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Generic appearance of objective results in quantum measurements

J. K. Korbicz,1,2,* E. A. Aguilar,3 P. Ćwikliński,3 and P. Horodecki1,2
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(Received 29 August 2016; published 28 September 2017)

Measurement is of central interest in quantum mechanics as it provides the link between the quantum world
and the world of everyday experience. One of the features of everyday experience is its robust, objective character,
contrasting the delicate nature of quantum systems. Here we analyze in a completely model-independent way
the celebrated von Neumann measurement process, using recent techniques of information flow, studied in open
quantum systems. We show the generic appearance of objective results in quantum measurements, provided we
macroscopically coarse-grain the measuring apparatus and wait long enough. To study genericity, we employ
the widely used Gaussian unitary ensemble of random matrices and the Hoeffding inequality. We derive generic
objectivization time scales, given solely by the interaction strength and the systems’ dimensions. Our results are
manifestly universal and are a generic property of von Neumann measurements.
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I. INTRODUCTION

Understanding quantum measurements has been one of the
central problems of quantum theory since its beginning [1,2].
It not only provides the crucial link between the theory
and experiment, the micro and macroworlds, but is at the
heart of the modern quantum technologies (see, e.g., [3]).
The fundamental measurement theory dates back to von
Neumann [4] and since then has been further developed in
various directions, e.g., the decoherence theory [5,6]. To be
readable, measurement results must inevitably be encoded into
macroscopic degrees of freedom and one of the crucial features
expected from a good measurement process is an objective
character of the results: They can be read out by arbitrary
many observers and without causing any disturbance by the
mere read-out. This has been realized as early as in 1929
by Mott [7]. Achieved in well-engineered measurements by a
proper coupling to macroscopic degrees of freedom, it is not at
all obvious if such a situation is a generic feature of a quantum
measurement process with a macroscopic recording.

In a broader context of open quantum systems [5,6], this
may be seen as a question about how information flows
from the system to its environment. Pioneering research
along this direction has been undertaken under the quantum
Darwinism idea [8], arguing that in some situations (see,
e.g., [9,10]) perfect information about the system can be
redundantly stored in the environment and becomes effectively
classical [11] and objective. The generic character of some
of the quantum Darwinism features was shown in Ref. [12]
and the universality of decoherence was shown on short
time scales in Refs. [13–16]. A further step was recently
made in Refs. [17,18] by formulating information flow and
objectivity in the fundamental language of quantum states
with the introduction of the so-called Spectrum Broadcast
Structures (SBS’s). These structures have been proven to be
a useful tool allowing to obtain novel results in some of
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the emblematic models of decoherence [17,19–21]. Finally,
questions of genericity have traditionally been the domain of
statistical mechanics and thermodynamics (see, e.g., [22–24]).
Phrased in this language, we may ask to what form a generic
state equilibrates during a von Neumann measurement.

In this communication we study information flow during a
von Neumann measurement process with a macroscopic (in a
sense of a number of degrees of freedom) measuring apparatus.
Applying random matrix theory techniques [25,26], we show
that generically the postmeasurement state approaches, after
a coarse-graining, a form carrying almost perfect, multiple
records of the measurement result, thus making the result
objective. To study genericity, we use a properly structured
Gaussian unitary ensemble (GUE) [25,26]. Since the seminal
works of Wigner and Dyson on statistics of various experi-
mentally observed spectra, it has been the basic choice for
random Hamiltonians due to its universality and agreement
with the experiment [25,26]. The apparatus is assumed to
be noisy, with the initial state distributed according to some
physically motivated measures of mixed states [27]. For
large-dimensional measured systems, we provide estimates
on the time scale of the objectivization process. Since the only
assumptions we make concern the genericity measures, our
results are manifestly universal and apply to the whole class
of von Neumann measurements, thus showing a generic and
robust character of the emergence of objectivity. It is a bit of a
surprise that this property of von Neumann measurements was
so far tacitly assumed (see, e.g., [28]), but never, to our best
knowledge, derived.

II. MEASUREMENTS WITH COMPOUND APPARATUSES

We consider a dS-dimensional quantum system S simulta-
neously measured by a collection of N measuring apparatuses
or environments E1, . . . , EN , each of dimension d, represent-
ing a macroscopic measuring device (cf. [17]). The apparatuses
are assumed to be individually coupled to the system through
a general von Neumann-type interaction, so strong that the
self-Hamiltonians of the system and the apparatuses can be
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neglected (the quantum measurement limit) [4]

Ĥtotal ≈ Ĥint = Â ⊗
N∑

k=1

B̂k, (1)

where Â is the measured observable (assumed nondegenerate)
and the B̂k are some general measuring observables. This leads
to the evolution (setting h̄ = 1) Û ≡ e−itĤint =∑a |a〉〈a| ⊗⊗N

k=1 e−iaB̂k t , where Â =∑dS

a=1 a|a〉〈a|. Our main object of
study is a partially reduced state ρS:Eobs , with a fraction Euno of
size Nuno of unobserved subsystems traced out. This represents
an inevitable loss of information during a measurement.
Assuming ρSE(0) = ρ0S ⊗⊗N

k=1 ρ0k we obtain

ρS:Eobs (t) =
∑

a

pa|a〉〈a| ⊗
Nobs⊗
k=1

ρak(t) +
∑

a

∑
a′ �=a

caa′

×
{

Nuno∏
k=1

Tr[e−i(a−a′)B̂k tρ0k]

}

× |a〉〈a′|
Nobs⊗
k=1

e−iaB̂k tρ0ke
ia′B̂k t , (2)

where pa ≡ 〈a|ρ0S |a〉, caa′ ≡ 〈a|ρ0S |a′〉, ρak(t) ≡
e−iaB̂k tρ0ke

iaB̂k t , Nuno + Nobs = N . We define the decoherence
factor for the unobserved fraction Euno

�uno
aa′ (t) ≡

Nuno∏
k=1

| Tr[e−i(a−a′)B̂k tρ0k]|2. (3)

If for all a �= a′: (i) �uno
aa′ (t) = 0, i.e., decoherence takes place,

and (ii) ρak(t) ⊥ ρa′k(t), i.e., ρak(t) are perfectly distinguish-
able, then we say that ρS:Eobs (t) is of a Spectrum Broadcast
Structure (SBS) [17–19] with respect to (w.r.t.) the basis |a〉
(this context dependence is of a fundamental importance, see,
e.g., [29]), defined as [30]

ρSBS =
∑

a

pa|a〉〈a| ⊗ ρa ⊗ · · · ⊗ ρa, ρa ⊥ ρa′ �=a. (4)

The basis |a〉 becomes then the so-called pointer basis
in which the system has decohered and the result of the
measurement a, appearing with the probability pa , is stored
in the measuring setup in many, perfect copies. Crucially,
their readouts, through projections on the supports of ρak(t),
will not disturb (on average) the joint state ρS:Eobs (t). This
leads to a form of objectivity of the measurement result:
It can be read out by multiple observers without disturbing
either the (decohered) system or themselves [8,17,18]. In
quantum-information terms, this objectivization process is
a weaker form of quantum-state broadcasting [31,32]. We
can thus reformulate the original question as follows: Are
SBS’s generic for the interactions (1)? To address it, we
introduce an ensemble of random Hamiltonians of the form (1)
and random initial conditions ρ0k . We then estimate the
average trace distance between the actual state (2) and an
ideal SBS in the following steps: (i) calculate the averages
over B̂k of the decoherence factor (3) and the so-called
superfidelity bound for the states ρak(t); (ii) average them
over ρ0k; (iii) coarse-grain the apparatus; (iv) further average

over Â; and (v) use the central result of [21] to bound the
average distance and show that it vanishes in the macroscopic
limit. We then use the concentration inequality of Hoeffd-
ing [33], following from the classical Chernoff bound, to show
genericity.

The coarse-graining is one of the crucial steps. As we will
show, on the microscopic level of the individual apparatuses,
the residual noise is too strong to allow a SBS formation even
asymptotically. This can be overcome if we group the Nobs

observed apparatuses into fractions scaling with N (called
macrofractions) and pass to the thermodynamic limit N →
∞ [17]. The numberM of such groups (assumed for simplicity
to be equal) is irrelevant, provided their sizes Nmac ≡ Nobs/M
satisfy Nmac ∼ N . These macrofractions may be understood
as reflecting some detection threshold, e.g., a minimum bunch
of photons the eye can detect.

III. RANDOMIZING MEASUREMENT HAMILTONIANS

We introduce an ensemble of random measurement Hamil-
tonians (1) using the widely used Gaussian unitary ensem-
ble [25,26] in the following way (cf. [34,35]): (i) B̂k are
independently, identically distributed (i.i.d.) according to a
GUE with a scale factor ηE ; (ii) Â is distributed according to
its own GUE with a scale factor ηS . We recall that the GUE
measure is defined as

dμGUE(Ĥ ) = 1

Z
e− η

2

∑
i λ2

i

∏
i<j

(λi − λj )2dλλλdÛ , (5)

with Z the normalization, λi the eigenvalues, η a scale factor,
and dÛ the Haar measure on the unitary group.

The simultaneous vanishing of the decoherence fac-
tor (3) and of the generalized overlaps [31,36] Faa′ ≡
F (ρa,ρa′ ) ≡ (Tr

√√
ρaρa′

√
ρa)

2
for all a �= a′ has so far

been used to witness a SBS formation [17,21]. This last
function is, however, complicated and here we will use
the so-called superfidelity bound [37] F (ρ,σ ) � G(ρ,σ ) ≡
Tr (ρσ ) +

√
(1 − Tr ρ2)(1 − Tr σ 2) (although we note that it

is not tight if both states are mixed, as, e.g., for ρ ⊥ σ ,
G(ρ,σ ) �= 0), which here reads

G(ρa(t),ρa′(t)) = Tr(ρa(t)ρa′(t)) + Slin(ρ0) ≡ Gaa′ (t), (6)

where Slin(ρ0) ≡ 1 − Tr ρ2
0 is the linear entropy of the initial

state of an individual apparatus.
We now average Eqs. (3) and (6) over the interaction and

the initial conditions. We first average over {B̂k}, fixing the
levels a,a′ of Â. We have

〈�uno
aa′ (t)〉{B̂k} =

Nuno∏
k=1

〈| Tr[e−i(a−a′)B̂k tρ0k]|2〉B̂k
, (7)

since B̂k are i.i.d. Modulo ρ0k , all the factors are identical
and we calculate the average over a single B̂k , dropping the
index k for simplicity. Performing the Haar integration first
([38], Sec. IA) and then the eigenvalue one ([38], Sec. IIB),
we obtain [39] the following.
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Result 1. The GUE averages of the single environment
decoherence and superfidelity factors read

〈�aa′ (t)〉 = 1 + Tr ρ2
0

d + 1
+ 〈ft (aaa,λλλ)〉2

(
d − Tr ρ2

0

)
d(d2 − 1)

, (8)

〈Gaa′ (t)〉 = Slin(ρ0) + 1 + Tr ρ2
0

d + 1

+〈ft (aaa,λλλ)〉2
(
d Tr ρ2

0 − 1
)

d(d2 − 1)
, (9)

with ft (aaa,λλλ) ≡∑m

∑
n>m cos [(a − a′)(λn − λm)t] and

〈ft (aaa,λλλ)〉 = p(d,�̃t )e
−�̃2

t , (10)

p(d,�̃t ) ≡
∑

n

∑
m>n

[
L(0)

n

(
�̃2

t

)
L(0)

m

(
�̃2

t

)

− n!

m!
�̃

2(m−n)
t

[
L(m−n)

n

(
�̃2

t

)]2]
, (11)

where �̃t ≡ (a − a′)t/
√

ηE and L(m)
n are the associated La-

guerre polynomials.
The above results are exact. Although the average 〈ft (aaa,λλλ)〉

with the GUE eigenvalue distribution PGUE(λλλ) involves
only the two-point correlation function [25] R2(λ1,λ2) ≡
d!/(d − 2)!

∫ · · · ∫ dλ3 · · · dλdPGUE(λ1, . . . ,λd ) (due to the
symmetry), and the large-d asymptotics of R2(λ1,λ2) are
well known [25], they are of no use here. One can show
that [25] R2(λ1,λ2) = Kd (λ1,λ1)Kd (λ2,λ2) − [Kd (λ1,λ2)]2,
Kd (λ1,λ2) ≡∑d−1

j=0 φj (λ1)φj (λ2), with φj (λ) the oscillator
wave functions, and while the first term approaches the Wigner
semicircle distribution, integrable with ft (aaa,λλλ), the second
term approaches a function of |λ1 − λ2| only [25] and makes
the integral divergent. That is the integration with ft (aaa,λλλ) and
the large-d limit are not interchangeable here.

Both Eqs. (8) and (9) depend on ρ0 only through its purity
Tr ρ2

0 and we can use the known results of generic state purity
to effectively get rid of the initial state dependence. Although
there is no canonical choice of a measure over mixed states,
there are several popular ones, e.g., the Hilbert-Schmidt and
the Bures measures [27] giving

〈
Tr ρ2

0

〉
HS = 2d

d2 + 1
,
〈
Tr ρ2

0

〉
Bu = 5d2 + 1

2d(d2 + 2)
. (12)

Especially the Bures measure is physically important as it
(i) is directly connected to quantum metrology [40] and
(ii) reproduces the correct measure for pure states. In what
follows we will assume that ρ0k are i.i.d. with one of the above
measures and are averaged over.

IV. RESIDUAL NOISE AND COARSE-GRAINING

As p(d,�̃t ) is an even polynomial of degree 2(2d − 3),
Eq. (10) implies that the time-dependent part in Eqs. (8)
and (9) decays for any fixed d and a gap |a − a′| �= 0
with a characteristic time τaa′ ≡ |a − a′|−1√ηE/(d + 1) ([38],
Sec. II). The remaining constant terms: A common one of
the order O(1/d) [cf. Eq. (12)], called “white noise,” and
additionally 〈Slin(ρ0)〉 in Eq. (9). This last, arising from the
nontight bound (6), is intuitively understood: the noisier the

apparatus is initially, the lesser information, measured by
the state distinguishability, it can accumulate. These factors,
reflecting residual background fluctuations in the ensemble,
pertain to a single apparatus and prevent a SBS formation.
However, coming back to Eq. (3), using Eqs. (7) and (12), we
actually obtain an exponential decay with Nuno of the collective
decoherence factor:

0 �
〈
�uno

aa′ (t)
〉 = 〈�aa′ (t)〉Nuno −−−→

t�τaa′
Ot(d−Nuno ), (13)

showing that for a large local dimension d and/or large
unobserved fraction Nuno, measurement dynamics (1) gener-
ically leads to decoherence (cf. [13]). The same step can
be preformed on the observed fraction as well [17]: We
group the Nobs observed apparatuses into M groups of Nmac

each, described by states ρmac
a (t) ≡⊗k∈mac ρak(t). Due to

the factorization of fidelity w.r.t. the tensor product and the
i.i.d. property, the resulting superfidelity bound (6) for the
group also decays [cf. (12)]:

0 �
〈
F mac

aa′ (t)
〉
� 〈Gaa′ (t)〉Nmac −−−→

t�τaa′
O(e− Nmac

d ). (14)

If both Nuno,Nmac scale with N , Eqs. (13) and (14) can be made
small in the macroscopic or thermodynamic limits N → ∞.
Crucially, increasing d alone is not enough as it damps the
white noise, but 〈Slin(ρ0)〉 � 1 − O(1/d) by Eq. (12).

V. GENERIC POSTMEASUREMENT STATE
AND OBJECTIVITY

Results (8) and (9) still depend on the Â’s level differences
|a − a′|. To study a completely general behavior, a further
averaging of 〈�uno

aa′ (t)〉, 〈Gmac
aa′ (t)〉 over the levels a,a′ should

be performed with the corresponding two-point correlation
function R2(a,a′) (the average is independent of the labels a,a′
due to the symmetry). The resulting integrals are intractable,
but from Eqs. (8) to (A52) they will eventually reach the noise-
floor (see Fig. 1). Lower bounds on the relevant time scales can
be obtained from a short-time analysis ([38], Sec. II), giving
for the decoherence and the superfidelity, respectively,

τdec ≡ [8g2NunodS

(
d − 〈Tr ρ2

0

〉)]− 1
2 d�1∼ g−1

√
NunodSd

,

τfid ≡ [8g2NmacdS

(
d
〈
Tr ρ2

0

〉− 1
)]− 1

2 d�1∼ g−1

√
NmacdS

.

(15)

Here g−1 ≡ √
ηSηE is the effective interaction time scale and

dS is the system dimension. We see a characteristic separation
of time scales: From Eq. (12), τfid ∼ √

dτdec for the same
macrofraction sizes. Thus, on average, it takes longer to
accumulate information in the apparatus than to decohere
the system [17,20]. Combining Eq. (15) with Result 1 and
Eqs. (13) and (14) we arrive at (cf. [42]) the following.

Result 2. The interaction and initial state averages satisfy

〈〈�uno(t)〉〉 −−−→
t�τdec

O(e−Nuno log d ), (16)

〈〈 Gmac(t)〉〉 −−−→
t�τfid

O(e− Nmac
d ). (17)
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FIG. 1. Time dependence of the exact full averages of the (a), (c) decoherence factor and (b), (d) the superfidelity for different dimensions
and macrofraction sizes. The two-point correlation function R2(a,a′) averages of the exact solutions (8) and (9) were used, with 〈Tr ρ2

0 〉 D

from Eq. (12). Different combinations of {dS,d} are plotted: {2,2} solid black; {2,10} brown dot-dot-dash; {10,2} blue dot-dash; {10,10} gray
long-dash. The time is in the the units of the interaction strength g ≡ 1/

√
ηSηE [41].

Next crucial step is to use the result of [21] estimating an
optimal trace distance between Eq. (2) and an ideal SBS state
on the coarse-grained level of macrofractions

εSBS(t) ≡ 1

2
||ρS:Eobs (t) − ρSBS||Tr

�
∑

a

∑
a′ �=a

[
|caa′ |

√
�uno

aa′ (t) + √
papa′

∑
mac

√
F mac

aa′ (t)

]
.

(18)

Using pa,|caa′ | � 1, 〈√f 〉 �
√〈f 〉 for f � 0, the superfi-

delity bound, and the Result 2, estimation (18) gives the
following result.

Result 3. Averaged over all the von Neumann measure-
ments (1) and the initial conditions, the optimal distance of the
actual state (2) to an ideal SBS state satisfies

〈〈εSBS(t)〉〉 −−−→
t�τSBS

O
[
d2

S (e− Nuno
2 log d + Me− Nmac

2d )
]
, (19)

where τSBS is the larger of Eq. (15) and M is the number of
macrofractions into which the observed degrees of freedom of
the apparatus are coarse-grained.

Finally, since 0 � εSBS(t) � 1 is a bounded random vari-
able for any t , it follows from the Hoeffding inequality [33]
that P [|εSBS(t) − 〈〈εSBS(t)〉〉| � δ] � 2e−2δ2

for any δ � 0.
This, together with Result 3 shows the genericity of the
SBS formation for large-enough apparatuses and long-enough
times.

VI. CONCLUSION

A measurement is an inevitable part of any quantum
experiment and the results must inevitably be encoded into
macroscopic degrees of freedom and become effectively
classical for us to read. This, in particular, entails becoming
objective. We studied this process using the general von Neu-
mann measurement scheme (1) with a macroscopic measuring
apparatus. A huge amount of degrees of freedom (N ∼ 1023)
makes it, in practice, impossible to observe them all and
to control each individual coupling. A way to model this
physical situation is to introduce some randomness and ask
questions about genericity. We did it in two steps. First we
randomized the measurement device side (the observables and
the generically noisy initial states) and showed that after in-
cluding the inevitable losses and macroscopic coarse-graining,
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a postmeasurement state approaches the so-called SBS form
asymptotically for almost any initial conditions and couplings.
The time scales of this process depends on the spectral gap
of the measured observable on the system side. Afterwards,
to get rid of this dependence, we went beyond a single
experiment scenario, randomizing the measured observable
also. An interesting aspect of that second randomization is
that this may be viewed as a quite natural assumption of any
quantum system interacting with many objects. Indeed it is
natural to assume that it interacts with each of the objects
with some fixed, yet different than with the others, way.
Since there are many objects, then the averaging effect comes
from that variety of the interactions and can be viewed as a
self-averaging of the system plus environment complex. This
leads to our central result: Almost any quantum measurement
produces objective outcomes on the macroscopic level on the
time scale given by the larger of Eq. (15). This is a universal,
model-independent result.

We believe one can go beyond the genericity notion used
here (Hoeffding inequality) and show the concentration of
measure phenomenon, e.g., by combining the results for
the Wigner-type matrices [43] with the methods of [22,42].
Another possible future direction is to go beyond the quantum
measurement limit and consider nontrivial dynamics of the
system and the measuring device. A candidate tool for such an
analysis already exists in the form of dynamical SBS [19].
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APPENDIX A: ENSEMBLE AVERAGE OVER
THE APPARATUS

1. Average over the Haar distributed unitary transformations U

In this section we average the decoherence and the super-
fidelity factors over the Haar measure. Due to the assumed
independent identical distribution (i.i.d.) of the apparatus
observables Bk , k = 1, . . . ,N , it is enough to calculate the
averages over a single observable only. This is what we shall
calculate, neglecting for brevity the index k. We start with the
decoherence factor and prove the following.

Theorem 4. The decoherence factor for the single copy of
the environment average over the Haar distributed unitary
transformations U is equal to

〈�aa′ (t)〉U = | Tr D|2 d − Tr
[
ρ2

0

]
d(d2 − 1)

+ d Tr
[
ρ2

0

]− 1

d2 − 1
, (A1)

where d is the local dimension of the environment.

We first write the decoherence factor as

�aa′(t) = | Tr[e−i(a−a′)Btρ0]|2 = Tr[e−i(a−a′)Btρ0]

× Tr[e−i(a−a′)Btρ0]† = Tr[e−i(a−a′)Btρ0]

× Tr[(e−i(a−a′)Bt )†ρ0]

= Tr[UDU †ρ0 ⊗ UD†U †ρ0]

= Tr[(U † ⊗ U †)(ρ0 ⊗ ρ0)(U ⊗ U )(D ⊗ D†)],

(A2)

where we diagonalized the observable B as B =
Udiag[λ1, . . . ,λd ]U † and defined

D ≡ diag[e−i�tλ1 , . . . ,e−i�tλd ], �t ≡ (a − a′)t. (A3)

We also used Tr A Tr B = Tr(A ⊗ B) in the second line and
the following fact in the first step.

Fact 1. For any operator X the following is true

| Tr X|2 = Tr X Tr X†, (A4)

where † stands for the Hermitian conjugation.
Proof. Please note that

| Tr X|2 = Tr XTr X = Tr XTr XT = Tr X Tr X†, (A5)

where X stands for the complex conjugation of X and we used
Tr X = Tr XT , and XT = X†.

We will also need two more well-known facts.
Fact 2: For any operators A, B, and the SWAP operatorV,

we have that

Tr[VA ⊗ B] = Tr(AB). (A6)

Proof. Let us write the SWAP operator as

V =
∑
ij

|ij 〉〈ji|. (A7)

Inserting Eq. (A7) into Eq. (A6) we have that

Tr[VA ⊗ B] = Tr

⎛
⎝∑

ij

|ij 〉〈ji|A ⊗ B

⎞
⎠

= Tr

⎛
⎝∑

ij

〈ji|A ⊗ B|ij 〉
⎞
⎠

=
∑
ijkl

〈ji|A|kl〉〈kl|B|ij 〉 = Tr(AB). (A8)

Fact 3. For any Hermitian operator X from Cd to Cd , it
holds ∫

dUU ⊗ UX ⊗ XU † ⊗ U †

= 2

d(d + 1)
Tr[�symX ⊗ X]�sym

+ 2

d(d − 1)
Tr[�asymX ⊗ X]�asym, (A9)

where �sym and �asym are the orthogonal projectors onto
the symmetric and antisymmetric subspaces, respectively,
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equal to

�sym ≡ I + V

2
, �asym ≡ I − V

2
, (A10)

where V is the SWAP operator.
We now integrate Eq. (A2) over U ⊗ U . Using linearity of

the trace we pull the integral inside the trace

〈�aa′ (t)〉U =
∫

dU Tr(U † ⊗ U †ρ0 ⊗ ρ0U ⊗ UD ⊗ D†)

= Tr

[(∫
dUU ⊗ Uρ0 ⊗ ρ0U

† ⊗ U †
)

D ⊗ D†
]
.

(A11)

We then use Fact 3 with X ≡ ρ0. We can easily calculate
Tr[�symρ0 ⊗ ρ0] and Tr[�asymρ0 ⊗ ρ0] using Facts 1 and 2
and obtain

Tr[�symρ0 ⊗ ρ0]�sym = 1

2
Tr[(I + V)(ρ0 ⊗ ρ0)]

I + V

2

= 1 + Tr
[
ρ0

2
]

2

I + V

2
, (A12)

and for the antisymmetric projector

Tr[�asymρ0 ⊗ ρ0]�asym = 1

2
Tr[(I − V)(ρ0 ⊗ ρ0)]

I − V

2

= 1 − Tr
[
ρ0

2
]

2

I − V

2
. (A13)

We then again use Facts 1 and 2 to calculate the remaining
traces Tr [(I ± V)D ⊗ D†], keeping in mind that D is Hermi-
tian and that Tr D2 = d. This finally gives

〈�aa′(t)〉U = | Tr D̂|2 d − Tr
[
ρ2

0

]
d(d2 − 1)

+ d Tr
[
ρ2

0

]− 1

d2 − 1
, (A14)

proving our Theorem. �
Using the same technique, one can also calculate the

average of the superfidelity factor. The only nontrivial part
is the Hilbert-Schmidt product between the apparatus states
ρa(t) and ρa′ (t). Using the same notation as in Eq. (A2) we
obtain

Tr(ρa(t)ρa′(t)) = Tr[ρ0e
i(a−a′)Btρ0e

−i(a−a′)Bt ]

= Tr[U †ρ0UD†U †ρ0UD]

= Tr[V(U † ⊗ U †)(ρ0 ⊗ ρ0)

× (U ⊗ U )(D† ⊗ D)], (A15)

where in the last step we used Fact 2. We note that the
only difference between the above Hilbert-Schmidt factor and
the decoherence factor (A2) is the presence of the SWAP
operator V. Repeating the same steps as above gives

〈Gaa′ (t)〉U = Slin(ρ0) + d − Tr ρ2
0

d2 − 1
+ | Tr D|2 d Tr ρ2

0 − 1

d(d2 − 1)
.

(A16)

Finally, we evaluate | Tr D|2 from its definition in Eq. (A3)

| Tr D|2 ≡ d + 2ft (aaa,λλλ),

ft (aaa,λλλ) ≡
∑
m

∑
n>m

cos[�t (λn − λm)]

=
∑
m

∑
n>m

cos[(a − a′)(λn − λm)t], (A17)

which is a function of the eigenvalues aaa of the observable A

and the eigenvalues λλλ of B.

2. Averaging over the eigenvalues

After averaging over the unitary group in Sec. A 1, we
perform the average over the GUE eigenvalue distribution

PGUE(λλλ) = 1

Z
e− 1

2 ηE

∑
m λ2

m

∏
i<j

|λj − λi |2. (A18)

Here ηE is the eigenvalue scale of the observable B and Z is a
normalization constant (the GUE partition function). The task
then is to find the following average:

〈ft (aaa,λλλ)〉 =
〈∑

i

∑
j>i

cos[�t (λi − λj )]

〉

=
∑

i

∑
j>i

∫
dλλλ PGUE(λλλ) cos[�t (λi − λj )].

(A19)

Quite surprisingly, this average can be performed explicitly
using the standard methods of dealing with GUE [25]. We first
introduce the harmonic oscillator wave functions

φn(x) ≡ 1√√
2πn!

e− x2

4 Hen(x). (A20)

Notice that we define the wave functions using the so-called
“probabilist” Hermite polynomials

Hen(x) ≡ (−1)ne
1
2 x2 dn

dxn
e− 1

2 x2
.

That is, they are orthogonal with respect to the weight function
exp[−x2/2], and are related to the physicist’s polynomials
Hn(x) via Hen(x) = 2−n/2Hn(x/

√
2). Of course we still have∫

dx φn(x)φm(x) = δnm. Then the GUE eigenvalue distribu-
tion takes on a very compact and elegant form, after rescaling
λk ≡ ζk√

ηE
[25] (6.2.4):

PGUE(λλλ)dλλλ = 1

d!
det[φj−1(ζi)]

2dζζζ , (A21)

where i,j = 1, . . . ,d.

a. Exploiting the symmetry

A crucial step is the realization that this average has an
index permutation symmetry. Let σ ∈ Sd be a permutation,
then

PGUE(λσ (1), . . . ,λσ (d)) = PGUE(λ1, . . . ,λd ). (A22)
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Analogously we have (keeping the eigenvalues aaa fixed)

ft (aaa,λσ (1), . . . ,λσ (d)) =
∑
i<j

cos[�t (λσ (i) − λσ (j ))]

=
∑
i<j

cos[�t (λi − λj )] = ft (aaa,λλλ).

(A23)

This is because in both expressions the eigenvalue functions are
symmetric and all pairs of indices are taken (i.e., the product or
sum is over all i < j ). Equivalently, we can recall that Tr D =∑

i e
−i�tλi and from Eq. (A17) ft (aaa,λλλ) = 1/2(| Tr D|2 − d),

which is clearly symmetric under the permutations. Hence, the
calculation of the average ft (aaa,λλλ) reduces to a single term

〈ft (aaa,λλλ)〉 = d(d − 1)

2

∫
dλλλ PGUE(λλλ) cos[�t (λ1 − λ2)].

(A24)

As the integrand only depends on two variables, we can
take the marginal distribution, which is essentially the 2-point
correlation function, defined as [25] (6.1.2)

R2(λ1,λ2) ≡ d!

(d − 2)!

∫
dλ3, . . . ,dλd PGUE(λ1, . . . ,λd ).

(A25)
Hence, we reduced the problem to the integral

〈ft (aaa,λλλ)〉 = 1

2

∫
dλ1dλ2 R2(λ1,λ2) cos[�t (λ1 − λ2)].

(A26)

b. The crucial integral

To calculate (A26) we need the following integral

Jn,m(α) ≡
∫

dx φn(x)φm(x)eiαx. (A27)

In fact, Eq. (A27) may be interpreted as a special case
of a matrix element of the displacement operator D(β) =
exp[βâ† − β∗â] in the Fock basis {|n〉}n∈N. We recover our
integral setting β ≡ iα, α ∈ R. This turns out to be a well-
known quantity in quantum optics (see, e.g., [44]), but for
completeness we present its calculation below. Without a loss
of generality, we assume m � n. First, we express the wave
functions through the (probabilist) Hermite polynomials as in
Eq. (A20) and use the generating function for Hen(x) with
parameters r,s to perform the integral

Jn,m(α) = 1√
2πn!m!

∫
dx Hen(x)Hem(x)e− 1

2 x2+iαx (A28)

= 1√
2πn!m!

∂n

∂rn

∣∣∣∣
r=0

∂m

∂sm

∣∣∣∣
s=0

×
∫

dx e(iα+r+s)x− 1
2 (r2+s2+x2) (A29)

= e− 1
2 α2

√
n!m!

∂n

∂rn

∣∣∣∣
r=0

∂m

∂sm

∣∣∣∣
s=0

eiαr+iαs+rs (A30)

= e− 1
2 α2

√
n!m!

∂n

∂rn

∣∣∣∣
r=0

(iα + r)meiαr . (A31)

Then we use the binomial formula for the derivatives
dn

dxn f (x)g(x) =∑n
k=0

(
n

k

)
dn−kf (x)

dxn−k

dkg(x)
dxk . Since m � n we do

not run into any unexpected problems and obtain

Jn,m(α) = e− 1
2 α2

√
n!m!

n∑
k=0

(
n

k

)(
m

k

)
k!(iα)n+m−2k. (A32)

This may be nicely expressed in terms of the associated
Laguerre polynomials as (taking α ∈ R)

Jn,m(α) = e− 1
2 α2

√
n!

m!
(iα)m−nL(m−n)

n (α2), (A33)

where

L(m)
n (x) ≡

n∑
k=0

(
n + m

n − k

)
(−x)k

k!
(A34)

[we adopt the common standardization for the Laguerre
polynomials that the leading coefficient is equal to (−1)n/n!].
Equation (A27) can also be expressed more compactly in terms
of the so-called two-dimensional (2D) Laguerre functions
introduced in Ref. [45]

〈m|D(α)|n〉 = (−1)n
√

πlm,n(α,α∗) (A35)

for a general complex displacement α. The 2D Laguerre
functions are defined as [45]

lm,n(z,z∗) ≡ 1√
π

e− zz∗
2

1√
m!n!

×
m∑

j=0

(
m

j

)(
n

j

)
j !(−1)j zm−j z∗n−j . (A36)

c. Putting the results together

We return to calculating the integral (A26). We use Eq. (A21),
rescale the variables, and introduce a more friendly notation
(x,y) ≡ (ζ1,ζ2):

〈ft (aaa,λλλ)〉 = 1

2

∫
dxdy R2(x,y) cos[�̃t (x − y)], (A37)

where

�̃t ≡ (a − a′)t√
ηE

. (A38)

Now, Dyson’s Theorem will let us calculate the 2-point
correlation function [25] Theorem 5.14, (6.2.6-7)

R2(x,y) = K(x,x)K(y,y) − K(x,y)2, (A39)

where the kernel is defined through the oscillator wave
functions (A20) as

K(x,y) ≡
d−1∑
j=0

φj (x)φj (y). (A40)

Hence, we can express our integral as the following sum:

〈ft (aaa,λλλ)〉 =
d−1∑
n=0

d−1∑
m=0

∫
dxdy (φn(x)2φm(y)2

−φn(x)φm(x)φn(y)φm(y)) cos[�̃t (x − y)].

(A41)
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By expressing the cosine function in exponential form, the
integrals become separable and we obtain

〈ft (aaa,λλλ)〉 = 1

4

d−1∑
n=0

d−1∑
m=0

(An,m + Ãn,m − 2Bn,m), (A42)

where we introduce the auxiliary functions

An,m ≡ Jn,n(�̃t )Jm,m(−�̃t ), (A43)

Ãn,m ≡ Jn,n(−�̃t )Jm,m(�̃t ), (A44)

Bn,m ≡ Jn,m(�̃t )Jn,m(−�̃t ). (A45)

Now, we are able to separate the n,m summation into three
parts n < m, n = m, and n > m. From the definition of the
auxiliary functions, we easily see that the diagonal summation

n = m vanishes. The remaining sums n < m and n > m

become the same since Am,n = Ãn,m and Bm,n = Bn,m. Hence,
for convenience sake we will calculate the sum m > n only.
We use the explicit result (A32) for the Jn,m and obtain

An,m = e−�̃2
t

n∑
k=0

m∑
l=0

(
n

k

)(
m

l

)
(−1)n+m−k−l�̃

2(n+m−k−l)
t

(n − k)!(m − l)!
.

(A46)

And by doing the same for Ã, we indeed realize that An,m =
Ãn,m. For Bn,m, in turn, we obtain

Bn,m = e−�̃2
t

n∑
k=0

n∑
l=0

(
n

k

)(
m

l

)
(−1)k+l�̃

2(n+m−k−l)
t

(m − k)!(n − l)!
. (A47)

Hence, putting it all together (with a factor of 2 since now we
only sum m > n), we arrive at

〈ft (aaa,λλλ)〉 = e−�̃2
t

d−2∑
n=0

d−1∑
m=n+1

[
n∑

k=0

m∑
l=0

(
n

k

)(
m

l

)
(−1)n+m−k−l�̃

2(n+m−k−l)
t

(n − k)!(m − l)!
−

n∑
k=0

n∑
l=0

(
n

k

)(
m

l

)
(−1)k+l�̃

2(n+m−k−l)
t

(m − k)!(n − l)!

]
. (A48)

This result may also be rewritten using the associated Laguerre polynomials and Eq. (A33)

〈ft (aaa,λλλ)〉 = e−�̃2
t

d−2∑
n=0

d−1∑
m=n+1

[
L(0)

n

(
�̃2

t

)
L(0)

m

(
�̃2

t

)− n!

m!
�̃

2(m−n)
t

[
L(m−n)

n

(
�̃2

t

)]2]
. (A49)

One of the sums can be performed using the following identity for the associated Laguerre polynomials:

M∑
m=0

L(α)
m (x) = L

(α+1)
M (x), (A50)

giving

〈ft (aaa,λλλ)〉 = e−�̃2
t

[
L

(1)
d−1

(
�̃2

t

)
L

(1)
d−2

(
�̃2

t

)−
d−2∑
n=0

L(0)
n

(
�̃2

t

)
L(1)

n

(
�̃2

t

)−
d−2∑
n=0

d−1∑
m=n+1

n!

m!
�̃

2(m−n)
t

[
L(m−n)

n

(
�̃2

t

)]2]
. (A51)

However, we keep Eq. (A49) in the main text since it is more
compact.

Please note that in the main text we do not directly use
〈ft (aaa,λλλ)〉, but rather separate its Gaussian and polynomial
parts, i.e.,

〈ft (aaa,λλλ)〉 ≡ e−�̃2
t p(d,�̃t ). (A52)

APPENDIX B: SHORT TIME ANALYSIS

In this Appendix we perform the final averaging over the
system observable A. In the previous section, we used the
i.i.d. property of the apparatus ensemble to reduce the big,
compound averages to single copy ones. Here, however, we
cannot do so, as ultimately we are interested in the macroscopic
quantities �

Nuno
aa′ , Gmac

aa′ . Thus we need

〈〈Xf (t)〉〉aa′ ≡
∫

daaaPGUE(aaa)〈Xaa′ (t)〉Nf , (B1)

where Xaa′ = �aa′ or Gaa′ and f = uno or mac, respectively.
We note that both 〈�aa′ (t)〉, 〈Gaa′ (t)〉 depend on A only through
the eigenvalue differences |a − a′|. Thus, the A-averaging
reduces to averaging over the eigenvalues only with its own

GUE eigenvalue distribution

PGUE(aaa) ≡ PGUE(a1, . . . ,adS
) ≡ 1

ZS

e− 1
2 ηS

∑
l a

2
l

∏
i<j

|aj − ai |2,

(B2)

where dS is the system dimension and ηS is the eigenvalue scale
of the system observable A. From the permutational symmetry
of the GUE distribution (best seen through the Vandermonde
determinant), the integral in Eq. (B1) reduces to the integration
with the same 2-point correlation function (A25), but now
defined for the distribution (B2) and thus all the averages for
different pairs aa′ are the same and equal to

〈〈Xf (t)〉〉 =
[

dS!

(dS − 2)!

]−1 ∫
dada′R2(a,a′)〈Xaa′ (t)〉Nf .

(B3)

The resulting integral is too complicated to be performed
analytically and actually this is, in fact, not needed as we
see from Eq. (A52) that 〈ft (aaa,λλλ)〉 will eventually decay
so that both factors will approach their noise-floor values
(cf. Result 1 from the main text). What we are interested in are
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the relevant time scales. We can estimate lower bounds on those
time scales from the decay times of Eq. (A52). We perform
this analysis in the following steps: (i) assume a short-time
limit; (ii) approximate the polynomial p(d,�̃) of Eq. (A52);
(iii) approximate the Nf power; (iv) using Eqs. (A39), (A40),
and (A20) estimate the fastest decaying term in Eq. (B3).
This will then give lower bounds on the desired times of the
asymptotic approach: These times are for sure greater than the
initial decay times.

First, we assume �̃t � 1, or t � √
ηE/|a − a′|. The

maximum of |a − a′| is of the order of
√

dS/ηS from the
Wigner semicircle law, defining the short-time limit

t �
√

ηEηS

dS

≡ 1

g
√

dS

, (B4)

where g ≡ 1/
√

ηEηS is the effective interaction strength.
We now explicitly calculate the coefficients of the lowest-

order terms in p(d,�̃) directly from Eq. (A48). One imme-
diately sees that the polynomial is even so the lowest terms
are the constant and the quadratic ones. The constant term
occurs when k + l = m + n, but this can only occur in the
first summand of the polynomial when k = n and l = m, so
that we have ∑

n<m

[1] = d(d − 1)

2
. (B5)

The quadratic term occurs when the indices fulfill the condition
k + l + 1 = m + n. On the first term, this can occur if (k = n,
l = m − 1) or if (k = n − 1, l = m). On the second term this
can occur only when the m index is m + 1 and the inner indices
are k = l = n. Thus we obtain∑

n<m

[
m(−1)�̃2

t

]+∑
n<m

[
n(−1)�̃2

t

]−∑
n

[
(n + 1)�̃2

t

]

= −d2(d − 1)

2
�̃2

t . (B6)

Thus, for short times we have

p(d,�̃t ) = d(d − 1)

2

(
1 − d�̃2

t

)+ O
(
�̃4

t

)
. (B7)

To proceed further, we upper bound the above expression
by the Gaussian function 1 − d�̃2

t � e−d�̃2
t resulting from

Eq. (A52) in the short-time bound

〈ft (aaa,λλλ)〉 � e−(d+1)�̃2
t ≡ e−(t/τaa′ )2

,

τaa′ ≡
√

ηE√
d + 1|a − a′| . (B8)

We then use the following approximation of the power

(α + βe−x)Nf ≈ (α + β)Nf e
−Nf

β

α+β
x (B9)

for x � 1. We apply it to the single-copy averaged factors

〈�aa′(t)〉 = 1 + Tr ρ2
0

d + 1
+ 〈ft (aaa,λλλ)〉2

(
d − Tr ρ2

0

)
d(d2 − 1)

, (B10)

〈Gaa′ (t)〉 = Slin(ρ0) + 1 + Tr ρ2
0

d + 1
+ 〈ft (aaa,λλλ)〉2

(
d Tr ρ2

0 − 1
)

d(d2 − 1)
,

(B11)

identifying β with the constant terms and α with the multi-
plicative one. After a simple algebra, this leads to the following
short time approximations of the macroscopic factors:

〈
�uno

aa′ (t)
〉 = 〈�aa′ (t)〉Nuno ≈ exp

[−Nuno �̃2
t

(
d − 〈Tr ρ2

0

〉)]
,

(B12)〈
Gmac

aa′ (t)
〉 = 〈Gaa′ (t)〉Nmac ≈ exp

[−Nmac �̃2
t

(
d
〈
Tr ρ2

0

〉− 1
)]

.

(B13)

For 〈Tr ρ2
0 〉 we can use either the Hilbert-Schmidt or Bures

measure from the main text. It is interesting to note that in any
case 〈Tr ρ2

0〉 ∝ 1/d, so that Eq. (B12) shows a dependence on
both Nuno and d while Eq. (B13) shows a dependence mainly
on Nmac.

We are now ready to estimate the lower bound on the decay
time of the integral (B3). Substituting Eq. (B12) or (B13) and
using Eqs. (A39), (A40), and (A20), we are left with a sum of
integrals of the following structure:∫

dada′Hem(a)Hen(a)Hej (a′)Hel(a
′)e−μt (a−a′)2− 1

2 (a2+a′2)

∼
∫

dada′ara′se−μt (a−a′)2− 1
2 (a2+a′2), (B14)

where the powers satisfy 0 � r,s � 2(dS − 1) [cf. Eq. (A40)]
and μt ≡ Nuno(gt)2(d − 〈Tr ρ2

0 〉) for the decoherence factor
and μt ≡ Nmac(gt)2(d〈Tr ρ2

0 〉 − 1) for the superfidelity [cf.
Eqs. (B12) and (B13)]. To separate the integrals, we diag-
onalize the quadratic form in the exponent. Its eigenvalues
read (1 + 4μt )/2 and 1/2. Denoting by O the diagonalizing
SO(2) transformation, we pass to the new variables (x,y)T ≡
O(a,a′)T in which the integrals (B14) separate∫

dada′ara′se−μt (a−a′)2− 1
2 (a2+a′2)

∼
(∫

dxxγ e− 1+4μt
2 x2

)(∫
dyyδe− 1

2 y2

)
, (B15)

where 0 � γ,δ � 2(dS − 1), γ + δ = r + s. The integrals on
the right-hand side are now elementary and depend on time
as 1/(1 + 4μt )γ+ε , where ε = 1 or 1/2 depending on the
parity of the power γ . Putting all together, the integral (B3)
has the following time dependence [we neglect possible time
dependent coefficients, origi-ating from the matrix O, as they
are given by the sine and cosine functions and hence ∼ O(1))]

〈〈Xf (t)〉〉 ∼ 1√
1 + 4μt

+ 1

1 + 4μt

+ 1

(1 + 4μt )3/2
+ · · ·

+ 1

(1 + 4μt )2(dS−1)+ε
. (B16)

The fastest decaying is the last term, which for μt � 1 or
t � O( 1√

g2Nf

) can be approximated by an exponential

1

(1 + 4μt )2(dS−1)+ε
≈ exp[−8dSc(d)Nf (gt)2], (B17)
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FIG. 2. In figures (a) and (c) the dotted (red) curve represents the Ansatz �̃(t), the solid (black) line represents the exact decoherence factor
〈�(t)〉, and the dashed (blue) curve the difference �̃(t) − 〈�(t)〉. Similarly, in (b) and (d) the dotted (red) curve represents the Ansatz G̃(t), the
solid (black) line represents the exact averaged superfidelity 〈G(t)〉, and the dashed (blue) curve the difference G̃(t) − 〈G(t)〉. The time scale
is given in units of �̃ = (a − a′)/

√
ηE , the Bures average purity is used throughout, and the exact integration is done assuming dS = 2.

where we neglected the factor −2 + ε = −1 or −3/2 in the
power as compared to 2dS and c(d) ≡ d − 〈Tr ρ2

0 〉 for the deco-
herence factor and c(d) ≡ d〈Tr ρ2

0〉 − 1 for the superfidelity.
This finally gives the following lower bounds on the decay
times

τdec ≡ [8g2NunodS

(
d − 〈Tr ρ2

0

〉)]−1/2 ∼ [8g2NunodSd]−1/2,

(B18)

τf id ≡ [8g2NmacdS

(
d
〈
Tr ρ2

0

〉− 1
)]−1/2 ∼ [8g2NmacdS]−1/2,

(B19)

where the simplified estimates are in the limit of a large
local dimension of the apparatus d. The above times are
clearly within the short-time approximation range (B4). It
is interesting to note that the above separation of physical
time scales of decoherence and information accumulation
is, on the mathematical level, a consequence of a simple
symmetry difference in the initial formulas (A2) and (A15).
This last equation has an additional SWAP operatorV under the
trace.

As mentioned, the above time scales are only lower bounds
for the actual times of the noise floor approach. Perhaps they
can be tightened using different analytical tools, but for the
purpose of this work we will use the above τdec,τf id .

APPENDIX C: UPPERBOUNDING THE EXACT
EXPRESSION FOR 〈 ft (aaa,λλλ)〉

This Appendix is complimentary to the main line of
reasoning and is not necessary for understanding it. The
exact expression (A48) is algebraically complicated and
a simplified expression, reproducing short- and long-time
behavior and preferably upper bounding it would be desirable.
Here we attempt a construction of such an upper bound.
For short times, we may neglect in the average 〈ft (aaa,λλλ)〉 =
p(d,�̃t )e−�̃2

t all terms except the first two giving 〈ft (aaa,λλλ)〉 �
[d(d − 1)/2]e−(d+1)�̃2

t [see Eq. (B8)]. On the other hand, for
large times the highest-order term �̃

2(2d−3)
t dominates and it

always comes with a negative coefficient as can be seen from
Eq. (A48). These observations suggest the following Ansatz:

�̃aa′ (t) ≡ 1 + 〈Tr ρ2
0

〉
d + 1

+ d − 〈Tr ρ2
0

〉
d + 1

e−(d+1)�̃2
t , (C1)

G̃aa′ (t) ≡ 〈Slin(ρ0)〉 + 1 + 〈Tr ρ2
0

〉
d + 1

+ d
〈
Tr ρ2

0

〉− 1

d + 1
e−(d+1)�̃2

t ,

(C2)

for the decoherence and the superfidelity factors, respectively.
By construction, the expressions (C1) and (C2) reproduce the
correct short- time behavior as 〈�aa′ (t)〉 = �̃aa′ (t) + O(�̃4

t ),
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and similarly 〈Gaa′ (t)〉, for t � τaa′ , where τaa′ is the charac-
teristic time of the Gaussian decay in Eqs. (C1) and (C2)

τaa′ ≡
√

ηE√
d + 1|a − a′| . (C3)

They are also upper bounds since 1 − x � e−x [cf. (B7)].
Similarly, for long times t � τaa′ , Eqs. (C1) and (C2)
reproduce the correct white noise factors and also upper
bound the exact averages since p(d,�̃t ) is then negative. These
two facts together suggest that Eqs. (C1) and (C2) may be
upper bounds for all times t and dimensions d. Unfortunately,
we are unable to prove it analytically, but numerical evidence

for d � 20 suggests that it is indeed so. In Fig. 2 we present
some sample plots of both the exact expressions and Eqs. (C1)
and (C2) together with the errors. The price to pay for working
with the simplified expressions (C1) and (C2) is that one loses
the important physical information on non-Markovianity,
reflected by the nonmonotonic behavior of the exact averages
for low rations N/d. Also the exact functions approach
their asymptotic limits from below, signalizing recovery of
coherences or loss of information in the environment, while
Eqs. (C1) and (C2) approach them from above. However, if
one is solely interested in an SBS formation, an upper bound
decaying to the correct noise level is just enough.

[1] N. Bohr, in The Library of Living Philosophers, Volume 7. Albert
Einstein: Philosopher-Scientist, edited by P. A. Schilpp (Open
Court, Chicago, 1949), pp. 199–241.

[2] W. Heisenberg, Philosophic Problems of Nuclear Science,
Fawcett Premier Book (Faber and Faber, London, 1952).

[3] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Leiden, The Netherlands,
2009).

[4] J. von Neumann, Mathematical Foundations of Quantum Me-
chanics (Princeton University Press, Princeton, NJ, 1955).

[5] M. A. Schlosshauer, Decoherence and the Quantum-To-
Classical Transition (Springer-Verlag, Berlin, 2007).

[6] E. Joos, Decoherence and the Appearance of a Classical World
in Quantum Theory, Physics and Astronomy Online Library
(Springer, New York, 2003).

[7] N. Mott, Proc. R. Soc. A 126, 79 (1929).
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