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Abstract
The asymptotic behavior of iterates of bounded linear operators (not necessarily
positive), acting on Banach spaces, is studied. Through the Dobrushin ergodicity coef-
ficient, we generalize some ergodic theorems obtained earlier for classical Markov
semigroups acting on L1 (or positive operators on abstract state spaces).
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1 Introduction

Classical results on asymptotic behavior of iterates of Markov operators (or one-
parameter semigroups) have been recently generalized in different directions. In most
cases, domains like Banach lattices are replaced by abstract ordered Banach spaces.
To this end, the concept of a Markov operator is properly adjusted, and necessary
geometric features are imposed. In this paper, we further contribute to these extensions.
More specifically, our main goal is to modify Dobrushin methods for new abstract
domains. We furthermore simplify existing proofs. Most results from [27,28] are
formulated in terms of the so-called abstract state spaces (X,X+,K, f ), special classes
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of ordered Banach spaces, where the norms are additive on positive cones,X+, and the
considered operators are usually Markovian. We shall also introduce corresponding
(imitating Markov properties) class of operators; however, the additivity of the norm
will not be a prerequisite.

TheDobrushin (Dobrushin–Doeblin actually) ergodicity coefficientwas introduced
in 1955 (cf. [12,33]) From a general perspective, it appeared to be an efficient tool
for studying the asymptotic behavior of Markov chains and their limits. Moreover,
it allows for obtaining the rate of convergence. When a stochastic system is defined
in the language of operator theory, then the evolution of a Markov process {ξt }t∈�

can be seen as iterates T n of the related transition operator T . In an elementary
course on Markov chains, where the phase spaces are finite, T may be identified
with a transition (raw stochastic) matrix T = [p j,k]n×n ,

∑n
k=1 p j,k = 1 for all

1 ≤ j ≤ n and p j,k ≥ 0. T acts on the (Banach) space �1n = R
n as T (x) =

(x1, ..., xn) ◦ [p j,k] = (
∑n

j=1 x j p j,k)k=1...n . Generalizing [p j,k]n×n to a system of
transition probabilities {P(x, A) : x ∈ G, A ∈ G}, where (G,G) is a fixedmeasurable
space (called a phase space), we identify Markov processes {Xn}n≥0 on G with linear
operators T : M(G,G) → M(G,G) defined as T (ν)(A) = ∫

G P(x, A)dν(x), where
M(G,G) stands for theBanach lattice of finiteσ−additive signedmeasures on (G,G).
If for all (sometimes, it is required μ almost all) x ∈ G, the probability measures
P(x, ·) ≺ μ are absolutely continuous with respect to μ, then T : L1(μ) → L1(μ).
The limit (if it exists) of T n(ν) is a stationary distribution, depending on an initial
distribution ν = L(X0). A common feature of these examples is the fact that T is a
positive linear contraction acting on a (real) Banach lattice. Using functional analysis
language, Markov processes emerge as linear and positive operators T (calledMarkov
or stochastic), which are defined on some function Banach space X (= L p or C(S)).
Of course, these Banach spacesX and operators T : X → Xmust be carefully chosen
for appropriate modeling of a specific random phenomenon.

Apart from the Dobrushin method, there are other techniques used in studying
the convergence of iterates of positive operators. The method of lower and upper
bounds, introduced by Lasota (cf. [22]), is very popular, but it can also be interpreted
in Dobrushin terminology. In the classical situation, when X = �1n , the Dobrushin
ergodicity coefficient of a linear Markov operator T : �1n → �1n is defined as

(�) δ(T ) = sup{‖T (μ) − T (ν)‖1
‖μ − ν‖1 : μ 	= ν ∈ Dn},

whereDn = {(x1, ..., xn) : ∑n
j=1 x j = 1, and x1, ..., xn ≥ 0} denotes the simplex of

probability vectors and ‖ · ‖1 stands for the �1n norm.
Themethods and techniques of functional analysis are especially suited for studying

noncommutative Markov processes (whose theory is still being developed ([9,13,
34]). For example, the mathematics behind quantum theories require mathematical
objects, which are not Banach lattices in general. Here, the states are not probability
densities, but are (positive, norm 1, normal) functionals on Von Neumann algebras.
These are not Riesz spaces, and therefore, the evolution operators T are not defined on
Banach lattices any more. Nevertheless, all C∗-algebras have natural order structures,
compatible with linear operations. Positive (very often completely positive) operators
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T describing quantum evolutions act on ordered Banach spaces (cf. [1,2,5,6,10,11,29,
30,35]). The topic of positive linear operators on ordered Banach spaces, which are
not necessarily Banach lattices, has attracted significant attention (e.g., [8,14–17,24–
28,32])

In the first section of the paper, we present basic general results, where the principal
domains are abstract (real) Banach spaces (X, ‖·‖). TheBanach algebra of all bounded
linear operatorsT : X → X is denotedbyL(X). Theoperator norm‖T ‖ is traditionally
denoted by ‖ · ‖ as well.

2 Abstract Dobrushin Coefficient

Following [27, Definition 3.1], we introduce the following.

Definition 2.1 Let T ∈ L(X) be a linear operator and P ∈ L(X) be a (nontrivial)
linear projection. Then, the following quantity:

δP (T ) = sup
x∈NP ,x 	=0

‖T x‖
‖x‖ ,

where NP = {y ∈ X : Py = 0}, is called the Dobrushin coe f f icient of T with
respect to P (if NP = {0}, i.e., when P = I , wemay artificially prescribe δP (T ) = 1).

Clearly, 0 ≤ δP (T ) ≤ ‖T ‖. We start with a commonly known result on the
Dobrushin coefficient. For its proof, the reader is directed to [27, Theorem 3.7].

Theorem 2.2 Let T , S ∈ L(X) and P, Q : X → X be linear projections. Then

(1) if a projection P dominates a projection Q (i.e., Q P = P Q = Q), then δP (T ) ≤
δQ(T ),

(2) |δP (T ) − δP (S)| ≤ δP (T − S) ≤ ‖T − S‖,
(3) δP (T + S) ≤ δP (T ) + δP (S),
(4) δP (T S) ≤ ‖T ‖δP (S),
(5) ‖T S‖ ≤ δP (T ) ‖S‖, if P S = 0,
(6) δP (T S) ≤ δP (T )δP (S) ≤ δP (T ) ‖S‖ , if S(NP ) ⊆ NP .

The following result is also a standard fact and holds for abstract linear operators
on Banach spaces.

Proposition 2.3 Let T ∈ L(X) and P : X → X be a linear projection. If δP (T ) = 0,
then T = T P.

Proof If x ∈ NP , then 0 = T x = T x − T Px , so T = T P on NP . Generally, if
y ∈ X, then y − Py ∈ NP , so T (y − Py) = T P(y − Py) = 0. We get T y = T Py. �

The next result will play an essential role in the sequel. In [27], most of the results,
on asymptotic behavior of iterates T n , were obtained under additional assumption
that PT = T P , i.e., that T commutes with P . In this paper, we relax this condition,
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which is replaced by essentially weaker T (NP ) ⊆ NP . Recently, a similar remark
was pointed out in [28, Lemma 2.7], where the assumption PT = PT P is in use.
Indeed, commutativity implies that for all x ∈ NP , we have PT x = T Px = T 0 = 0.
We also notice that if T (NP ) ⊆ NP and T P = P , then T P = PT = P . In fact,
PT = PT (I − P + P) = PT (I − P) + P = P as (I − P)X = NP .

Proposition 2.4 Let T ∈ L(X) and P : X → X be a linear projection. If δP (T ) < 1
and T (NP ) ⊆ NP , then ‖T n(I − P)‖ → 0.

Proof The inequality δP (T ) < 1 simply means that the operator TNP = T �NP , the
restriction of T to its invariant subspace NP , is a strict contraction. It follows that
‖T n

NP
‖ ≤ (δP (T ))n → 0. In particular, ‖T n(I − P)‖ → 0 as (I − P)(X) = NP . �

Let us present an example which shows that T P = PT = P is essentially stronger
than T (NP ) ⊆ NP , even in classical situations.

Example 2.5 LetX = L1(μ), where μ is a σ−finite positive measure on a measurable
space (G,G). By D, we denote the convex set of densities, i.e., g ∈ D if and only
if g ≥ 0, μ a.e. and

∫
G gdμ = 1. For a fixed g∗ ∈ D, define a linear projection

P f = (
∫

G f dμ)g∗, i.e., P = 1 ⊗ g∗. Let T be a general Markovian operator on
L1(μ), i.e., T f ≥ 0 for all f ≥ 0 and T ∗1 = 1, where T ∗ stands for the adjoint
operator T ∗ : L∞(μ) → L∞(μ). It is easily seen that PT f = P f for all f ∈ L1(μ),
but T P f = P f if and only if T g∗ = g∗. Thus, P and T do not commute in general.
However, f ∈ NP if and only if

∫
�

f dμ = 0. For such f , we have
∫

G T f dμ = 0 as
well, so T (NP ) ⊆ NP .

In the next theorem, we generalize [27, Theorem 3.14]. Originally, it was obtained
under commutativity assumption and for Markovian operators on abstract state
spaces. We remove these restrictions. We recall that T ∈ L(X) is quasi-compact
if ‖T n − K‖ < 1 for some natural n and a compact operator K ∈ L(X).

Theorem 2.6 Let T ∈ L(X) and P : X → X be a linear projection. If δP (T ) < 1,
T (NP ) ⊆ NP , and T P is a quasi-compact contraction, then T is also quasi-compact.

Proof Without loss of generality, we will assume that P 	= I . It follows from Proposi-
tion 2.4 that ‖T n(I − P)‖ → 0 and by Theorem 2.2, δP (T n) ≤ δP (T )n → 0. Let ε >

0 be fixed. We choose m ∈ N, such that δP (T )m+1

1−δP (T )
< ε

4(1+‖P‖) . By quasi-compactness

of T P , there exists natural i ≥ m, such that ‖(T P)i −Ki‖ = γ < 1,where Ki ∈ L(X)

is compact. We notice that ‖(T P)ni − Kni‖ ≤ γ n for some compact Kni ∈ L(X). Let
nε ∈ N be such that ‖(T P)nεi−l − Knεi−l‖ ≤ γ nε−m < ε

4(m+1)‖I−P‖·max{1,‖T ‖m } for
all l = 0, 1, ..., m, where Knεi−l ∈ L(X) are compact.

By the mathematical induction, for every natural n, we have the representation

T n = T n(I − P) + T n P = (T P)n +
n∑

j=1

T j (I − P)(T P)n− j .
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We notice that

‖
n∑

l=m+1

T l(I − P)(T P)n−l‖ ≤
n∑

l=m+1

‖T l(I − P)(T P)n−l‖

≤
∞∑

l=m+1

‖T l(I − P)‖

≤ (1 + ‖P‖)
∞∑

l=m+1

δP (T l)

≤ (1 + ‖P‖) δP (T )m+1

1 − δP (T )
<

ε

4
.

Now, estimate

‖T nεi − Knεi −
m∑

l=1

T l(I − P)Knεi−l‖

= ‖(T P)nεi − Knεi +
nεi∑

l=1

T l(I − P)(T P)nεi−l −
m∑

l=1

T l(I − P)Knεi−l‖

= ‖(T P)nεi − Knεi +
m∑

l=1

T l(I − P)(T P)nεi−l −
m∑

l=1

T l(I − P)Knεi−l

+
nεi∑

l=m+1

T l(I − P)(T P)nεi−l‖

≤ ‖(T P)nεi − Knεi‖ +
m∑

l=1

‖T l(I − P)‖‖(T P)nεi−l − Knεi−l‖

+ ‖
nεi∑

l=m+1

T l(I − P)(T P)nεi−l‖

<
ε

4
+ m

max{1, ‖T ‖m} · ‖I − P‖ε
4(m + 1)‖I − P‖ · max{1, ‖T ‖m} + ε

4
< ε.

The operators Knεi + ∑m
l=1 T l(I − P)Knεi−l are compact, so T is quasi-compact. �

We end the section showing some relations between the projections P and I − P
(cf. [27, Proposition 3.1]).

Corollary 2.7 Let T ∈ L(X) satisfy ‖T n‖ ≥ ε > 0 for all n ∈ N (for instance, T is
Markovian) and P be a linear projection. If T (NP ) ⊆ NP and T (NI−P ) ⊆ NI−P ,
then at most one of the statements below holds:

(1) δP (T n) < 1 for some n ∈ N,
(2) δI−P (T n) < 1 for some n ∈ N.
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Proof If both conditions hold, then by Proposition 2.4, we get

∥
∥T n(I − P)

∥
∥ → 0; ∥

∥T n P
∥
∥ → 0.

It follows that:

∥
∥T n

∥
∥ ≤ ∥

∥T n(I − P)
∥
∥ + ∥

∥T n P
∥
∥ → 0,

contradicting that the norms ‖T n‖ are separated from 0. �

3 Uniform Ergodicity

This section is devoted to convergence of iterates T n , obtained with the use of
Dobrushin’s ergodicity coefficients.

Definition 3.1 Let P be a linear projection on the Banach space X. We say that T ∈
L(X) is uniformly P-ergodic, if ‖T n − P‖ → 0.

Theorem 3.2 Let T ∈ L(X) and P 	= I be a projection. Then, T is uniformly P-
ergodic if and only if that T (NP ) ⊆ NP , T P = P (equivalently, T P = PT = P),
and δP (T k) < 1 for some k ∈ N.

Proof Let T be a uniformly P-ergodic operator. Applying Proposition 2.4, we get:

δP (T n) = sup
x∈NP ,x 	=0

‖T n x‖
‖x‖ = sup

x∈NP ,x 	=0

‖T n x − Px‖
‖x‖ ≤ ∥

∥T n − P
∥
∥ → 0,

so δP (T k) < 1 for some k ∈ N.
Moreover, from

∥
∥
∥T n+1 − T P

∥
∥
∥ = ∥

∥T (T n − P)
∥
∥ → 0 and

∥
∥
∥T n+1 − PT

∥
∥
∥ = ∥

∥(T n − P)T
∥
∥ → 0,

we get commutativity P = T P and P = PT . In particular, T (NP ) ⊆ NP .
In the opposite direction, we apply our Proposition 2.2 and get

‖T n(I − P)‖ → 0, so ‖T n − P‖ = ‖T n − T n P‖ → 0. �
Remark 3.3 The case when T is uniformly I -ergodic is trivial. Simply P = I , and
then, δI (T k) < 1 does not occur.

Combining the above theorem with the Proposition 2.3, we get

Corollary 3.4 If T is uniformly P-ergodic and δP (T ) = 0, then T = P.

The uniform P-ergodicity is quite a strong property. We shall also consider its
weaker alternative discussing the asymptotic behavior of ‖T n x − T n y‖. Expressing
it in Dobrushin’s language, we propose to study the limit of δP (T n) (for contractions,
such a limit does exist).
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Definition 3.5 Let P be a linear projection on X. We say that a linear contraction
T ∈ L(X) is weakly P-ergodic, if δP (T n) → 0.

Now, we will discuss, from the perspective of Dobrushin’s ergodicity notion, the
geometry of selected semigroups.We start from general sets, and finally, wewill arrive
to abstract ”Markovian” semigroups. Given a linear projection P ∈ L(X), which is
assumed to be a contraction, we define

Lu
r (P): = {T ∈ L(X) : T is uniformlyP − ergodic and‖T ‖ ≤ r},

Lw
r (P): = {T ∈ L(X) : T is weaklyP − ergodic and ‖T ‖ ≤ r},

LE
r (P): = {T ∈ L(X) : PT = T P = P, ‖T ‖ ≤ r},

Lcom
r (P) := {T ∈ L(X) : PT = T P , ‖T ‖ ≤ r}.

The following inclusions are obvious: Lu
r (X) ⊂ Lw

r (X), Lu
r (X) ⊂ LE

r (X) and
Lw

r (X) ∩ LE
r (X) = Lu

r (X).
Moreover, the second inclusion is in some sense optimal, as we explain below.

Theorem 3.6 With the notation as above, the following inclusions hold:

(1) Lu
1(P) is a norm-open and dense subset of LE

1 (P).
(2) Lw

1 (P) ∩ Lcom
1 (P) is a norm-open and dense subset of Lcom

1 (P).

Proof We notice that Lcom
1 (P), LE

1 (P) are norm-closed subsets of the closed unit ball
L1(X). Let T ∈ LE

1 (P) and 0 < ε < 1 be fixed. We set

T (ε):=
(
1 − ε

2

)
T + ε

2
P .

Clearly, T (ε) ∈ LE
1 (X),

∥
∥T (ε) − T

∥
∥ ≤ ε,

∥
∥T (ε)

∥
∥ ≤ 1 as both T and P are

contractions (‖T ‖ = ‖P‖ = 1 actually, as long as P is non-zero). If x ∈ NP , then

∥
∥T (ε)x

∥
∥

‖x‖ =
(
1 − ε

2

) ‖T x‖
‖x‖ .

Taking supremum over all such x , we get δP (T (ε)) = (
1 − ε

2

)
δP (T ). Therefore,

δP (T (ε)) < 1, so applying the Theorem 3.2, we obtain that T (ε) is uniformly P-
ergodic. Lu

1(P) is a norm-dense subset of LE
1 (P).

Concerning openness, for n ∈ N, consider sets

Un = {T ∈ L1(X) : PT = T P = P; δP (T n) < 1}.
Clearly,Lu

1(P) = ⋃
n∈N Un , so it is enough to prove thatUn are norm-open inLE

1 (P).

If T ∈ Un is fixed, then for every H ∈ LE
1 (P) with ‖T − H‖ <

1−δP (T n)
2n , we have

(apply Theorem 2.2)

∣
∣δP (T n) − δP (Hn)

∣
∣ ≤ ∥

∥T n − Hn
∥
∥ ≤

∥
∥
∥T n − T n−1H

∥
∥
∥ +

∥
∥
∥T n−1H − Hn

∥
∥
∥

≤ ‖T − H‖ +
∥
∥
∥T n−1 − Hn−1

∥
∥
∥ ≤ n ‖T − H‖ <

1 − δP (T n)

2
.
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Therefore, δP (Hn) < 1, H ∈ Un and the proof is completed.
To prove (2), we may copy the proof of (1) replacing Lu

1(P) for Lw
1 (P)∩Lcom

1 (P)

and LE
1 (P) for Lcom

1 (P). �

4 Abstract Markovian Semigroups

Let ξ ∈ X∗ be a continuous (real) functional on a Banach space (X, ‖ · ‖) andKξ ⊂ X
be a norm-closed, bounded and convex subset ofX (denote Mξ = sup

x∈Kξ

‖x‖). Assume

that ξ(x) = 1 for all x ∈ Kξ . Clearly,Kξ is separated from 0 (i.e., inf
x∈Kξ

‖x‖ = mξ >

0).

Definition 4.1 A linear bounded operator T ∈ L(X) is called ξ − Markovian if
T ∗ξ = ξ and T (Kξ ) ⊆ Kξ . The set of all ξ−Markovian operators on X is denoted by
Sξ .

It follows directly from the definition that Sξ ⊂ L(X) is a semigroup, which is
closed for the weak operator topology. The composition operation is continuous for
the strong operator topology. Of course, each ξ−Markovian operator T has its norm
‖T ‖ ≥ 1, as T ∗ξ = ξ 	= 0. Clearly, the identity operator Id ∈ Sξ .

It is easy to verify that if X = L1(μ), then the classical Markovian operators T
(sometimes called stochastic and then the adjoint operators T ∗ are called Markovian)
coincidewith the just introduced semigroupS1,where1 ∈ L∞(μ)denotes the function
equal 1 μ a.e. From this perspective general ξ−Markovian operators mimic some
features of classical Markovian operators on L1(μ). It is worth mentioning that in the
literature, several different extensions of Markov operators are presented (cf. [1,5,6,
8,10,17,24,27,32,35]).

Repeating Example 2.5, we set Py∗ = ξ ⊗ y∗ = 〈·, ξ 〉y∗, where y∗ ∈ Kξ . Clearly,
Py∗ ∈ Sξ is a ξ−Markovian projection. Moreover, Py∗ T = Py∗ for every T ∈ Sξ .
Py∗(u) = 0 if and only if ξ(u) = 0. Hence, NPy∗ = kerξ = kerPy∗ . Now, for arbitrary
T ∈ Sξ and all u ∈ NPy∗ , we have ξ(T u) = T ∗(ξ)(u) = ξ(u) = 0. We obtain
T (NPy∗ ) ⊆ NPy∗ .

If R+Kξ − R+Kξ = X, then the cone Cξ = {t x : t ≥ 0 and x ∈ Kξ } is called
generating in X. We notice that under this assumption, ξ(v) = 0 if and only if v =
t(x − y), for some t ∈ R and x, y ∈ Kξ . Therefore, the abstract Dobrushin ergodicity
coefficient, introduced in (�), coincideswith the classical one.Namely, for all T ∈ Sξ ,
we have

δ(T ) = sup{‖T (x − y)‖
‖x − y‖ : x, y ∈ Kξ } = sup{‖T v‖

‖v‖ : v ∈ NPy∗ } = δPy∗ (T ) .

The rest of this section is devoted to topological (generic) characteristics of Sξ . It is
well known that classical Markov operators, which are norm-mixing, form a dense
and open subset of S1 (see [3–5,19,20,23]). It has been recently extended to ordered
Banach spaces satisfying some extra properties (see [10,14,17,24,27]). The category
of abstract “norm mixing” elements in Banach algebras was studied in [31], but the
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obtained there results bring residuality (here,we deliver open denseness).We introduce
the following.

Definition 4.2 We say that a ξ−Markovian operator T ∈ Sξ is norm-mixing if there
exists x∗ ∈ Kξ , such that the operator T is Px∗ -ergodic, where Px∗ ∈ Sξ is one-
dimensional projection, i.e., limn→∞ ‖T n − Px∗‖ = 0 (clearly T x∗ = x∗). We
denote the set of all norm mixing ξ−Markovian operators by Smix

ξ . If we fix x∗ ∈ Kξ ,

then the subset {T ∈ Sξ : ‖T n − Px∗‖ → 0} is denoted by Smix
ξ,x∗ . Accordingly, we

define Sξ,x∗ = {T ∈ Sξ : T (x∗) = x∗}.
We notice that studying mixing property, we may assume that ‖T ‖ = 1. In fact, by

the Banach–Steinhaus theorem, supn≥0 ‖T n x‖ = ‖x‖• defines an equivalent norm
on X, such that T becomes a contraction with respect to it. Therefore, in the sequel (in
the next section), we shall consider only contraction Markovian operators. However,
in this section, we present a bit more general approach and show how notions mixing
and the geometry of the space (X, ‖ · ‖) interplay.

We recall that a cone Cξ is κ−generating, if it is generating and each x ∈ X has
a decomposition x = u − w, where u, w ∈ Cξ satisfy ‖u‖ + ‖w‖ ≤ κ‖x‖. Clearly,
κ ≥ 1 (cf. [7,36]). We remember that κ = 1 if X = L1(μ) or it is a predual of a Von
Neumann algebra (cf. [5,15,17,24,27]).

In the rest of this section, we focus on Markovian families and study them using
Dobrushin methods. We start with a few auxiliary lemmas. In the first one, we do not
require that Cξ is generating.

Lemma 4.3 If T ∈ Smix
ξ , then there exists a unique x∗ ∈ Kξ , such that

lim
n→∞ sup

x∈Kξ

‖T n x − x∗‖ = 0 .

Proof If T is Px∗ ergodic, then T Px∗ = Px∗ . It follows that T x∗ = x∗. For each
x ∈ Kξ , we have ξ(x − x∗) = ξ(x∗)− ξ(x) = 0. Thus, x − x∗ ∈ NPx∗ for all x ∈ Kξ .
By the Theorem 3.1, there exists a natural k, such that δPx∗ (T

k) < 1.We now estimate

sup
x∈Kξ

‖T n x − x∗‖ = sup
x∈Kξ

‖T n x − T n x∗‖ = sup
x∈Kξ

‖T n(x − x∗)‖

≤ sup
x∈Kξ

(δPx∗ (T
k))�

n
k � · max

0≤ j<k
‖T j x − x∗‖

≤ diam(Kξ )(δPx∗ (T
k))�

n
k � → 0 .

�
Before we proceed to the main result of this section, we first explain the geometry

of our cones Cξ . We start with the following.

Lemma 4.4 If Cξ is generating in (X, ‖ · ‖), then there exists a positive constant
αξ < ∞, such that for every u ∈ X satisfying ξ(u) = 0 (i.e., u ∈ kerξ )

inf{ξ(u1) : u = u1 − u2, where u1, u2 ∈ Cξ } ≤ αξ‖u‖ .
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Proof As Cξ is generating, we have

∞⋃

j=1

{sv − sw : v,w ∈ Kξ , 0 ≤ s ≤ j} = kerξ .

By the Baire category theorem, there exists j0 ∈ N, such that

kerξ ∩ K(x0, r) ⊂ {sv − sw : v,w ∈ Kξ , 0 ≤ s ≤ j0}‖·‖ .

We may assume that x0 = s0v0 − s0w0 for some s0 > 0 and v0, w0 ∈ Kξ . Hence,
each u ∈ kerξ , ‖u‖ ≤ 1 belongs to

u ∈ {( s

r
v + s0

r
w0) − (

s

r
w + s0

r
v0) : v,w ∈ Kξ , 0 ≤ s ≤ j0}

‖·‖
.

Then, u = u1 − u2, where u1, u2 ∈ Cξ and ‖u1 − ( s
r v + s0

r w0)‖ may be as small
as we wish. We get

ξ(u1) = ξ(u2) ≤ s

r
+ s0

r
≤ j0 + s0

r
.

We set αξ = j0 + s0
r

+q, where q > 0 may be taken arbitrary (as small as we wish).
�

The next lemma is commonly known (see [7, Proposition 1.1.2]) but its proof is
included here for the sake of completeness of the paper. Moreover, we can somehow
see how the coefficient κ depends on ‖ξ‖ or Mξ .

Lemma 4.5 Generating cones Cξ are κ−generating for some κ ≥ 1.

Proof Let x = tv − sw for some t, s ≥ 0 and v,w ∈ Kξ , where ‖x‖ = 1. Without
loss of generality, we may assume that t ≥ s. Then, x = (t − s)v + sv − sw and
‖(t − s)v‖ = (t − s)‖v‖ ≤ (t − s)Mξ . Moreover

‖ξ‖ ≥ |ξ(x)| = |ξ((t − s)v) + sξ(v − w)| = (t − s) .

Thus, ‖(t − s)v‖ ≤ ‖ξ‖Mξ . Now

‖sv − sw‖ ≤ ‖x‖ + ‖(t − s)v‖ ≤ 1 + ‖ξ‖Mξ .

By the previous Lemma 4.4, sv − sw = s̃ ṽ − s̃ w̃, where ṽ, w̃ ∈ Kξ and

0 ≤ s̃ ≤ αξ (1 + ‖ξ‖Mξ ) .
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It follows that:

x = tv − sw = (t − s)v + s̃ṽ − s̃w̃

= (t − s + s̃)(
t − s

t − s + s̃
v + s̃

t − s + s̃
ṽ) − s̃w̃

= (t − s + s̃ )̃̃v − s̃w̃,

where ˜̃v = t−s
t−s+̃s v + s̃

t−s+̃s ṽ ∈ Kξ . We obtain

t − s + s̃ + s̃ ≤ ‖ξ‖ + 2αξ (1 + ‖ξ‖Mξ ) < ∞.

Now

inf{‖u1‖ + ‖u2‖ : x = u1 − u2, ‖x‖ = 1, u1, u2 ∈ Cξ }
≤ ‖(t − s + s̃ )̃̃v‖ + ‖̃s w̃‖ = (t − s + s̃)‖̃̃v‖ + s̃‖w̃‖
≤ Mξ (t − s + s̃ + s̃) ≤ Mξ (‖ξ‖ + 2αξ (1 + ‖ξ‖Mξ )) = κ̃

(obviously κ̃ ≥ 1 as Mξ‖ξ‖ ≥ sup
v∈Kξ

|ξ(v)| = 1). We have proved that Cξ is

κ−generating for each κ > κ̃ . �
In the following results, we shall use already proved geometric properties of our

cones Cξ . Namely, if generating they are automatically κ−generating, and we have a
piece of control on the parameter κ ≥ 1. We obtain the following.

Lemma 4.6 Let ξ ∈ X∗, Sξ be a ξ−Markovian semigroup and Cξ be a generating
(so κ−generating cone for some κ ≥ 1). Then, there exists a constant M ≥ 0, such
that sup{‖T ‖ : T ∈ Sξ } = M < ∞. In particular, ‖x‖• = sup{‖T x‖ : T ∈ Sξ } is a
norm on X, equivalent to ‖ · ‖.

Proof As before we set mξ = inf{‖w‖ : w ∈ Kξ } > 0 and Mξ = sup{‖w‖ : w ∈
Kξ } < ∞. Let us fix normalized x ∈ X. We have a decomposition x = tu − sv for
some u, v ∈ Kξ and t, s ∈ R+, where t ≤ κ

‖u‖ ≤ κ
mξ

and s ≤ κ
‖v‖ ≤ κ

mξ
. For an

arbitrary T ∈ Sξ , we have

‖T x‖ ≤ ‖T (tu)‖ + ‖T (sv)‖ = t‖T u‖ + s‖T v‖ ≤ (t + s) sup{‖T w‖ : w ∈ Kξ }
≤ (t + s)diam(Kξ ) < ∞ .

It follows that sup{‖T ‖ : T ∈ Sξ } ≤ 2κ
mξ

· diam(Kξ ) < ∞. In particular, sup{‖T ‖ :
T ∈ Sξ } = M < ∞ and supn ‖T n‖ ≤ M for any ξ−Markovian operator T .

Define ‖x‖• = sup{‖T x‖ : T ∈ Sξ }. Clearly, ‖x‖ ≤ ‖x‖•, so these norms are
equivalent and Sξ becomes a contraction semigroup with respect to ‖ · ‖•. �

The operator Px∗ is a two-sided zero in the semigroup Smix
ξ,x∗ , i.e., for all T ∈ Smix

ξ,x∗ ,
we have T Px∗ = Px∗ T = Px∗ . In particular, T n − Px∗ = (T − Px∗)

n for all n.
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Therefore, if for some natural k, we have ‖T k − Px∗‖ < 1, then

lim
n→∞ ‖T n − Px∗‖ = lim

n→∞ ‖(T k − Px∗)
� n

k �‖ · max
0≤ j<k

‖T j − Px∗‖ = 0

(alternatively we may apply the Theorem 3.1 instead as δPx∗ (T
k) < 1). Thus

Smix
ξ,x∗ =

∞⋃

k=1

{T ∈ Sξ,x∗ : ‖T k − Px∗‖ < 1}

is a norm-open subset of Sξ,x∗ . If T is power bounded (for instance when Cξ is
generating), then

lim
n→∞ ‖((1 − ε)T + εPx∗)

n − Px∗‖ = 0 ,

as ((1 − ε)T + εPx∗)
n = (1 − ε)nT n + (1 − (1 − ε)n)Px∗ (we remember that Px∗

is a semigroup zero). We have already proved a result which appeared in a classical
version in [3, Theorem 3].

Corollary 4.7 Let Cξ be a generating cone in (X, ‖ · ‖). Then, for each fixed x∗ ∈ Kξ ,
the set Smix

ξ,x∗ is norm-open and dense in Sξ,x∗ .

The next lemma characterizes mixing of abstract ξ−Markovian operators.

Lemma 4.8 Let T ∈ Sξ be a Markovian operator, where the cone Cξ is generating
(so κ−generating for some κ ≥ 1). Then, T is norm-mixing if and only if

lim
n→∞ sup

x∈Kξ

‖T n x − x∗‖ = 0,

for some (unique) x∗ ∈ Kξ (clearly T x∗ = x∗).

Proof Applying the Lemma 4.3, we need only a proof in one direction. Suppose that

lim
n→∞ sup

x∈Kξ

‖T n x − x∗‖ = 0 .

Clearly, T x∗ = x∗ ∈ Kξ . Thus, lim
n→∞ sup

x∈Kξ

‖T n x − Px∗ x‖ = 0 . If u ∈ NPx∗ , ‖u‖ ≤ 1,

then u = v − w for some v,w ∈ Cξ with ‖v‖ + ‖w‖ ≤ κ . As u ∈ NPx∗ , we get
ξ(v) = ξ(w). Now

‖T nu‖ = ‖T nv − T nw‖ ≤ ‖T nv − ξ(v)x∗‖ + ‖T nw − ξ(w)x∗‖
= ξ(v)(‖T n v

ξ(v)
− x∗‖ + ‖T n w

ξ(w)
− x∗‖) .
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Clearly, v
ξ(v)

∈ Kξ as ξ( v
ξ(v)

) = 1 (similarly w
ξ(w)

∈ Kξ ). Estimating ξ(v) ≤ j0+s0
r Mξ ,

we finally obtain

lim
n→∞ sup

u∈NPx∗ ‖u‖=1
‖T nu‖ ≤ 2αξ Mξ lim

n→∞ sup
x∈Kξ

‖T n x − x∗‖ = 0 .

To the rest, we may apply the Theorem 3.2. �
The theorem presented below is the main result of this section. It generalizes the

results obtained in [5, Theorem 2.4] for Markov operators acting on Schatten classes
(where κ = 1). Clearly, it also extends relevant results on the asymptotic behavior of
iterates of Markov operators acting on L1(μ) spaces (cf. [3], [19] and [23, Theorem
6]), and it corresponds to [27, Theorems 7.1 and 7.3].

Theorem 4.9 Let (X, ‖ · ‖), ξ ∈ X∗, Kξ , and Cξ be as before. If the cone Cξ is
generating (κ−generating for some κ ≥ 1) in (X, ‖ · ‖), then for T ∈ Sξ , the
following are equivalent:

(i) T ∈ Smix
ξ ;

(ii) limn→∞ supu,v∈Kξ
‖T nu − T nv‖ = 0;

(iii) there exists a natural k, such that

sup
u,v∈Kξ

‖T ku − T kv‖ = γ <
mξ

κ
.

Proof (i) ⇒ (ii) has already been proved. (ii) ⇒ (iii) is obvious. It remains to prove
(iii) ⇒ (i). Given z∗ ∈ Kξ and u ∈ NPz∗ , with ‖u‖ = 1, we find a decomposition
u = ṽ − w̃, where ‖̃v‖ + ‖w̃‖ ≤ κ‖u‖ = κ , ṽ = tv, w̃ = tw, t ≥ 0 and v,w ∈ Kξ .
Clearly, t ≤ κ

mξ
. We estimate

‖T ku‖ = ‖T k ṽ − T kw̃‖ = t‖T kv − T kw‖ ≤ κ

mξ

γ =  <
κ

mξ

mξ

κ
= 1 .

It follows that for an arbitrary pair v,w ∈ Kξ , we have ‖T kv−T kw‖ ≤ ‖v−w‖. The
transformation T k is a strict contraction on Kξ . By the Banach fixed point theorem,
there exists x∗ ∈ Kξ , such that T k x∗ = x∗. Notice that δPx∗ (T

k) < 1 and T k Px∗ =
Px∗ T k = Px∗ . Now, we may apply our Theorem 3.2 or repeating argumentation as in
Corollary 4.7, we get limn→∞ ‖T nk − Px∗‖ = 0. Finally

lim sup
n→∞

sup
‖x‖≤1

‖T n x − Px∗ x‖ = lim sup
n→∞

sup
‖x‖≤1

sup
0≤ j<k

‖T kn+ j x − ξ(x)x∗‖

= lim sup
n→∞

sup
‖x‖≤1

sup
0≤ j<k

‖T kn(T j x) − ξ(T j x)x∗‖

≤ lim sup
n→∞

sup
‖y‖≤M

‖T kn(y) − ξ(y)x∗‖ = 0 ,

as ‖T j‖ ≤ M for all j (see Lemma 4.6). We have proved that T ∈ Smix
ξ . �
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The following corollary easily follows from the last theorem. Its classical counter-
part may be found in [3,5] and [20, Theorem 3].

Corollary 4.10 If Cξ is generating (κ−generating for some κ ≥ 1), then Smix
ξ is a

norm-open and dense subset of Sξ .

Proof From Theorem 4.9(iii), we easily obtain that Smix
ξ is norm-open in Sξ . Con-

cerning denseness let us fix z∗ ∈ Kξ and ε > 0. Given an arbitrary T ∈ Sξ , define
Tε = (1 − ε)T + εPz∗ ∈ Sξ . Let us endow the Banach space with the norm ‖ · ‖•,
defined before. With the metric (v,w) = ‖v − w‖•, the set Kξ is a complete
metric space and the ”discrete time” semigroup {T n

ε : n ≥ 0} acts on Kξ as affine
contractions. Hence, for any pair v,w ∈ Kξ , we have

‖Tε(v) − Tε(w)‖• ≤ (1 − ε)‖v − w‖• .

By theBanachfixedpoint theorem, there exists a unique x∗ ∈ Kξ , such that Tεx∗ = x∗
and

sup
u∈Kξ

‖T n
ε (u) − x∗‖• ≤ const1(1 − ε)n .

Clearly

sup
u∈Kξ

‖T n
ε (u) − x∗‖ ≤ const2(1 − ε)n,

as the norms ‖·‖ and ‖·‖• are equivalent. From Lemma 4.8, the operator Tε ∈ Smix
ξ .

Applying Lemma 4.6 once again, we have ‖T − Tε‖ ≤ 2Mε. The set Smix
ξ is operator

norm-dense in Sξ �
We end this section giving some comments on the role of order structures on

abstract Banach spaces. It is well known (see [17, Proposition A.1] and [27, Exam-
ples 2.3 and 2.4]) that every Banach space (X, ‖ · ‖) may be isometrically embedded
into an ordered Banach space X∼. Simply consider X∼ = X ⊕ R with the norm
‖(x, r)‖∼ = max{‖x‖, |r |}. The positive cone is defined as X∼+ = {(x, r) : ‖x‖ ≤ r}.
It may be proved that the norm ‖ · ‖∼ is additive on X∼+ and that the space X∼ is
1−generating (i.e., X∼ is a strong abstract state space). Moreover, each contraction
T ∈ L(X) can be extended to T̃ ∈ L(X∼) which is a positive contraction. Namely,
define T̃ (x, r) = (T x, r). The dynamics of a linear contraction T on X is reflected
in dynamics of T̃ . The problem emerges, when one asks about the mixing property.
The convergence of Markovian T̃ n , to a 1-dimensional projection on X∼, automati-
cally forces on the limit operator P((x, r)) = (0, r). In particular, ‖T n‖ → 0 on the
original space X. Otherwise, we would have P((x, r)) = (limn→∞ T n x, r). Hence,
(x∗, 0), (0, 1) ∈ X∼ would be two non-zero T̃ −invariant vectors, contradicting norm-
mixing. We conclude that studying mixing of a linear contraction T on an abstract
Banach space is as hard as studying uniform P−ergodicity of its extension T̃ (on
X∼) for 2−dimensional projections P . Positivity of T̃ and the order on X∼ will not
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help. We conclude that, when investigating the iterates T n of a linear contraction T
on an abstract Banach space X, we may not assume, without loss of generality, that
X is an abstract state space; especially when considering P− norm-ergodicity for a
1−dimensional P .

5 Continuous Semigroups and Dobrushin Coefficients

It has been explained in the previous section that studying mixing of Markovian semi-
groups, we may actually assume that they are contractions. Therefore, in this section,
we shall generally assume that Sξ are contraction semigroups.

We will not consider Dobrushin’s coefficients for one-parameter semigroups in
much depth. We merely present two results indicating possibilities in this direction. A
recent paper [14] is another example supporting possible developments of this topic.
We begin with recalling (cf. [9,13,18]).

Proposition 5.1 Let A ∈ L(X). Then

T A
t :=

∞∑

n=0

An

n! tn = et A ∈ L(X)

form a one-parameter norm-continuous (i.e., R � t → Tt ∈ L(X) is operator norm-
continuous) semigroup of operators, with A as its generator.

The theory of one-parameter linear semigroups is well developed. The reader is
directed to [9,13,18] for further explanations if necessary.

Here, we show that the convergence of {Tt }may be characterized by the Dobrushin
coefficient of a single element T1. Such a property is known for classical Markovian
semigroups on L1 (see [21, Theorem3.7] and [22, Theorem7.4.1 andCorollary 8.7.3]).
We have the following.

Theorem 5.2 Let {Tt } be a uniformly (norm) continuous contraction linear semigroup
on X, such that Tt P = P for all t ≥ 0, where P is a linear projection (contraction)
acting in a Banach space X. Then

(i) if T1 is uniformly P-ergodic, then {Tt } converges uniformly to P;
(ii) if T1 is weakly P-ergodic, then δP (Tt ) → 0.

Proof Without loss of generality, we shall assume that P 	= I . (i) follows from our
Theorem 3.2. Indeed, notice first that T1P = PT1 = P , and hence, Theorem 3.2 is
applicable. Thus, δP (T k

1 ) < 1 for some natural k. We notice that

T 1
n

P = lim
j→∞ T 1

n
T j
1 = lim

j→∞ T 1
n + j = lim

j→∞ T j
1 T 1

n
= PT 1

n
.
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Applying Theorem 3.6 we infer that, for every fixed natural n, the operator T 1
n
is

uniformly P-ergodic, as δP (T nk
1
n

) = δP (T k
1 ) < 1. Then

‖Tt − P‖ ≤ ∥
∥Tt − T�tn�/n

∥
∥ + ∥

∥T�tn�/n − P
∥
∥

≤ ∥
∥T�tn�/n

∥
∥

∥
∥Tt−�tn�/n − I

∥
∥ + ∥

∥T�tn�/n − P
∥
∥

≤ ∥
∥Tt−�tn�/n − I

∥
∥ + ∥

∥T�tn�/n − P
∥
∥ .

Clearly,
∥
∥Tt−�tn�/n − I

∥
∥may be as small as we wish (take n large enough). For a fixed

(large) n, the norm
∥
∥T�tn�/n − P

∥
∥ → 0 when t → ∞. Thus, (i) is proved.

To prove (ii), it is sufficient to notice

δP (Tt ) = δP (Tt−�t�T�t�) ≤ ‖Tt−�t�‖δP (T �t�
1 ) → 0.

�
Corollary 5.3 Let {Tt }t≥0 be a uniformly (norm) continuous contraction linear semi-
group on X, such that Tt Px∗ = Px∗ for all t ≥ 0, where as, before Px∗ = ξ ⊗ x∗ for
some x∗ ∈ Kξ . Then, {Tt }t≥0 is norm-mixing if and only if T1 is Px∗−ergodic.

We finish the paper with describing operators A ∈ L(X) which generate uniform
P−ergodic semigroups. We do not focus on Markovian semigroups; however, we are
still restricted to contractions. We introduce the set

C = {A ∈ L(X) : {T A
t }t≥0 is a contraction semigroup}.

Clearly, C is a closed subset of L(X). The last theorem of the paper corresponds
to [14, Theorem 3.8], where the considered semigroups belong to the C0 class and
their generators are generically unbounded [18, p. 15]. In particular, the topological
structure of considered here sets C is not comparable with the one considered in [14].
We do realize that the presented below result is not surprising, but it is included
for completeness of the topological structure of ergodic families of norm-continuous
contraction semigroups, obtained with the use of the Dobrushin methods.

Theorem 5.4 Let X be a Banach space and P be a linear projection (contraction) on
X. Then, the set

EP = {A ∈ C : {T A
t }t≥0 is uniformly P-ergodic }

is norm-open in

CP = {A ∈ C : T A
1 (NP ) ⊆ NP , T A

1 P = P}.

Moreover, EP is norm-dense in

C′
P = {A ∈ C : AP = P A = 0} ⊂ CP .
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Proof As before, we shall assume δP (T A
1 ) = γ < 1. Clearly, A → exp(A) is norm-

continuous. Let A ∈ EP be fixed. Therefore, for every ε > 0, there exists  > 0, such
that, if ‖A − B‖ < , B ∈ CP , then ‖exp(A) − exp(B)‖ < ε. From Theorem 2.2(2),
we have

|δP (exp(A)) − δP (exp(B))| ≤ ‖exp(A) − exp(B)‖ .

Taking ε = (1 − γ )/2, we get δP (exp(B)) < 1. Applying our Theorem 3.2, we infer
that EP is norm-open in CP .

To prove denseness, let us fix A ∈ C′
P and define

Aε,P :=A + ε(P − I ).

Applying standard arguments (see [22, p. 236], [4, p. 50] and [23, Lemma 3]), we find
the operator Aε,P to be a generator of a contraction semigroup {T ε,P }. Notice that
Aε,P ∈ C′

P . We have a representation

T ε,P
t = exp(−εt)

(

T A
t +

∞∑

n=1

εnT n,P
t

)

,

where T 0,P
t = T A

t and

T n+1,P
t =

t∫

0

T A
t−s PT n,P

s ds.

By mathematical induction, we estimate
∥
∥
∥T n+1,P

t

∥
∥
∥ ≤ tn/n!, so ‖T ε,P

t ‖ ≤ 1 (cf. [4]).

Now, by Theorem 22, we get

δP (T ε,P
1 ) ≤ exp(−ε)

(

δP (T A
1 ) +

∞∑

n=1

εn
∥
∥
∥T n,P

1

∥
∥
∥

)

≤ exp(−ε)

(

δP (T A
1 ) +

∞∑

n=1

εn

n!

)

< 1.

It follows that {T ε,P } is uniformly P-ergodic, i.e., Aε,P ∈ EP . �
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