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Abstract. It is well known that iterated function systems generated by
orientation preserving homeomorphisms of the unit interval with positive
Lyapunov exponents at its ends admit a unique invariant measure on
(0, 1) provided their action is minimal. With the additional requirement
of continuous differentiability of maps on a fixed neighbourhood of {0, 1},
we present a metric in the space of such systems which renders it complete.
Using then a classical argument (and an alternative uniqueness proof),
we show that almost singular invariant measures are admitted by systems
lying densely in the space. This allows us to construct a residual set of
systems with unique singular stationary distribution. Dichotomy between
singular and absolutely continuous unique measures is assured by taking
a subspace of systems with absolutely continuous maps; the closure of
this subspace is where the residual set is found.

Mathematics Subject Classification. 37E05, 60G30, 37C20.

Keywords. Markov operators, Semigroups of interval homeomorphisms,
Absolute continuity, Singularity, Minimal actions.

1. Introduction. Ergodic properties of random dynamical systems have been
extensively studied for many years (see [3] and the references therein). The
most important concepts related to these properties are attractors and invari-
ant measures (see [4,6,10,11]). Among random systems, iterated function sys-
tems and related skew products are studied (see [1,2,5]). This note is concerned
with iterated function systems generated by orientation preserving homeomor-
phisms on the interval [0, 1]. It was proved (see [7]) that under quite general
conditions the system has a unique invariant measure on the open interval
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(0, 1). (Clearly, such systems also have trivial invariant measures supported
on the endpoints.) It is well known that this measure is either absolutely con-
tinuous or singular with respect to the Lebesgue measure. The methods that
would allow us to distinguish each of these cases are still unknown. The main
purpose of our paper is to support the conjecture that typically such invariant
measures should be singular (see [1]). In fact, we prove that the set of iterated
function systems that have a unique invariant measure on the interval (0, 1)
which is singular is generic in the natural class of systems.

2. Notation. By M1 and Mfin we denote the set of all probability measures
and all finite measures on the σ-algebra of Borel sets B([0, 1]), respectively. By
C([0, 1]) we denote the family of all continuous functions equipped with the
supremum norm ‖ · ‖.

An operator P : Mfin → Mfin is called a Markov operator if it satisfies
the following two conditions:
(1) positive linearity: P (λ1μ1 + λ2μ2) = λ1Pμ1 + λ2Pμ2 for λ1, λ2 ≥ 0; μ1,

μ2 ∈ Mfin;
(2) preservation of measure: Pμ([0, 1]) = μ([0, 1]) for μ ∈ Mfin.

A Markov operator P is called a Feller operator if there is a linear operator
P ∗ : C([0, 1]) → C([0, 1]) (dual to P ) such that∫

[0,1]

P ∗f(x)μ(dx) =
∫

[0,1]

f(x)Pμ(dx) for f ∈ C([0, 1]), μ ∈ Mfin.

Note that, if such an operator exists, then P ∗(1) = 1. Moreover, P ∗(f) ≥ 0 if
f ≥ 0 and

‖P ∗(f)‖ ≤ ‖P ∗(|f |)‖ ≤ ‖f‖,

so P ∗ is a continuous operator. A measure μ∗ is called invariant if Pμ∗ = μ∗.
Let Γ = {g1, . . . , gk} be a finite collection of nondecreasing absolutely con-

tinuous functions, mapping [0, 1] onto [0, 1], and let p = (p1, . . . , pk) be a
probability vector. Clearly, it defines a probability distribution p on Γ by
putting p(gi) = pi. Put Σn = {1, . . . , k}n, and let Σ∗ =

⋃∞
n=1 Σn be the

collection of all finite words with entries from {1, . . . , k}. For a sequence
ω ∈ Σ∗, ω = (i1, . . . , in), we denote by |ω| its length (equal to n). Fi-
nally, let Ω = {1, . . . , k}N. For ω = (i1, i2, . . .) ∈ Ω and n ∈ N, we set
ω|n = (i1, i2, . . . , in). Let P be the product measure on Ω generated by the ini-
tial distribution on {1, . . . , k}. To any ω = (i1, . . . , in) ∈ Σ∗, there corresponds
a composition gω = gin,in−1,...,i1 = gin ◦ gin−1 ◦ · · · ◦ gi1 . The pair (Γ, p), called
an iterated function system, generates a Markov operator P : Mfin → Mfin

of the form

Pμ =
k∑

i=1

pi giμ,

where giμ(A) = μ(g−1
i (A)) for A ∈ B([0, 1]); which describes the evolution of

distribution due to the action of randomly chosen maps from the collection Γ.
It is a Feller operator, that is, its dual operator P ∗, given by the formula
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P ∗f(x) =
k∑

i=1

pif(gi(x)) for f ∈ C([0, 1]), x ∈ [0, 1],

has the property P ∗(C[0, 1]) ⊂ C([0, 1]).

Definition 1. We denote by C+
β , β > 0, the space of continuous functions

g : [0, 1] → [0, 1] satisfying the following properties:

(1) g is nondecreasing, g(0) = 0, and g(1) = 1,
(2) g is continuously differentiable on [0, β] and [1 − β, 1].

We introduce the space F0 of pairs (Γ, p) such that Γ = {g1, . . . , gk} ⊂ C+
β

is a finite collection of homeomorphisms, and p = (p1, . . . , pk) is a probabilistic
vector. We endow this space with the metric

d((Γ, p), (Δ, q)) =
k∑

i=1

(
|pi − qi| + ‖gi − hi‖ + ‖g−1

i − h−1
i ‖

+ sup
[0,β]∪[1−β,1]

|g′
i − h′

i|
)
,

where Δ = {h1, . . . , hk} and q = (q1, . . . , qk). It is easy to check that (F0, d)
is a complete metric space.

Definition 2. Let Γ = {g1, . . . , gk} ⊂ C+
β be a finite collection of homeomor-

phisms, and let p = (p1, . . . , pk) be a probability vector such that pi > 0 for
all i = 1, . . . , k. The pair (Γ, p) is called an admissible iterated function system
if

(1) for any x ∈ (0, 1), there exist i, j ∈ {1, . . . , k} such that gi(x) < x < gj(x);
(2) the Lyapunov exponents at both common fixed points 0, 1 are positive,

i.e.,

k∑
i=1

pi log g′
i(0) > 0 and

k∑
i=1

pi log g′
i(1) > 0.

We consider the space F ⊂ F0 of admissible iterated function systems (Γ, p)
with all maps g ∈ Γ absolutely continuous. The closure F of F in (F0, d) is
clearly complete. Recall that a subset of a complete metric space is called
residual if its complement is a set of the first Baire category.

Let M1(0, 1) denote the space of μ ∈ M1 supported in the open interval
(0, 1), i.e., satisfying μ((0, 1)) = 1. Clearly, each (Γ, p) ∈ F has two invariant
measures: ν1 = δ0 and ν2 = δ1. As we will show, it also admits a unique
invariant measure in M1(0, 1).

Since Pμ is singular for singular μ ∈ Mfin, a unique invariant measure
is either singular or absolutely continuous (see [9]). The aim of this paper is
to show that the set of all (Γ, p) ∈ F , which have singular unique invariant
measure μ ∈ M1(0, 1), is residual in F .
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3. Invariant measure. The paper [7] deals with a special case of an IFS, namely
for k = 2, with g1(x) < x, g2(x) > x, on (0, 1), being twice continuously
differentiable. The proof of [7, Lemma 3.2] gives the following result.

Lemma 1. Let (Γ, p) be an admissible iterated function system. Then there
exists an ergodic invariant measure μ ∈ M1(0, 1).

The main ingredient of the proof of Lemma 1 is the following subset of
M1(0, 1): for small 0 < α < 1 and positive M , one defines

NM,α = {μ ∈ M1(0, 1) : μ([0, x]) ≤ Mxα and μ([1 − x, 1]) ≤ Mxα}. (1)

For each admissible IFS, thanks to the positivity of the Lyapunov exponents,
the corresponding Markov operator P keeps an NM,α invariant for some M and
α. Then, among the invariant measures for P , given by the Krylov-Bogolyubov
procedure, one can find an ergodic one, due to the convexity of NM,α.

For later use, we give below an easy extension of the invariance part of [7,
Lemma 3.2] and its proof.

Lemma 2. Let (Γ, p) be an admissible iterated function system and let P be the
Markov operator corresponding to (Γ, p). There exist M > 0 and α > 0 such
that NM,α 	= ∅ and

P (NM,α) ⊂ NM,α.

Proof. Note that, by Definitions 1 and 2, we can find x0 > 0 and λ1, . . . , λk > 0
such that

Λ :=
k∑

i=1

pi log λi > 0

and

g−1
i (x) ≤ x/λi for all x ∈ [0, x0].

Let F (α) =
∑

i pie
−α log λi . Writing the Taylor expansion at 0, we obtain

F (α) =
∑

i

pi(1 − α log λi + O(α2)) = 1 − α
∑

i

pi log λi + O(α2)

= 1 − αΛ + O(α2) < 1

for α small enough; choose such α > 0. Choose also M > 0 large enough so
that

Mxα
0 ≥ 1.

Assume that x ∈ [0, x0] and let μ ∈ NM,α. Then

Pμ([0, x]) =
∑

i

piμ([0, g−1
i (x)]) ≤

∑
i

piμ([0, x/λi]) ≤ M
∑

i

pix
α/λα

i

= Mxα
∑

i

pie
−α log λi = Mxα · F (α) ≤ Mxα.

On the other hand, if x > x0, then Pμ([0, x]) ≤ 1 ≤ Mxα
0 ≤ Mxα. In the same

way, we prove that Pμ([1 − x, 1]) ≤ Mxα (with possibly larger M and smaller
α). This completes the proof. �
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Using ideas from [8, Lemma 3], one can prove the following:

Lemma 3. Let (Γ, p) be an admissible iterated function system. Assume that
there exist g1, g2 ∈ Γ such that the ratio ln g′

1(0)/ ln g′
2(0) is irrational and

g′
1(0) > 1 > g′

2(0); let g′
1 be Hölder continuous in a neighborhood of zero. Then

the IFS (Γ, p) is minimal, that is, {gin,in−1,...,i1(x)}n is dense in [0, 1] for each
x in (0, 1) and P-almost all ω.

Uniqueness may be shown under the conditions of the preceding lemma,
for instance using an argument given in [7, Lemma 3.4]; we give another proof,
which does not rely on the injectivity of each g ∈ Γ.

Lemma 4. Under the conditions of the preceding lemma, there is a unique sta-
tionary measure in M1(0, 1).

Proof. Let M > 0 be such that P (NM,α) ⊂ NM,α and let ν ∈ NM,α. Put

μn =
ν + Pν + · · · + Pn−1ν

n

and note that, by (1), μn ∈ NM,α. Let μ be an accumulation point of the
sequence (μn) in the weak-∗ topology in C([0, 1])∗. Then it is easy to check
that also μ ∈ NM,α. Moreover, since P is a Feller operator, every accumulation
point of the sequence μn is an invariant measure for the process P .

We now prove the uniqueness. Let μ ∈ M1(0, 1) be an arbitrary invariant
measure. Fix f ∈ C([0, 1]). We define a sequence of random variables (ξf,μ

n )n∈N

by the formula

ξf,μ
n (ω) =

∫

[0,1]

f(gi1,...,in(x))μ(dx) for ω = (i1, i2, . . .).

Since μ is an invariant measure for P , we easily check that (ξf,μ
n )n∈N is a

bounded martingale with respect to the natural filtration. Note that this mar-
tingale depends on the measure μ. From the martingale convergence theorem,
it follows that (ξf,μ

n )n∈N is convergent P-a.s. and since the space C([0, 1]) is
separable, there exists a subset Ω0 of Ω with P(Ω0) = 1 such that (ξf,μ

n )n∈N is
convergent for any f ∈ C([0, 1]) and ω ∈ Ω0. Therefore, for any ω ∈ Ω0, there
exists a measure ω(μ) ∈ M1 such that

lim
n→∞ ξf,μ

n (ω) =
∫

[0,1]

f(x)ω(μ)(dx) for every f ∈ C([0, 1]).

We are now ready to show that for any ε > 0, there exists Ωε ⊂ Ω with
P(Ωε) = 1 satisfying the following property: for every ω ∈ Ωε, there exists an
interval I of length |I| ≤ ε such that ω(μ)(I) ≥ 1 − ε. Hence we obtain that
ω(μ) = δv(ω) for all ω from some set Ω̃ with P(Ω̃) = 1. Here v(ω) is a point
from [0, 1].

Fix ε > 0 and let a, b ∈ (0, 1) be such that μ([a, b]) > 1 − ε. Let � ∈ N be
such that 1/� < ε/2. Since for any x ∈ (0, 1), there exists i ∈ {1, . . . , k} such
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that gi(x) < x, we may find a sequence (jn)n∈N, jn ∈ Σ∗, such that gjn(b) → 0
as n → ∞. Therefore, there exist i1, . . . , i� such that

gim([a, b]) ∩ gin([a, b]) = ∅ for m,n ∈ {1, . . . , �},m 	= n.

Put n∗ = maxm≤� |im| and set Jm = gim([a, b]) for m ∈ {1, . . . , �}. Each
Jm is a closed interval. (If we skip the requirement of injectivity of gi’s, Jm

would possibly be a singleton; which does not spoil the proof; see Remark
5 afterwards). Now observe that for any sequence u = (u1, . . . , un) ∈ Σ∗,
there exists m ∈ {1, . . . , �} such that diam(gu(Jm)) < 1/� < ε/2. This
shows that for any cylinder in Ω, defined by fixing the first initial n entries
(u1, . . . , un), the conditional probability, that (u1, . . . , un, . . . , un+k) are such
that diam(gu1,...,un,...,un+k

([a, b])) ≥ ε/2 for all k = 1, . . . , n∗, is less than 1 − q
for some q > 0 independent of n. Hence there exists Ωε ⊂ Ω with P(Ωε) = 1
such that for all (u1, u2, . . .) ∈ Ωε, we have diam(gu1,...,un

([a, b])) < ε/2 for
infinitely many n. Since [0, 1] is compact, we may additionally assume that for
infinitely many n’s, the set gu1,...,un

([a, b]) is contained in a set I (depending
on ω = (u1, u2, . . .)) with diam(I) ≤ ε. Observe that this I does not depend on
μ; if only μ1, μ2 are two stationary distributions, and if a, b are chosen in such
a way that μ1([a, b]) > 1 − ε and μ2([a, b]) > 1 − ε, then we obtain that both
ω(μ1)(I) ≥ 1 − ε and ω(μ2)(I) ≥ 1 − ε, P-a.s. Hence ω(μ1) = ω(μ2) = δv(ω)

for P-almost every ω ∈ Ω. Consequently, for any f ∈ C([0, 1]) and for i = 1, 2,
we have∫

[0,1]

f(x)μi(dx) = lim
n→∞

∫

[0,1]

f(x)Pnμi(dx) =
∫

Ω

lim
n→∞ ξf,μi

n (ω)P(dω).

Since the last integral equals
∫
Ω

f(v(ω))P(dω) in both cases, and since f ∈
C([0, 1]) was arbitrary, we obtain μ1 = μ2 and the proof is complete. �

Remark 5. The proofs of Lemmata 2, 3, and 4 do not use the fact that gi,
restricted to (β, 1 − β), is injective. Precisely, these results hold even if we
replace the word “homeomorphisms” by “functions” in Definition 2.

4. Auxiliary results and main theorem. Recall that the weak-∗ topology in
C([0, 1])∗ is induced by the Fortet-Mourier norm

‖ν‖FM = sup {〈f, ν〉 : f ∈ BL1} ,

where BL1 is the space of all functions f : [0, 1] → R such that |f(x)| ≤ 1 and
|f(x) − f(y)| ≤ |x − y| for x, y ∈ [0, 1].

Denote by d0 the distance between arbitrary (not necessarily admissible)
iterated function systems given by

d0(({S1, . . . , Sk}, p), ({T1, . . . , Tk}, q)) =
k∑

i=1

|pi − qi| + ‖Si − Ti‖.

Lemma 6. Let (S, p) and (T, q) be given iterated function systems and let PS

and PT be the corresponding Markov operators. Then for every μ1, μ2 ∈ Mfin,
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we have

‖(PS − PT )(μ1 − μ2)‖FM ≤ (μ1([0, 1]) + μ2([0, 1])) d0((S, p), (T, q)). (2)

A proof of this lemma may be found in [12].

Lemma 7. Suppose that the iterated function systems (S, p), and (S1, p),
(S2, p), . . . , are such that, for some M > 0 and α ∈ (0, 1),

μ1, μ2, . . . ∈ NM,α and lim
n→∞ d0((Sn, p), (S, p)) = 0,

where μn is a stationary distribution for (Sn, p). Then (μn)n admits a subse-
quence weakly convergent to a stationary distribution μ for (S, p); moreover,
μ ∈ NM,α.

Proof. By the Prohorov theorem, there is a subsequence μnk
converging in

(M1, ‖ · ‖FM) to some μ ∈ M1. We denote it by μn again, for convenience, so
‖μn − μ‖FM → 0. Applying Lemma 6, we get

‖Pμn − μn‖FM = ‖(P − Pn)μn‖FM ≤ μn([0, 1]) d0((Sn, p), (S, p)) → 0,

where P , Pn are the Markov operators corresponding to (S, p), (Sn, p), re-
spectively. The weak continuity of P implies Pμn → Pμ in ‖ · ‖FM, so that
‖Pμ − μ‖FM = 0. Now, μ is an invariant measure for P , but we still have to
check μ ∈ NM,α. Indeed, let x ∈ (0, 1) be arbitrary. Then

μn([x, 1 − x]) ≥ 1 − 2Mxα for all n ∈ N.

By the Alexandrov theorem, μ([x, 1−x]) ≥ lim supn μn([x, 1−x]) ≥ 1−2Mxα,
which means that μ ∈ NM,α. �

Let Mε
1 be the set of those μ ∈ M1, for which there is a Borel set A with

the Lebesgue measure m(A) < ε and such that μ(A) > 1 − ε/2.

Remark 8. Note that, if μ ∈ M1 is singular, then for every ε > 0, there is
δ > 0 such that for ν ∈ M1, ‖μ− ν‖FM < δ, we have ν ∈ Mε

1. For a proof, see
[13, Lemma 2.4.1 ].

For every n ∈ N, let Fn ⊂ F be the set of all (Γ, p) ∈ F with invariant
measure μ ∈ M1(0, 1) ∩ M1/n

1 .

Lemma 9. For every n ∈ N, the set Fn is dense in the space F endowed with
the metric d.

Proof. Fix (Γ, p) ∈ F , n ∈ N, and ε > 0. We may assume that (Γ, p) satisfies
the requirements of Lemma 3. It is easy to construct absolutely continuous
modifications of g1 (on (β, 1 − β)) in such a way that we obtain a sequence
(Γm, p)m∈N ⊂ F satisfying d((Γm, p), (Γ, p)) < ε and

lim
m→∞ d0((Γm, p), (S0, p)) = 0

where S0 = {g0, g2, . . . , gk} and g0(x) = x0 for x ∈ [u, v] ⊂ (β, 1−β), provided
v−u < 2ε. As we have noted in Remark 5, due to the inclusion [u, v] ⊂ (β, 1−
β), the system (S0, p) has a unique stationary distribution μ0 ∈ M1(0, 1), and
μ0 has full support in [0, 1]. Since μ0 is invariant, we obtain μ0({x0}) > 0,
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so μ0 is not absolutely continuous. As remarked earlier, the uniqueness of μ0

implies that it is either absolutely continuous or singular.
Now, μ0 is singular and we would like to apply Remark 8, to find (Γm, p) ∈

Fn for some m ∈ N. In the light of Lemma 7, it suffices to show that all
(Γm, p) have stationary distributions belonging to the same set NM,α for
some M,α > 0. But this follows easily from the proof of Lemma 2 by tak-
ing account of the fact that the corresponding elements of Γm are identical on
(0, β) ∪ (1 − β, 1). �

Theorem 10. The set of all (Γ, p) ∈ F which have a unique singular stationary
distribution in M1(0, 1) is residual in F .

Proof. For (Γ, p) ∈ Fn, we find δ0 > 0 such that

|x − min
1≤i≤k

gi(x)| > δ0 and |x − max
1≤i≤k

gi(x)| > δ0 on (1/n, 1 − 1/n).

Moreover, to (Γ, p) we adjoin a compact set Z(Γ,p) ⊂ [0, 1] such that

μ(Γ,p)(Z(Γ,p)) > 1 − 1
2n

and m(Z(Γ,p)) <
1
n

,

where μ(Γ,p) ∈ M1(0, 1) is the invariant measure for (Γ, p). Further, due to the
regularity of the Lebesgue measure, we can find a positive number r(Γ,p) such
that

m(O(Z(Γ,p), r(Γ,p))) <
1
n

,

where O(Z(Γ,p), r(Γ,p)) is the open neighborhood of Z(Γ,p) in [0, 1] with the
radius r(Γ,p). Denote by A(Γ,p) the set [0, 1]\O(Z(Γ,p), r(Γ,p)) and consider the
classical Tietze function f(Γ,p) : [0, 1] → R for the sets Z(Γ,p) and A(Γ,p) given
by the formula

f(Γ,p)(x) =
‖x,A(Γ,p)‖

‖x,A(Γ,p)‖ + ‖x,Z(Γ,p)‖ ,

where ‖x,A‖ stands for the distance of the point x from the set A. We have
f(Γ,p) = 0 for x ∈ A(Γ,p) and f(Γ,p)(x) = 1 for x ∈ Z(Γ,p). Obviously, |f(Γ,p)| ≤ 1
and f(Γ,p) is Lipschitz, with the Lipschitz constant l(Γ,p) > 1.

By Lemma 7, and by the proof of Lemma 2, the map taking (Γ, p) ∈ F into
its invariant measure μ(Γ,p) ∈ M1(0, 1) is continuous with respect to (F , d) and
(M1(0, 1), ‖ · ‖FM). Hence, there is δ1 > 0 such that for (Δ, q) ∈ F satisfying
d((Δ, q), (Γ, p)) < δ1, we have

‖μ(Γ,p) − μ(Δ,q)‖FM <
1

2n · l(Γ,p)
, (3)

where μ(Δ,q) ∈ M1(0, 1) is the invariant measure for (Δ, q).
Additionally, since (Γ, p) is admissible, it follows from Definition 2 that

there is δ2 > 0 with the property
k∑

i=1

pi log(g′
i(0) − δ2) > 0 and

k∑
i=1

pi log(g′
i(1) − δ2) > 0.
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Now, for (Γ, p) ∈ Fn, with the aid of δ(Γ,p) = min{δ0/2, δ1, δ2}, we define

F̂ =
∞⋂

n=1

⋃
(Γ,p)∈Fn

BF ((Γ, p), δ(Γ,p)),

where BF ((Γ, p), δ(Γ,p)) is an open ball in (F , d) with center at (Γ, p) and radius
δ(Γ,p). Clearly, F̂ as an intersection of open dense subsets of F is residual.

We will show that if (T, q) ∈ F̂ , then (T, q) has the unique singular sta-
tionary distribution supported on (0, 1). Let (T, q) ∈ F̂ , be fixed. From the
definition of F̂ , it follows that there exists a sequence ((Γ, p)n)n∈N such that
(Γ, p)n ∈ Fn and (T, q) ∈ BF ((Γ, p)n, δ(Γ,p)n) for n ∈ N. As we have noted,
T = {h1, . . . , hk} is a collection of homeomorphisms due to the convergence
in the metric d. By the same token, the functions hi are even of class C1

on [0, β] and on [1 − β, 1]. It is easy to check that (T, q) satisfies condition
(1) from Definition 2 due to the proper choice of δ(Γ,p) < δ0. Moreover, by
the inequality δ(Γ,p) ≤ δ2, the Lyapunov exponents for (T, q) are kept posi-
tive. This means that (T, q) is an admissible iterated function system. Hence
it admits a unique invariant measure μ(T,q) ∈ M1(0, 1). Again by Lemma 7,
there is a subsequence (Γ, p)nk

with invariant measures converging to μ(T,q)

in ‖ · ‖FM. For brevity, let us denote the elements of this subsequence again
by (Γ, p)n, the corresponding invariant measures by μn, and let Zn = Z(Γ,p)n ,
O(Zn, rn) = O(Z(Γ,p)n , r(Γ,p)n) for n ∈ N.

The obvious inequality Lip(l−1
n fn) ≤ 1, where fn = f(Γ,p)n and ln = l(Γ,p)n ,

implies that∣∣∣∣∣∣∣
∫

[0,1]

fn(x)μn(dx) −
∫

[0,1]

fn(x)μ(T,q)(dx)

∣∣∣∣∣∣∣
≤ ln‖μn − μ(T,q)‖FM <

1
2n

.

However, since fn(x) = 1 for x ∈ Zn and fn(x) = 0 for x 	∈ O(Zn, rn),

μn(Zn) − μ(T,q)(O(Zn, rn)) <
1
2n

.

Thus

μ(T,q)(O(Zn, rn)) > μn(Zn) − 1
2n

> 1 − 1
2n

− 1
2n

= 1 − 1
n

.

This and the inequality m(O(Zn, rn)) < 1
n , n ∈ N, prove that μ(T,q) is singular.

The proof is completed. �
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