
ing the algorithm SMS-EMOA, which, owing to its deposition on the mechanism of hypervolume,
requires huge computational cost for the online calculation of the hypervolume contribution, which
makes such calculations completely impractical for difficult multi-dimensional optimization prob-
lems. Therefore, the most complex optimization problems, represented by functions DTLZ6 and
DTLZ7, were tested for the six considered algorithms, omitting algorithm SMS-EMOA. The opti-
mization results obtained using the EMOOmechanismM.7 for problems DTLZ6 and DTLZ7 can be
found in supplementary Figures S21 and S22. As the last two tasks have a highly developed objective
space, as is usual in such cases, almost the entire population is not dominated in the Pareto sense.
This makes the calculation of the hypervolume contribution especially difficult to perform online.

4.1.6. Sixth experiment: averaging versusmedian approach
The purpose of the sixth experiment is to show the effect of using simple averaging in place of median
estimation. For illustration, the real number representation in algorithms deprived of elitism (as in
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mechanismsM.3; see also supplementary Figures S9c–S12c) is considered. The sample of results con-
cerns problems UF7, UF10, DTLZ4 and DTLZ5. Themedian estimation usually yields results similar
to averaging. But in some cases (see Figure S23), the averaging approach can result in a less smooth
run of an index, especially concerning the hypervolume.

4.1.7. Illustrative true Pareto fronts: for the third experiment, problems UF7 and UF10, and
mechanismM.5

Exemplary Pareto fronts achieved for the first experiment (mechanismM.3, without elitism) and the
third experiment (mechanism M.5, with local elitism) are related to two low-order problems: two-
objectiveUF7 and three-objectiveUF10, as shown in Figures 4 and 5, respectively. Solutions thatmake
up the presented Pareto fronts belong to the last 30 generations of the 30 runs for each algorithm.

In particular, in Figure 4 (also supplementary Figure S24) the Pareto fronts can be referred to a true
Pareto front, represented as a grey line segment. In contrast, in Figure 5 a tiny true Pareto-optimal

Figure 4. The true Pareto front (grey) and the Pareto fronts obtained for the simple problem UF7 using (a) mechanism
M.3 (without elitism) and (b) mechanism M.5 (with local elitism). GGA = genetic-gender approach; VGA = virtual gender
approach; MSGA = multi-sexual genetic algorithm; NSGA2 = non-dominated sorting genetic algorithm 2; MOEA/D-DE = multi-
objective evolutionary algorithm based on decomposition–differential evolution; GD3 = generalized differential evolution 3;
SMS-EMOA = S-metric selection evolutionary multi-objective algorithm.

Figure 5. The true Pareto front (grey) and the Pareto fronts obtained for the simple three-dimensional problem UF10 using (a)
mechanism M.3 (without elitism) and (b) mechanism M.5 (with local elitism). GGA = genetic-gender approach; VGA = virtual
gender approach; MSGA = multi-sexual genetic algorithm; NSGA2 = non-dominated sorting genetic algorithm 2; MOEA/D-
DE = multi-objective evolutionary algorithm based on decomposition–differential evolution; GD3 = generalized differential
evolution 3; SMS-EMOA = S-metric selection evolutionary multi-objective algorithm.
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front resembles a very small spherical grey sector centred on the origin point (0, 0, 0). As can be
seen there, the gendered approaches are not most optimal. This is due to the fact that with such sim-
ple benchmark cases, the advantages of gender division are not used and integrated multi-objective
optimality is not sought; instead, the low-dimensional genders (variants) care only about their
own individual goals. Nevertheless, as shown for mechanism M.3 (without elitism) in Figures 4(a)
and 5(a), the VGA has proven very effective and as good as NSGA2 (even for such inappropriate and
unchallenging tests).

4.1.8. Computation time
Resulting from yet another study, Figure 6 presents the computation times for each of the seven anal-
ysed algorithms in the third experiment (mechanism M.5) when solving the 10-objective problem
DTLZ5. Each individual bar represents the running time of a single simulation. The results (bars)
for each EC algorithm are put together (30 neighbouring bars represent 30 runs). As can be seen in
Figure 6, the computation times of the GGA and VGA algorithms are, on average, at least two times
lower than those for the MOEA/D-DE, i.e. GGA and VGA take about 3 s, MOEA/D-DE about 5 s,
NSGA2 about 7 s and GDE3 about 8 s. The computation times for the algorithm SMS-EMOA are
much greater. The reason for this is the need to determine the HVR online. On the other hand, the
computation time for the MSGA is the result of the applied binary representation, which requires the
use of additional mechanisms for processing very long binary strings (20 parameters× 24 bits makes
a 480 bit string). All the calculations were implemented in MATLAB®

and carried out on a personal
computer with a dual-core Intel Core i5 processor (2.7 GHz).

A taste of the difference resulting from the dimension and complexity of the analysed problems
can also be gained by the transition from theoretical tasks to practical problems, which can increase
the calculation time from a few seconds to minutes. To be more concrete, in an exemplary case of
engineering design, namely the design of diagnostic observers analysed, for instance, by Kowalczuk

Figure 6. Experiment 3 (mechanismM.5) in problemDTLZ5: computation time for different algorithms in 30 runs. GGA = genetic-
gender approach; VGA = virtual gender approach; MSGA = multi-sexual genetic algorithm; NSGA2 = non-dominated sort-
ing genetic algorithm 2; MOEA/D-DE = multi-objective evolutionary algorithm based on decomposition–differential evolution;
GD3 = generalized differential evolution 3; SMS-EMOA = S-metric selection evolutionary multi-objective algorithm.
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and Suchomski (2004) and Białaszewski and Kowalczuk (2016), the computation times needed by
the fastest algorithms (GGA and VGA) reach on average about 456 s (about 8min), which is about
200 times longer than the running time consumed in solving the benchmark problems analysed here.
This increase comes from a significant rise in dimensionality; it is also due to the fact that the applied
engineering criterion functions must be determined using numerical calculations of complex analyt-
ical procedures for an appropriate infinity norm of system transmittance matrices (Kowalczuk and
Białaszewski 2004, 2006b, 2013).

4.1.9. Statistical analysis: for selected problems UF7 and DTLZ6
A statistical analysis of the significance of differences observed among the proposed GGA/VGA and
the other benchmarking procedures is also important. Therefore, the issue of the statistical signifi-
cance of the results is supported here by a brief study. A limited sample of 1500 results (the last 50
generations in 30 runs), computed for the analysed benchmark MOO tasks and each of the tested
six algorithms, was assessed in view of the four main performance indices: GOL, GD, HV and SP
(calculated in four versions: max, mean, median and min). Corresponding approximate probability
distribution functions (PDFs) were estimated (PDF is thus a probability mass function, which rep-
resents an approximation of a probability density function). The PDFs are selectively illustrated in
Figure 7 (and in supplementary Figures S27–S31) in three dimensions for the two chosen problems,
UF7 and DTLZ6.

In the supplementary study, the ranges of indicators GOL and HV were normalized with respect
to the common maximum values obtained a posteriori for the given problem. These indices are nor-
malized to the same narrow range (0.9–1). However, this is not the case for non-normalized indices
GD and especially SP.

The charts have been normalized to represent a PDF. As can be seen from the results, the estimated
PDFs show their different, statistically pertinent placement in the domain of possible results.

Distribution of the maximal GOL when solving tasks UF7 and DTLZ6 is given in Figure 7
for mechanisms M.3 and M.7, respectively, and shows a statistical dominance of VGA and GGA,
respectively, over the others.

Figure 7. Distribution of maximal global optimality level with mechanisms: (a) M.3 for problem UF7; (b) M.7 for prob-
lem DTLZ6. GGA = genetic-gender approach; VGA = virtual gender approach; MSGA = multi-sexual genetic algorithm;
NSGA2 = non-dominated sorting genetic algorithm 2; MOEA/D-DE = multi-objective evolutionary algorithm based on decom-
position–differential evolution; GD3 = generalized differential evolution 3; SMS-EMOA = S-metric selection evolutionary multi-
objective algorithm.
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Analogous results for the minimal (worst case) GOL in tasks UF7 and DTLZ6 can be found in
supplementary Figure S28, where the simple (UF7) problem is solved in similar ways. In terms of the
mean (as well as median) GOL, the effects of the EMOO procedures (see Figure S29) may vary over
a similar narrow interval (about 0.9–1) of this performance measure.

Performance indices achieved by the EMOO algorithms, in terms of HV and SP when solv-
ing the DTLZ6 problem, and in terms of GD and SP when solving the UF7 task, are illustrated in
supplementary Figures S30 and S31, respectively.

In view of the above results, it can be stated that the gender algorithms GGA and VGA, by con-
ducting a very intensive search (making the crossing of only definitely dissimilar individuals), have
more prerogative to find Pareto-optimal solutions (especially in the GOL sense). They can, however,
also easily obtain weaker solutions of the EMOO tasks (although not necessarily worse than those
found by other algorithms). On the other hand, looking at the subsidiary criteria (SP, HV and GD),
the gender algorithms lead tomore focused solutions with a lower dispersion (i.e. having lower values
of these criteria).

4.2. Critical analysis and summary of the results

Many practical improvements in the performance of ECs are gained by the proposed gender
approaches, GGA and VGA, compared to the classical, full-scope Pareto estimation used in MOO
(Kowalczuk and Białaszewski 2004, 2006b):

• The classical GAs exhibit a relatively high sensitivity to the initial set of solutions.
• By the proposedGGA/VGA restatement, the issue of dimensionality can be significantly alleviated.
• The resulting gender-based Pareto fronts are more regular and appear in greater numbers.
• The applied gender suboptimality sustains diversity, representing an attractive genetic ‘search

power’ based on both the internal and external rivalry of individuals, in a more rational way than
the popular niching mechanism (Horn and Nafpliotis 1993; Michalewicz 1996; Man et al. 1997;
Kowalczuk, Suchomski, and Białaszewski 1999; Kowalczuk and Białaszewski 2006a, 2006c; Coello,
Lamont, and Van Veldhuizen 2007),

• The implemented GGA restriction in the crossover possibilities prevents premature convergence.
• The GGA/VGA Pareto-optimal solutions found are more optimal (in the sense of GOL/HPR).
• The user gains a clear outcome to support his or her decision about the selection of the ultimate

solution(s).

Compared to othermethods, the gender approach is fairly simple (in terms of both conception and
computation), sticks to the very basics of the GA/ECmethodology, more profoundly uses hints from
nature, fulfils the requirements of technical design and ultimate decision making, and is completely
open to amendments and developments proposed in the literature (e.g. Schaffer 1985; Goldberg 1989;
Hajela and Lin 1992; Horn, Nafpliotis, andGoldberg 1994; Srinivas andDeb 1994; Fonseca and Flem-
ing 1995; Zitzler and Thiele 1999; Kowalczuk, Suchomski, and Białaszewski 1999; Kowalczuk and
Białaszewski 2006a; Coello, Lamont, and Van Veldhuizen 2007; Zitzler, Thiele, and Bader 2010).

The gender approach is also entirely different from other propositions. Although having several
instrumental consequences, the GGA and VGA methods are conceptual in nature, consisting of the
objective space decomposition of the initial problem and the effective reduction of an originally
highly dimensional problem.Nevertheless, the VEGAhas a few limited similarities: the VEGApartial
parental pools can be assigned genders from a maximum m-element set, although it does not make
use of the Pareto-optimality concept, its genders are not exclusive (one individual can have several
genders) and the crossover mechanism has no gender checks.

Several examples of the application of the proposed genetic and virtual gender recognition in
the evolutionary solution of different benchmark MOO tasks have been presented above; however,
in solving practical problems, the gender approach generally prefers to break down the problem
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according to significance, i.e. it needs to discriminate the less relevant criteria from the more relevant
ones, and to distinguish groups of similar objectives. This division does not have to be consistent
with the computational complexity of the considered criteria. Moreover, as argued below, based on
complex real-engineering optimization problems, when designing control or diagnostic systems, for
instance, such characteristics are easily identifiable and the gender division is effortless (e.g. precision,
insensitivity to disturbances and robustness to knowledge or modelling errors).

In the considered cases of abstract benchmark optimization problems, there is no indication of the
significance of the objectives. Therefore, sometimes nothing can be gained from using the GGA and
VGA, and the choice of genders does not appear to be critical or especially fruitful. Nevertheless, even
in such theoretical cases and in line with the gender approach, the more complex the optimization
problem, the better the results achieved by the GGA and VGA.

Other applications of the proposed GGA/VGA idea to multi-objective synthesis problems, con-
cerning the engineering design of controllers and diagnostic observers, have been considered inmany
previous works, which also show the advantages and superiority of the gender approach. In par-
ticular, a typical design of a proportional-integral-derivative controller and a very complex design
problem of a detection observer (Patton, Frank, and Clark 1989; Chen, Patton, and Liu 1996; Kor-
bicz et al. 2004; Suchomski and Kowalczuk 2004; Kowalczuk and Białaszewski 2004, 2013), which
serves as a principal element in the detection and isolation of faults, were put into practice. The latter
design issue was illustrated with a benchmark problem based on a ship’s propulsion system (Izadi-
Zamanabadi and Blanke 1998). The obtained complex optimization design effect given in the form of
a robust optimal detection observer (Kowalczuk and Białaszewski 2004) demonstrates both the use-
fulness and effectiveness of the proposed gender-based optimization method. Such an optimal tool
of engineering system design—in accordance with suitable project prerequisites—allows systems to
be designed which perform their basic task while having sufficient sensitivity (e.g. to errors in sensors
and actuators) and simultaneously showing robustness to certain modelling uncertainties. The three
desired characteristics of the system, namely the degree of functioning (performance), insensitivity
and robustness, can be easily obtained using three separate genders. The optimal, robust and insen-
sitive engineering solutions obtained in this way confirm the effectiveness of the gender approach in
solving practical MOO problems.

5. Conclusions

The proposed GGA method of solving MOO tasks in an evolutionary manner is based on learn-
ing through the recognition of genetic genders. Information about the degree of membership to a
given gender set is extracted in a Pareto-suboptimal process of ranking the fitness functions of anal-
ysed solutions. This information can be exploited in the crossover process of mating, in which only
individuals of different genders are allowed to create offspring.

An instructive feature of the proposed EMOO approach is the utilization of the Pareto-
optimization results. Thus, within each gender set of the GGA, Pareto optimization is used as an
effective tool of suboptimal judgement of the ‘internal’ single-gender rivals for the purpose of their
uniform estimation and selection (in a greater number) to the newly created parental subset (and to
the next generation) in each iteration cycle of ECs. It is worth emphasizing that despite relying on
this limited perspective, the notion of set-fitting Pareto suboptimality is entirely clear and practically
adequate.

The GGA method can be interpreted in terms of:

• a new mechanism of preselecting both the transient and final individuals (solutions)
• mutual intergender support in the genetic search.

The standard concept of Pareto optimality can still be applied to the final set of solutions on a
regular basis. Another method of processing and taking into account the full scope of optimality
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is based on the concept of either the GOL, calculated based on the fitness (or rank) functions, or
HVG/HPR, based on a developed hierarchy of virtual genders (used in VGA).

A major success of the gender approach can be attributed to the fact that it appropriately deals
with a great number of objectives by reducing the dimensionality of the Pareto-analysed spaces. In
the full-scope optimization case, the number of Pareto fronts is strongly limited because of the high
dimension of the objective space. This means that many individuals are estimated as being equivalent
from the Pareto-optimality viewpoint (i.e. they have the same rank). As a result, the process of select-
ing individuals is not effective and the evolutionary search is overly stochastic, with no indications or
progress in particular directions represented by the stated criteria.

In contrast, by introducing genetic or virtual genders, the above issue is solved bymeans of restrict-
ing the dimension of the objective spaces and bringing about a greater number of Pareto fronts
within each population analysed in a subspace of a restricted dimension (i.e. solely in the space of
the assigned gender objectives). This, in turn, brings about diversity among the individuals of the
(GGA) subpopulations that can be easily estimated and used in effectively pushing the evolutionary
exploration in the desired directions on the basis of the achievable distinctive ordering.

As explained above, in the EMOO GGA process any solution iteratively generated in particular
epochs is assigned to gender, to allow for the selection of suitable members for utility parental pools.
As has been shown, the genetic-gender restriction imposed upon the crossover mechanism prevents
premature convergence of the optimized solutions and sustains their diversity. In this context, there
is a close similarity to the results obtained by means of niching (Kowalczuk and Białaszewski 2006c).
The genetic and virtual genders are easily distinguishable and they allow a global optimization via
iterative suboptimization. The outcomes of the gender-based procedures are also less sensitive to the
choice of the initial population than those of the other and classical genetic algorithms. In general,
the GGA appears to be very robust, taking into account the various types of EMOO tasks and their
complexity, as well as the values of executive parameters and initial conditions.

The GOL, according to its max–min principle, and the HPR/HVG method prefer solutions that
are located in the middle of the Pareto front, and turn down the boundary solutions that are typically
found in high-dimensional objective spaces under evolutionary search (owing to the known defect of
Pareto evaluation). This is an important feature, as from the MOGA and engineering viewpoints the
solutions that are ‘excellent’ with respect to a singlemeasure are generally unacceptable.Moreover, the
main idea of using theGOL for the presentation of the results during all epochs of EC lies inmeasuring
the progress of the optimization process in terms of finding the best Pareto-optimal solutions. The
waveform charts for GOL andHV are similar. GOL is not applied in the selectionmechanism of GGA
(and this means more room for improvement), and the concept of applying HPR/HVG in the VGA
optimization procedure shows the practical advantages of this approach (Kowalczuk andBiałaszewski
2004, 2006b).

In this article, significant differences were found in the main performance measures of the
considered EMOO procedures in selected comparative experiments, in terms of the estimated PDFs.

Although the gender approach is more developed than other methods, as mentioned in Section
3, in similar contexts of artificial gender variation several authors (Lis and Eiben 1997; Rejeb and
AbuElhaija 2000; Vrajitoru 2002; Sanchez-Velazco and Bullinaria 2003a, 2003b; Song Goh, Lim, and
Rodrigues 2003; Sodsee et al. 2008; Yan 2010) use the term ‘sex’ to determine certain mechanisms
anchored in observations of nature and implemented in GAs. In addition, the philosophy of GGA
means an artificial and evolutionary optimization mechanism, with strong roots in nature. It can be
argued that life is too short to carry out careless optimization of stochastic type, so the authors’ advice
is to use certified, accumulated knowledge, if possible (Kowalczuk and Białaszewski 2006b).
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