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Abstract. The well-known management strategies in cloud computing based on 
SLA requirements are considered. A deterministic parallel provisioning algo-
rithm has been prepared and used to show its behavior for three different require-
ments: load balancing, consolidation, and fault tolerance. The impact of these 
strategies on the total execution time of different sets of services is analyzed for 
randomly chosen sets of data. This makes it possible to improve the project and 
to implement the proper strategies for the local TASKcloud environment used in 
our institution. 
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1 Introduction 

In general, service providers establish a service level agreement (SLA [1]) covering the 
general terms and conditions in which they will work with customers. The SLA is not 
only a set of conditions for service providers, but it could be also a source of benefits 
for customers. The contract between the provider and customer describes different char-
acteristics of the service, which makes the services comparable between different pro-
viders. The SLA should also contain methods of redressing service issues. Other topics 
mentioned in SLA documents include: 

• client expectations according to his/her needs,
• detailed descriptions of every service offered, under all possible circumstances, with

the turnaround times included,
• definition of quality measurement metrics and quality level assurance,
• compensation or payment if the provider cannot properly fulfill this SLA.

Cloud computing [2] is mainly built on top of virtualization, as cloud users typically 
rent virtual resources from cloud providers. A popular form of virtualization is the use 
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of virtual units (virtual machines, containers) which are created to run on a host ma-
chine (typically a physical server). Thanks to this, cloud architectures integrate IT en-
vironments and share scalable resources across a network to deliver an online platform 
on which client applications can run. In general, cloud systems are highly complex, as 
they deal with a range of distributed components, users, and deployment scenarios. 

In the literature, different enhancement and approaches to cloud management are 
considered and various models are proposed [4]. In general, the service provider is re-
sponsible for managing the resources to fulfill the requests generated by users. Service 
providers employ suitable algorithms to manage the incoming client requests (services) 
and to manage their virtual resources efficiently. Management strategies make it possi-
ble for providers to maximize revenue by utilizing their available resources up to their 
limits. In practice, in terms of the performance of cloud computing resources, the choice 
of management strategy makes a pronounced difference.  

Our consideration and experiments focus on the implementation of a provisioning 
algorithm for local cloud computing, with the assumption that these local providers 
possess a more limited number of services and resources available for clients. Typical 
local cloud architectures are implemented through commonly available open-source 
software (Unix, OpenStack, Kubernetes). The presented models have been simulated 
hosting the TASKcloud [5] service (based on OpenStack software) which is a cloud 
computing service developed and deployed in our institution. The paper focuses on 
some aspects related to the main management strategies regarding the allocation and 
provisioning of resources (virtual units). They can be defined in different ways under 
the accepted assumptions related to clients’ requirements, cloud architecture, models 
of services and resources, and optimization criteria. Resource Allocation refers to the 
allocation (reservation) of a pool of resources represented by virtual machines or con-
tainers (virtual resources – VR) to satisfy the SLA previously accepted by both the user 
and the cloud provider, while Resource Provisioning is the effective provisioning of a 
portion of the reserved resources to execute the fixed set of services notified by the 
user. Fig. 1 explains the proposed approach. When a cloud provider accepts a request 
from a customer, it has to create the appropriate number of VRs and allocate user ser-
vices to run. A typical example of resource provisioning is the deployment of a new 
virtual machine by the consumer, which uses a subset of the physical resources to run 
the single service. Due to virtualization, we can allocate resources flexibly, based on 
the current client demands. Then we can estimate the optimal values of resources for a 
concrete client demand. In general, this will be a much lower value than the value esti-
mated based on the SLA. 
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Fig. 1. Considered scope of cloud management (source: authors). 

The paper considers local specialized clouds, such as the mentioned TASKcloud, and 
considers a resource provisioning strategy for a lower number of services and resources 
compared to the global clouds deployed by such Big Tech firms such as Google, Mi-
crosoft and IBM. In such a case, deterministic provisioning algorithms can be consid-
ered. Their behavior can be examined for different optimization criteria, i.e., load bal-
ancing, consolidation, and fault tolerance. The impact of many parameters related to 
heuristic algorithms can be eliminated this way. Moreover, a parallel version of the 
algorithm to increase its speed and to consider mixed optimization criteria has been 
prepared. The paper presents that mixed criteria could have a significant impact on the 
execution time compared to a single criterion. It makes it possible to estimate the as-
surance cost of t-faults tolerance, where t is the maximal number of faulty virtual units 
in the cloud. 
The structure of the article is as follows. First, in Section 2, the state-of-the-art in the 
field of the practical implementation of management strategies in local cloud environ-
ments is discussed. In Section 3, the model of the assumed provisioning problem is 
described. Three criteria and the universal parallel algorithm to solve load balancing, 
consolidation, and fault tolerance problems are defined. The experiments are described, 
and the test results of the algorithm are discussed in detail in Section 4. Section 5 con-
cludes the article. 

2 Categories of cloud provisioning 

Organizations can manually provide whatever resources and services they need, but 
public cloud providers offer tools to provision multiple resources and services, for in-
stance: AWS CloudFormation, Microsoft Azure Resource Manager, and Google Cloud 
Deployment Manager. Such solutions concern global clouds and primarily concentrate 
on the administrative problems of cloud provisioning and offer many tools to support 
whole organizations rather than single customers. This paper focuses on local special-
ized clouds and considers the methods of allocating a cloud provider’s resources and 
services to customers. In the current considered provisioning problems, the customer 
signs a formal contract of service with the cloud provider [7]. The provider prepares 
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the agreed-upon resources or services for the customer and delivers them. It is a process 
that can be conducted using one of three delivery models. Each delivery model differs 
depending on the kinds of resources or services the organization purchases, how and 
when the cloud provider delivers those resources or services, and how the customer 
pays for them. The three models are advanced provisioning, dynamic provisioning, and 
user self-provisioning:  

• Advanced Provisioning – the customer requests services from the provider and the 
provider prepares the appropriate resources in advance. The customer is charged a 
flat fee or is billed monthly, 

• Dynamic provisioning – the customer can purchase cloud resources based on aver-
age consumption needs. The cloud provider deploys and adjusts the resources to 
match the customer’s usage demands. Based on the customer’s fluctuating demands, 
the provider allocates more resources when they are needed and removes them when 
they are not. Cloud deployments typically scale up to accommodate spikes in usage 
and scale down when demand decreases. The customer is billed on a pay-per-use 
basis. When dynamic provisioning is used to create a hybrid cloud environment, it 
is sometimes referred to as cloud bursting, 

• User self-provisioning (also called cloud self-service) – the customer buys resources 
from the cloud provider through a web interface or portal and the cloud provider 
makes these resources available shortly after purchase. This usually involves creat-
ing a user account and paying for the resources with a credit card. Those resources 
are then quickly spun up and made available for use – within hours, if not minutes. 
Examples of this type of cloud provisioning include an employee purchasing cloud-
based productivity applications via, e.g., the Microsoft 365 suite or G Suite. 

A self-service provisioning model helps to streamline users’ requests and manage 
cloud resources but requires strict rules to ensure they do not provision resources they 
should not. In this paper, the focus is on this type of provisioning model. The following 
metrics can be distinguished within the above provisioning approach: 

• Scalability – there is no requirement for forecasting infrastructure needs; organiza-
tions can simply scale up and scale down their cloud resources based on short-term 
usage requirements, 

• Provisioning speed – developers can quickly spin up a set of workloads on demand, 
removing the need for an IT administrator who provisions and manages the compute 
resources, 

• Cost savings – many cloud providers allow customers to pay for only what they 
consume. However, the attractive economics presented by cloud services can present 
its own challenges, which organizations should address in their cloud management 
strategies. 

It is a well-known fact that resource over-provisioning can cost users more than neces-
sary and resource under-provisioning hurts application performance. In general, it is a 
complicated optimization problem, and there is a wide research avenue available for 
solving this. In the paper [8], some details about various optimization techniques for 
resource provisioning are presented. It has been shown that the cost-effectiveness of 
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cloud computing strongly depends on how well the customer can optimize the cost of 
renting resources (Virtual Machines) from cloud providers. In the above paper, a frame-
work is proposed. It is inspired by a cloud layer model, to enable the optimal provision 
of resources by combining the concepts of autonomic computing, linear regression and 
Bayesian learning. The efficacy of the proposed framework is evaluated using both the 
CloudSim toolkit and real-world workload traces from Google, followed by the traces 
from Clarknet. Such parameters as response time, SLA violations, virtual machine us-
age hours and cost were evaluated. In the paper [9], the authors propose a concrete 
solution for migrating physical servers to a cloud with the usage of the Azure cloud 
framework. The utilization of physical server resources on remote VM servers is con-
sidered. Such a migration process in the framework was implemented in two phases: 
first by integrating physical servers into virtual ones by creating virtual machines, and 
then by integrating the virtual servers into cloud service providers in a cost-effective 
manner. Two virtual machine instances were created using Microsoft Hyper-V on Win-
dows Server 2016 R2. Applications that were installed on a workstation were migrated 
to the VM and the performance of this VM was monitored using a PowerShell script. 
Then Tableau was used to generate load and do analytical calculations to evaluate the 
physical server functionality. 
The above papers concentrate on the IaaS level, considering VM-based environments, 
where a hypervisor will strictly allocate resources to the deployed VMs. The deployed 
VMs, however, can compete for the shared physical resources, but the hypervisor 
should detect and prevent this to not violate SLA requirements. In this paper, a more 
general approach is proposed to mitigate these constraints, where cloud services are 
assigned to virtual units. A dynamic provisioning approach is presented, and a deter-
ministic algorithm is proposed. As was mentioned in Section 1, three different optimal-
ization criteria are analyzed and some results are given. Moreover, the implementation 
of the algorithm is prepared in such a way that it can be used in the TASKcloud envi-
ronment. Deployment of TASKcloud is fully automated using advanced Ansible play-
books and it can be adapted to change the scheduling mechanisms.  

3 Model of cloud environments to optimize provisioning 
strategies 

As was shown in the previous section, there are many proposals on how to build a 
suitable provisioning strategy for cloud environments. However, heterogenous re-
sources and the different methods of their cooperation, as well as the diversity, varia-
bility, and unpredictability of the required workload, and different needs of various 
cloud users make universal, simple, and effective methods most useful. They can be 
formulated based on general models, which can be used at different levels of cloud 
management strategies. 

Consider a set 𝑃 of permutations of services and virtual resources; their number can 
be 𝑃 = 𝑛 ∗ 𝑚, where 𝑚 is the number of all possible services and 𝑛 is the number of 
all possible virtual resources. For the exact solution of the provisioning problem, all 
possible allocation modes must be reevaluated and the best mode chosen. Due to the 
large number of exponential modes, the problem is an example of a set packing problem 
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which is of NP-complete type. Moreover, in the proposed method, the provisioning of 
a set of services at one point in time is considered instead of queued services that are 
provisioned one by one. The assumed notation is presented below: 

• 𝑆 = {𝑠!, 𝑠", … . , 𝑠#}	 – is the set of user demands representing services waiting to run 
in the computing cloud, where 𝑠$ , 𝑖 = 1,2, … ,𝑚 is a user demand to run the 𝑖 − 𝑡ℎ 
service. It can be a single task or a scenario of tasks. 

• 𝑅 = {𝑟!, 𝑟", … . . , 𝑟%}	 – is the set of virtual resources available in the cloud, where 𝑟& 
represents the 𝑗 − 𝑡ℎ resource which belongs to one of the cloud servers. Each virtual 
resource is supported by some physical resources described by computing capabili-
ties, such as computational power, storage, and cloud services. 

• 𝜓(𝑆, 𝑅) – is the allocation matrix of required services 𝑆 to the available cloud re-
sources belonging to 𝑅, in brief: 
─ 𝜓 = :𝜓$&;, where: 

 𝜓$& = <1 − 𝑖𝑓	𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑠$ 𝑖𝑠	𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑	𝑡𝑜	𝑐𝑙𝑜𝑢𝑑	𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑟&
0 − 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

where 𝑖𝜖{1,2, … . ,𝑚} 	∧ 𝑗𝜖{1,2, … . , 𝑛}  

•  – is the vector representing the current rate of use of all cloud resources 𝑅, before 
allocation of the new services from S, i.e., 𝛿 = [𝛿!, 𝛿", … , 𝛿%], 𝛿$ ∈< 0,1.2 >. In 
further considerations, a small 20% over-provisioning is allowed. 

In practice, the rate of use, as a ratio of the amount of currently occupied resources to 
the amount of all resources available, can be calculated. In simple cases, the percentage 
of virtual machines currently active to all available space can be used here. 

Let 𝛾 = :𝛾$&; be the vector determining the rate of the 𝑗 − 𝑡ℎ resource use when the 
𝑖 − 𝑡ℎ service can be assigned to it; 𝛾$& ∈< 0,1 >. Note that 𝛾 can be calculated in the 
same way as 𝛿. In practice, it means the percentage of engaged resources.  

The load of the j-th resource after the allocation of services S on resources R accord-
ing to 𝜓 can be calculated in the following way: 

 𝛿'& = 𝛿& + ∑ 𝜓$& ⋅ 𝛾$&#
$(!  (2) 

Let T be the matrix of the given execution times for all services running on all resources, 
i.e.: 

 𝑇 = :𝑡$&; (3) 

where 𝑡$& denotes the processing time of service 𝑠$ on resource 𝑟&. It can be calculated 
empirically either by testing or by estimating the service properties and the character-
istics of the resources. 
Note that it is true where 𝛾$& ≤ 1 − 𝛿&, otherwise the processing time 𝑡$& can be in-
creased according to the following formula: 

d
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 𝑡'$& = W𝛿& + 𝛾$&X · 𝑡$& (4) 

The execution time of all services 𝑆 running on resources 𝑅 for allocation 𝜓(𝑆, 𝑅) is 
denoted by 𝜏(𝑆, 𝑅). If the services are to be processed sequentially, then:  

 𝜏(𝑆, 𝑅) = ∑ ∑ 𝑡$& ⋅ 𝜓$&%
&(!

#
$(!  (5) 

For the parallel execution of all services (which is possible when 𝑛 ≥ 𝑚): 

 𝜏(𝑆, 𝑅) = 𝑚𝑎𝑥$(!,..,# ∑ 𝑡$& ⋅ 𝜓$&%
&(!  (6) 

In general: 

 𝑚𝑎𝑥$(!,..,# ∑ 𝑡$& ⋅ 𝜓$&%
&(! ≤ 𝜏(𝑆, 𝑅) ≤ 	∑ ∑ 𝑡$& ⋅ 𝜓$&%

&(!
#
$(!  (7) 

Let us consider provisioning problems for three different optimization criteria: load 
balancing, consolidation, and fault tolerance. Load balancing algorithms are used to 
distribute new demands of users (services) among the virtual resources to guarantee a 
well-balanced load across all cloud nodes. In contrast, consolidation is usually achieved 
by spreading the service workload over a smaller set of resources so the servers remain-
ing unused can be powered down or put into standby mode. The first approach mini-
mizes the total execution time of the set of services, in other words, to maximize the 
use of their resources at a lower overall client cost to increase their profit. The second 
approach copes better with highly fluctuating demands from clients. Moreover, having 
a set of free servers (nodes) that is not currently needed also makes it possible to design 
fault-tolerant systems. In that case, we plan the execution of each of the user tasks on 
more than one node. Below, we discuss the criteria in more detail and provide formal 
optimization criteria. 
Load balancing algorithms are used to distribute new requests of users (services) in a 
cloud between the virtual units to guarantee an equal number of services allocated to 
each cloud server. However, each client demand can be expressed by service workloads 
to run on virtual units. Then, load balancing is a mechanism to balance the load by 
uniformly distributing the workload among the nodes [10]. Effective load balancing 
mechanisms will optimize the utilization of resources and improve the cloud’s perfor-
mance. There are various implementations of such mechanisms based on different load 
balancing algorithms [11]. In [12], capacity planning methods for cloud users and cloud 
service providers, and algorithms that combine the capabilities of different strategies 
which are more efficient, are considered. In consequence, load balancing algorithms 
seek to distribute service workloads across several virtual machines in a manner that 
minimizes the average time taken to complete the execution of those workloads, which 
typically results in server utilization being maximized and balanced. 
The optimization problem for load balancing is defined as looking for (𝑆, 𝑅), which 
minimizes 𝜏(𝑆, 𝑅), subject to: 
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⎩
⎪
⎨

⎪
⎧𝛿$ 	≅ 	 𝛿& 	∀$+& 	𝑖, 𝑗Î	{1, 2… , n}

∑ 𝜓$&	³0#
$(!

∑ 𝜓$& = 1%
&(!
𝛾$& ≤ 1 − 𝛿&

 (8) 

Workload consolidation aims at maximizing the usage of servers by grouping services 
to run concurrently on fewer virtual units. Workload consolidation is one way to reduce 
resource wastage by clustering services on a subset of the pool of available machines. 
This technique is used to maintain control over the potentially high economic and en-
vironmental cost [13]. Many different approaches have been proposed for workload 
consolidation, but it is unclear which of the proposed approaches works best in each 
situation. In the paper [14], the authors showed that consolidation algorithms, whose 
goal is to maximize the number of empty physical machines, perform many virtual 
machine migrations, named eager migrations. These migration processes have a signif-
icant impact on the response times of the services deployed on those machines. The 
authors propose a new method and a heuristic to decide which virtual machines should 
be migrated. This solution takes into account the variability of the sizes of the virtual 
machines and prioritizes virtual machines with a steady capacity to be migrated first. 
In the paper [15], the authors proposed a solution to allocating a set of services based 
on a bin packing problem. The described framework is a semi-online workload man-
agement system which gathers incoming user requests to start a workload and packages 
them into sets. Then a whole group of services is taken into account during the alloca-
tion process. Such an allocation policy produces a saving of up to 40% of the resources 
compared to other consolidation algorithms. 
For consolidation, the optimalization criterion of maximizing the number of empty 
nodes (value |I|) is proposed: 

 𝐼 = g𝑗h𝜓$& = 0	"$i, |I|	is	cardinality	of I (9) 

subject to: 

 𝛾$& ≤ 1 − 𝛿& (10) 

 ∀𝑗, 𝑗Î{1,2, … , n}\I	 ∑ 𝜓$& 	³	1#
$(!  (11) 

 ∀𝑗, 𝑗	Î	𝐼 ∑ 𝜓$& = 0#
$(!  (12) 

A fault-tolerant system works on one of two strategies. The replication strategy assumes 
that service replicas are running for each service in parallel and the result is obtained 
by majority voting. Alternatively, the redundant strategy assumes that the redundant 
servers or virtual units reside on an inactive mode unless and until any fault tolerance 
system demands their availability. Thus, if one part of the system fails, it has other 
instances that can be used in its place to keep it running. Extensive research efforts are 
consistently being made to implement fault tolerance in cloud infrastructures: the paper 
[16] gives a systematic and comprehensive elucidation of different fault types, their 
causes and various fault tolerance frameworks used in cloud implementations. Re-
cently, cloud computing-based environments have presented new challenges to support 
fault-tolerance and opened up new paths to develop novel strategies, architectures, and 
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standards. In the paper [17], the needs and solutions of fault-tolerance in cloud compu-
ting are discussed and future research directions specific to the development of cloud 
computing fault-tolerance are enumerated. In further considerations, an assumption has 
been made that 𝑡 fault tolerance means that resources are allocated in a manner such 
that the impact of 𝑡 failures (e.g., failures of virtual units) on the system performance is 
minimized or unimportant. The optimalization problem for t-faults tolerance, where 
𝑛 ≥ 2𝑡 + 1 can be defined as minimizing 𝜏(𝑆, 𝑅), can be expressed as: 

 ∑ 𝜓$& ≥ 𝑡 + 1%
&(! ,∀$∈ {1,2, … ,𝑚} (13) 

 𝛿 ʹ& 	£	1.2 (14) 

As can be seen, each optimalization problem given above can be solved either sepa-
rately or in different combinations, depending on the user needs. There are many avail-
able options based on genetic algorithms or artificial intelligence. They differ in some 
assumptions related to the features of the user requests and the services and capabilities 
of the cloud resources. In general, to minimize the total running time, the following 
properties are considered: 

1. For user needs – requirements contained in SLA agreements should be considered 
during management processes and their implementation requires consideration at 
three levels: global, local, and operating system level. In this report, we investigate 
the local level, 

2. For services – they are deterministic, their processing time preemptive without prec-
edence constraints regarding the order of services, and each service cannot be further 
split into smaller subtasks, 

3. For resources – the processing capacity of the node remains unchanged but bounded, 
i.e., a limited number of services can be processed in sequential order of provision-
ing. The number of resources (nodes) can be invariant according to the user needs. 

4 Experiments and results 

To evaluate the provisioning strategy, the following parallel provisioning algorithm is 
proposed: 

 
Algorithm  

Input Data: S,R,δ,T 
 
do in parallel: 
 create all allocations for ψ(S,R) 
 select allocations satisfying criteria (8), (9), (13) 
end 
make selection of the best allocations 
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Output Data: ψ(S,R) and τ(S,R) according to the selected 
criteria 

Because the above algorithm is NP complete type, despite the proposed parallelization, 
only configurations with a maximum of 8 services and 4 resources (nodes) have been 
analyzed. It has been assumed that each service has its copy, which is a backup in case 
of a node failure. Services are named 𝑠$ and their copies are named 𝑠$′. Let us assume 
the following input data for 8 services: 

 

Table 1. Values of matrix 𝑇 

Services/Resources 𝑟! 𝑟" 𝑟# 𝑟$ 
𝑠! 4 5 3 4 
𝑠!ʹ 4 5 3 4 
𝑠" 3 4 3 2 
𝑠"ʹ 3 4 3 2 
𝑠# 5 4 6 3 
𝑠#ʹ 5 4 6 3 
𝑠$ 3 3 4 3 
𝑠$ʹ 3 3 4 3 

Table 2. Values of matrix 𝛾 

Services/Resources 𝑟! 𝑟" 𝑟# 𝑟$ 
𝑠! 0.4 0.5 0.3 0.4 
𝑠!ʹ 0.4 0.5 0.3 0.4 
𝑠" 0.3 0.4 0.3 0.2 
𝑠"ʹ 0.3 0.4 0.3 0.2 
𝑠# 0.5 0.4 0.6 0.3 
𝑠#ʹ 0.5 0.4 0.6 0.3 
𝑠$ 0.3 0.3 0.4 0.3 
𝑠$ʹ 0.3 0.3 0.4 0.3 

 
The solutions presented in Table 3 were obtained using the proposed algorithm. 

Table 3. Optimal allocation for the considered model and 8 services. Values of processing time 
are in brackets. (x*) means acceptation of resource overload. 

Criteria/Re-
sources 

𝑟! 𝑟" 𝑟# 𝑟$ 

Load balancing 
(LB) 

𝑠$, 𝑠$′(6) 𝑠#′(4) 𝑠!, 𝑠!′(6) 𝑠", 𝑠"′, 𝑠#(7) 

Consolidation 
(CONS) 

  𝑠!, 𝑠!% , 𝑠", 𝑠"′ 
(12.6*) 

𝑠#, 𝑠#% , 𝑠$, 𝑠$’ 
(12.6 ∗) 

Fault tolerance 
(FT) 

𝑠!′, 𝑠$′(7) 𝑠#′(4) 𝑠!, 𝑠"′(6) 𝑠", 𝑠#, 𝑠$(8) 

Load balancing 
& Fault toler-
ance (LBFT) 

𝑠!′, 𝑠$′(7) 𝑠#′(4) 𝑠!, 𝑠"′(6) 𝑠", 𝑠#, 𝑠$(8) 

Consolidation & 
Fault tolerance 
(LBFT) 

𝑠!, 𝑠#, 𝑠$(12.6*)  𝑠!′, 𝑠", 𝑠$′(10) 𝑠"′, 𝑠#′(5) D
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Experiments were run for sets of 2, 4, 6, 8, 10 and 12 services and the results are pre-
sented in Fig. 2 and Fig. 3. 

 

Fig. 2. Execution time of a set of services on different resources provisioned using different al-
gorithms. 

  
Fig. 3. Sum of execution times of services on different resources provisioned using different 
algorithms. 

The randomly chosen values of Table 1 and Table 2 were analyzed and the processing 
times of the sets of services were determined. It is shown that the most time-consuming 
criterion is fault tolerance, the second is consolidation, while the lowest processing time 
is consumed for the load balancing criterion. Moreover, the common consideration of 
the two criteria of load balancing and fault tolerance produced a slightly better result D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


12 

than the common consideration of consolidation and fault tolerance, which is also ver-
ified in practice. This provides a practical suggestion for the implementation of permis-
sion strategies.  

5 Final Remarks 

Three different cases of provisioning problems have been considered. The execution 
time of a set of independent services has been compared. A formal model that can be 
used at different levels of cloud resources – virtual units or physical units – has been 
proposed. Three optimalization problems have been classified based on their mean pro-
cessing time. A hybrid approach has been investigated, and load balancing with fault 
tolerance is shown to produce more promising results than consolidation with fault tol-
erance. The presented model makes it possible to analyze a series of service sets re-
quired to run in a cloud environment and achieve acceptable scalability. It makes it 
possible to determine the proper strategy of provisioning for changing user require-
ments or clients’ demands in near real time. The sequential and parallel execution of 
services on one node can also be considered. To improve the provisioning speed of 
much bigger sets of services and resources (which will be interesting for global clouds), 
a heuristic algorithm should be considered. There is also the aspect of the influence of 
the services on each other, as can be seen in equation (4). This problem has been men-
tioned in [18] and [19] and provides a possible path to further enriching the algorithm 
proposed in this paper. The resulting algorithm could minimize the interaction of ser-
vices in different categories, which should positively impact cost savings for clients 
(services should execute with no delays). Such a solution will be considered in further 
research. 

Provisioning problems have been tested in a TASKcloud test environment, which 
also confirms the presented simulation results. The next step is to implement the provi-
sioning tool for this environment to utilize the natural possibilities of the platform. 
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