
Geometrically nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D 

Cosserat constitutive model 

Burzyński S., Chróścielewski J., Witkowski W. 

corresponding author: wojwit@pg.gda.pl 

Gdansk University of Technology,  

Faculty of Civil and Environmental Engineering, Department of Structural Mechanics, 80-233 

Gdańsk, Narutowicza 11/12, Poland 

Key words: Cosserat constitutive equations, micropolar constants, nonlinear six-parameter shell 

theory, drilling rotation,  

Abstract 

We develop the elastic constitutive law for the resultant statically and kinematically exact, 

nonlinear, 6-parameter shell theory. The Cosserat plane stress equations are integrated through-the- 

thickness under assumption of the Reissner-Mindlin kinematics. The resulting constitutive equations 

for stress resultant and couple resultants are expressed in terms of two micropolar constants: the 

micropolar modulus cG and the micropolar characteristic length l . Based on FEM simulations we 

evaluate their influence on the behaviour of shell models in the geometrically nonlinear range of 

deformations. 

1. Introduction

Following previous papers [1][2][3]we continue study on constitutive relation for elastic shells 

with drilling degree of freedom. As the framework we use the nonlinear statically and kinematically 

exact six-parameter shell theory. The term “statically exact” means that the 2D equilibrium equations of 

the shell-like body are obtained in the course of direct and exact through-the-thickness integration of 3D 

balance laws of linear and angular momentum of the Cauchy continuum. That the shell theory is 

kinematically exact reflects the fact that shell kinematics follows directly from integral identity which 

results from the exact equilibrium equations. The resulting kinematic model is formally equivalent to the 

Cosserat surface with three rigidly rotating directors. 

Theoretical basis can be traced back to works of Reissner [4] and Libai and Simmonds [5]. 

Further theoretical developments and aspects of numerical formulation can be found for instance in  

[6][7][8][9][10][11] 

In the previous works e.g. [12][13][14][15][16][17] the constitutive relation had in some sense 

postulated character. In the part associated with the drilling rotation the drilling stiffness has been 

expressed by postulated material coefficient tα , cf. [14]. 
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Another approach to formulation of the material law has been proposed in [18]. Departing from 

the asymmetric Cauchy-type plane stress relation in the shell base, using the first order shear 

deformation theory (FOSD, e.g. [19] or Reissner-Mindlin kinematics) and through-the-thickness 

integration resulted in the equivalent single layer constitutive relation for composite shells.  

Recently [20][21], we have proposed the elastoplastic J2-type material law that has been 

obtained by the Reissner-Mindlin type trough-the-thickness integration of the plane stress Cosserat 

relation. The details of formulation and representative numerical results are presented in [20][21]. 

In this paper we concentrate on the elastic part of the constitutive relation proposed in [20][21]. 

In particular, we examine the influence of micropolar material constants on the overall behavior of 

shells in FEM geometrically nonlinear analysis. The approach presented here takes as its starting point 

the constitutive relation for plane stress Cosserat continuum, cf. for instance [22]. The constitutive 

relation is based on the following assumptions: 

• strains are small everywhere in the shell space, 

• strain measures on the reference surface are kinematically unique, which is a natural coherence 

with the resultant shell theory, 

• strains in the shell space are derived from the natural strains measures under the assumption of the 

Reissner-Mindlin kinematics, 

• stress resultants and couple resultants are found from strains in the shell space assuming the plane 

stress elastic Cosserat constitutive relation, 

• the shell is sufficiently thin to assume that for every coordinate in the thickness direction the 

determinant μ  of the shifter tensor αβμ  satisfies the condition 1μ  . 

 

2. Kinematics of the shell 

We use standard convention of indices, i.e. the Latin indices run from 1 to 3 while the Greek 

ones run from 1 to 2. Vectors are represented by boldface lower-case characters while tensors by 

boldface capital letters. Comma 
(.)

(.),β βs


=


 indicates partial differentiation with respect to the surface 

coordinates.  
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 Assume that the undeformed shell reference surface M  satisfies all necessary regularity 

conditions required for definition of the metric and the curvature tensors. Imagine a regular point 

Mx  (see  

Fig. 1) at which there exists tangent space T Mx
 spanned by two vectors 0 ,β β=t x , 1,2β =  with βs  

as the orthogonal curvilinear arc length coordinates. The vector orthogonal to T Mx
 results from  

 
0 0

0 0 1 2
3 0 0

1 2|| ||


 =



t t
t t

t t
. (1) 

 

The orthogonal triad 
0 ( )it x  defines the microstructure tensor 0 (3)SOT . In the present approach we 

assume that the triad 
0 ( )it x  is rigid and generates the Euclidean space endowed with the scalar product 

( | ) i ia b=a b  and the norm ( )
1
23 2

1
|| || ii

a
=

= a .  

In motion ( ) ( ( ), ( ))=u x u x Q x  the current position of Mx  and the current orientation of 

0 ( )it x  are given by (see 

 

Fig. 1) 

( ) ( )= +y x x u x ,   
0

0( ) ( ) ( ) ( ) ( ) ( )i i i i= = =e et x Q x t x Q x T x T x ,   0( ), ( ), ( ) (3)SOQ x T x T x . (2) 
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Here ( ) (3)SOQ x  is an independent proper orthogonal tensor computed through some conveniently 

selected parametrization, cf. for instance [23][24] for extensive discussion. Here we use the canonical 

parametrization. 

The definition of strain measures in the defined basis is given by 

 0, , ( )β β β β β= − = + −1ε y t u Q t ,   , ,β β βδ = + ε v y w , (3) 

and in component form 

 1 1 2 2 3β β β βε ε ε= + +ε t t t . (4) 

Curvatures are obtained from the relations 

 Taxl( , )β β=κ Q Q ,   ,β βδ =κ w , (5) 

where the axial vector of the skew tensor is defined with operator axl . The components of (5)1 are 

given by 

 3 1 1 2 2 3( )β β β βκ κ κ=  + +κ t t t t . (6) 

For the convenience we gather the components (4) and (6) in vector  

 11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T
m s b dε ε ε ε ε ε κ κ κ κ κ κ= =ε ε ε ε ε , (7) 

where labels m, s, b, d denote respectively: the membrane, shear, bending and drilling part. 

Correspondingly we formulate the vector  

 
11 22 12 21 1 2 11 22 12 21 1 2{ | || | } { | || | }T T

m s b dN N N N Q Q M M M M M M= =s s s s s , (8) 

of components of the stress resultants 

 
1 2

1 2 3N N Q   = + +n t t t , (9) 

and stress couples  

 
1 2

3 1 2 3( )M M M   =  + +m t t t t .  (10) 

The concise statement of the weak form of the boundary value problem reads [25][26]: given the 

external resultant force and couple vector fields ( , )tf x  and ( , )tc x  on Mx , *( , )tn x  and *( , )tm x  

along fM , ( , )t f x  find  ( ) ( ( ), ( ))=u x u x Q x  on the configuration space 
3( , (3))C M E SO  such 

that for any continuous kinematically admissible virtual vector field ( , ) v ww  the following principle 

of virtual work is satisfied: 

[ ; ] [ ( , , ) , ] ( ) ( * * ) 0

fM M M

G da da ds 
  



= +  + − + − + =  u w n v y w m w f v c w n v m w· · · · · · (10) 
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Here it is implicitly assumed that the kinematic boundary conditions ( ) *( )=u x u x  and ( ) * ( )=Q x Q x  

are satisfied along the complementary part \d fM M M =   of the shell boundary. Furthermore the 

virtual vector fields are kinematically admissible if ( ) = 0v x  and ( ) = 0w x  along dM .  

 

3. Constitutive relation 

In this section we derive the 2D constitutive relation of which the general form is 

 =s εC . (11) 

To some extent the derivations presented in the previous paragraphs, has the features of the so-called 

derived approach understood here as direct descent from 3D Cauchy continuum to 2D Cosserat 

surface. The formulation, as discussed so far, is free of any kinematical assumptions. Initially, cf. for 

instance [12][13], the constitutive relations within the present shell theory had, in some sense, 

postulated character – see the third column of table 1. This concerns, among other things, the drilling 

component (6DOF) which is defined as dependent on material coefficient tα  – see two last rows of 

table 1.  

Due to the lack of theoretical base for assessment of tα  values from 3D experiments, the role 

of material coefficient tα  has been studied numerically e.g. [12], [13] both from physical point of view 

understood as its contribution to drilling couples 1M  and 2M , and from numerical standpoint that is its 

influence on numerical stability. As a result a bound ~1tα   has been established. 

It is worthy of note that upon reduction of the physical problem of shell (1)-(6) to plane stress 

problem the non-vanishing components (7) and (8) are 

 11 22 12 21 1 2{ | } { | }T T
m d ε ε ε ε κ κ=ε ε , 

11 22 12 21 1 2{ | } { | }T T
m d N N N N M M=s s  (12) 

Equations (12) are valid for plane stress Cosserat continuum, cf. for example [27] This fact constitutes 

the foundation of our approach. 

As indicated in the introduction, the components of C  are derived from through the thickness 

integration of micropolar plane stress assumed in shell layer. We represent C  in a general manner as, 

cf. [20][21]. 

 

mm mb

ss

T
mb bb

dd

 
 
 

=
 
 
  

A B

D
C

B E

H

0 0

0 0 0

0 0

0 0 0

. (13) 

The respective components of asymmetric strain and stress tensor in shell layer are collected in vectors  
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11 11

22 22

12 12

21 21

1 1

2 2

ε ε

ε ε

ε ε

ε ε

ε

ε

m

d

κ l

κ l

   
   
   
         

= = =     
      

   
   

      

ε
ε

ε
,     

11 11

22 22

12 12

21 21

1 1

2 2

/

/

m

d

σ σ

σ σ

σ σ

σ σ

σ m l

σ m l

   
   
   
         

= = =     
      

   
   
      

σ
σ

σ
. (14) 

Components collected in (14) have same meaning as those in (12). In (14) l  is the micropolar 

characteristic length (material parameter). The elastic constitutive relation of the Cosserat plane stress 

is assumed as 

 cs=σ εC . (15) 

The particular form of (15) used in this paper is derived from [27] for plane stress (cf. also [22]), i.e.  

 

1 2

2 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 2

mmc c

cs
ddc c

Gc Gc

Gc Gc

G G G G

G G G G

G

G

 
 
 
   + −

= =   
− +     

 
 
  

C 0
C

0 C
. (16) 

Material parameters in (16) are the Kirchhoff modulus G , Poisson’s ratio v  and the micropolar 

modulus cG . Additionally ( ) ( )1 2 1 1 2c ν ν= + −  and 2 1c νc= . The characteristic length is 

incorporated into vectors (14)1,2 to render their physical dimension the same. It can be moved into 

elastic operator C  to obtain 

 

2

2

2 0

0 2
dd

Gl

Gl

 
=  
  

C . (17) 

To proceed further we employ from now on the Reissner-Mindlin kinematical assumptions. 

Note that the characteristic length l  induces an extra stiffness into the model, not present in the classical 

Reissner-Mindlin model. Strains e  in the shell space are calculated from known shell strains ε  (3) and 

(5) as: 

 m m bζ= +ε εe , (18) 

where ζ  is coordinate through thickness of a shell 0h  which varies from h−−  to h+ . Symbols h−  and 

h+  denotes the position of the bottom and upper face of the 3D shell-like body, respectively. 

The drilling component is assumed here  

 d d l= e ε . (19) 
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In the remainder of this section we assume that the determinant μ  of the shifter tensor αβμ  satisfies 

the condition 1μ   (which is true only for thin shells). Hence we obtain for membrane, bending and 

drilling resultants the following equations, respectively: 

 [ ( )
h h h

m m mm m b mm m
h h h

dζ ζ dζ dζ
+ + +

− − −

+ + +

− − −
= = + =  σ C Cs ε ε ε , (20) 

 
3

2 2 0[ ( )
12

h h h

b m mm m b mm b mm b
h h h

h
ζ dζ ζ ζ dζ ζ dζ

+ + +

− − −

+ + +

− − −
= = + = =  σ C C Cs ε ε ε ε , (21) 

 
2 2

0

h h

d d dd d dd d
h h

l dζ l dζ h l
+ +

− −

+ +

− −
=  =  =  σ C Cs ε ε . (22) 

Shear part is defined as 

 
0

0

0

0

S

s ss s s

S

Gh

Gh





 
= =  

 
Ds ε ε , (23) 

with shear coefficient assumed here as 5
6S = . In the above formulae we introduced coefficients 

0

21

Eh
C

v
=

−
, 

( )

3
0

212 1

Eh
D

v
=

−
 as the tension stiffness and bending stiffness, respectively. Following  

[28] we use 
2

2 2

2

1

21

c
c c

c

G N
N G G N G G

G+G N
=  =  =  =

−
,  known as the Cosserat coupling 

number.  

In (19) we have assumed that drilling couples (22) depend only on dε . Recently Pietraszkiewicz 

and Konopińska [7] have shown that, under some conditions, the drilling couples depend also on 

membrane strain components. 

Summarizing, the nonzero components of elastic operator C  in (13) are explicitly given as: 

 
( )

( )
( )( )

( )

( )( )
( )

( )

( )

2

2 2

2

2 2

0 0

0 0

1 1 21
0 0

2 1 2 1

1 1 2 1
0 0

2 1 2 1

mm

C vC

vC C

C v NC v

N N

C v N C v

N N

 
 
 
 − −− 

=  − −
 
 − − − 
 − −
 

A ,    
0

0

S

ss

S

G

G





 
=  
 

D , (24) 
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( )

( )
( )( )

( )

( )( )
( )

( )

( )

2

2 2

2

2 2

0 0

0 0

1 1 21
0 0

2 1 2 1

1 1 2 1
0 0

2 1 2 1

bb

D vD

vD D

D v ND v

N N

D v N D v

N N

 
 
 
 − −− 

=  − −
 
 − − − 
 − −
 

E ,     

2
0

2
0

2 0

0 2
dd

Gh l

Gh l

 
=  
  

H . (25) 

Table 1 presents the comparison between resultants components derived in the present approach 

and used so-far in e.g. [12][13][14][15]. In particular it can be shown that for 
2

2
N =  we have the 

following identities 

 ( )
( )

( )
( )

3
2 20

0 02
1 2 1 2

2 112 1
t t

Eh E
D v Gh l v h l

vv
 − =  − =

+−
  (26) 

which provide the relation 

 

2

0

0

12
12

t
t

l
l h

h




 
=  =  

 
  (27) 

Relation (27) throws new light on the meaning of t . Namely, it shows explicitly that t  has clear 

interpretation of material parameter connected with micropolar length 0
12

tl h


= . Hence, under given

2

2
N =  the influence of l  on the results will have the same character as that of t  (cf. for instance 

[12][13]) scaled by a factor 

2

0

12t

l

h


 
=  

 
. Therefore, based on the previous experiences, it can be 

argued that 0
12

tl h


=  has strongest influence (in comparison with t  alone) for 1l   and weaker if 

1l  . 

As far as the values of N  are concerned Neff [11][29][30][31][32][33][34] have rigorously 

obtained well-posedness results for the geometrically nonlinear planar shell formulation which is 

identical to our setting in the planar case.  

From purely formal viewpoint ( , )cN N G G=  which arguments are from ranges [0, ]G   and

[0, ]cG   . In the present case of linear elastic homogenous material G  is expressed by E  and ν . 

And hence the area of research is confined to [0, ]cG   . 
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It has been shown theoretically and practically [35], that 0N =  ( 0cG = ) is a valid parameter 

choice. However, in our implementation letting 0N =  yields two pairs of constitutive relations, 

namely: 12N  with 21N  and 12M  with 21M  identical and hence are not linearly independent, see Table 

1. Thus, the constitutive matrix becomes singular and the theory is no longer 6-parameter shell theory. 

On the other hand, 1N =  (excluding impossible case 0G = ) corresponds to cG → . This is the case 

of a constrained Cosserat model: continuum rotations and microrotations coincide. This implies that 

constitutive equations for 12N , 21N , 12M , 21M  tend to infinity. Again the theory is not 6-parameter 

shell theory. In this way we obtain the limit case ( 0N = , 1N = ) where some of the parameters are not 

determined in the framework of complete i.e. 6-parameter shell theory. Therefore, in our 

implementation we assume that 0 1N  . 

 

4. Examples 

It is seen from equations (24) and (25) that the shell resultants depend on two micropolar 

constants i.e.: 
2 c

c

G
N

G G
=

+
 and the characteristic length l . In this section we investigate, by means of 

FEM, their influence on the overall geometrically nonlinear response of shell structures in terms of 

equilibrium paths and number of iterations necessary to satisfy prescribed convergence criteria. For 

the selected load level we study influence of N  and l  on the representative displacement or critical 

force. Similar study may be found for example in [28] for 3-dimensional solid formulation. As FEM 

code we use our own Fortran code with implemented shell finite elements denoted as CAM [12][13] 

which are C0 Lagrangian type elements with 6 dofs at each node. Interpolation on (3)SO  group is 

performed using special algorithm as described in [12][18]. The solver is parallelized using [38]. 

All the simulations presented below ale obtained with 16-node elements with full Gaussian 

quadrature (FI) in the element’s surface. The reference solutions are computed using the material law 

presented in e.g. [12][13][14][15][16]. 
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4.1. Pinched hemisphere, smooth shell 

As the first example we consider pinched hemisphere with a hole, see 

 

Fig. 2., cf for instance [36]. The following data is used in the analysis: 10R = , 0 0.04h = , 

o18α = , 76.825 10E =  , 0.3ν = , 10refP = , ( ) refP λ λP= . Micropolar constants are taken as 

2
0.1; ;0.9

2
N

  
=  
  

 and characteristic micropolar length is taken as the ratio to the shell thickness 

0

1 1 1
; ; ;1;10;100

1000 100 10

l

h

 
=  
 

. The parameters of the reference solution are set in Table 2.  

As it can be observed from 
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Fig. 3, 

 

Fig. 4 and  

 

Fig. 5, the results do not differ significantly with regard to the equilibrium curves and number of 

iterations. The common aspect visible in all solutions is that for 
0

1
l

h
  the equilibrium curves are 

essentially indistinguishable. On the other hand, values of 
0

1
l

h
  are responsible for stiffening effect. 

This is clearly portrayed in  
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Fig. 6 where computed values of bu  are normalized with respect to (b)refu . Our presentation in  

 

Fig. 6 follows closely that from [12][13][28].  In the latter reference the authors identified three 

zones of results. The first one contains the results that have character of linear Cauchy elasticity with 

no size effects present. In the second zone, which is a transition zone, the size effects are observable. 

The last zone shows results for which the microrotation is nearly constant. In this spirit, we have been 

able to identify in  
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Fig. 6 the following zones: the first one for 
0

1
1

100

l

h
 ~ ~  and the transition zone 

0

1 100
l

h
 ~ ~ . Due to convergence issues have not been able to obtain the results in the third zone. 

 

4.2. Hyperbolic paraboloidal shell, smooth shell 

We analyze bending deformation of free (without boundary condition) hyperbolic paraboloidal 

shell, see 
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Fig. 7, cf. for example [18][37]. The analyzed shell is subjected to the action of two bending moments 

acting on the “cut” edge, see 

 

Fig. 7a. The loads are self-equilibrated. The importance of this example results from the fact that 

the finite elements in the initial configuration are warped. This fact can cause serious changes in the 

solution for some shell elements, see for instance section 14 of [39]. 

The following data is used:  
5

1 10E = , 0.25v =  10a = , 5c = , 2 1.25d = , 0 0.18h = . The 

proportional load ( )y refλ λ=M M  is self-equilibrated with respect to the reference load taken as the 

moment distributed along the cut edge 0 0 2
0

( )
d

ref m ds y= M e , 0 5m = . In calculations, symmetry 

conditions are used and vertical translation of point c is also constrained. The latter constraint is 

formal since it is associated with reaction that must be equal to zero (due to self-equilibrated loads) 

that provides condition for assessing the correctness of the solution. The characteristics of the 

reference solution are given in Table 3.  

While in the previous example the ratios 
0

1 1 1
; ; ;1;10;100

1000 100 10

l

h

 
=  
 

 and values of 

2
0.1; ;0.9

2
N

  
=  
  

 had no influence on the solution convergence (measured in number of iterations), 
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here the situation is entirely different. This is clearly visible in 

 

Fig. 8 for 0.1N =  where the curve for 
0

1

1000

l

h
=  suddenly breaks at 7.75λ = . Using 

2
;0.9

2
N

  
=  
  

 improves the convergence for the whole range of 
0

l

h
 although as it is shown in Fig. 9 

the number of iterations for 
0

1

1000

l

h
=  grows as much as 13 towards the end of the simulation.  

4.3. Torsional buckling of thin walled I-beam column, irregular shell 

This example shows the natural potential of the underlying shell theory and accompanying 

shell elements to study irregular shell structures containing orthogonal intersections of branches. We 

investigate nonlinear torsional buckling of I-beam column [16], see Fig. 12. We take into account 

symmetry with respect to the beam length. We assume 62.1 10E =  kPa, 0.3v = , 4L = m, 0.01h =

m, 0.2H B= = m. As shown in Table 1 of [16] critical load of the torsional buckling estimated using 

(2+2+2)×20 CAMe16(FI) elements is 3.329crP = MN. In this example the reference values are given 

in Table 4. 

The analysis revealed, see Fig. 13, Fig. 14 and Fig. 15 and Fig. 16, that for ratios 
0

1
1

1000

l

h
  , 

regardless of the values of 
2

0.1; ;0.9
2

N
  

=  
  

 critical load of the torsional buckling lays in the first 

zone, i.e. size effect plays negligible role. Moreover, the values of 
0

1
1

1000

l

h
 ~ ~  have no 
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substantial influence on the convergence of nonlinear solution. With the growth of 
0

l

h
 the structure 

becomes stiffer and the corresponding value of critical load also increases. For 
0

1 10
l

h
 ~ ~  the 

transition zone appears, see Fig. 16. However, we were not able to find the values of critical load for 

0

10
l

h
~ . Equilibrium paths, see Fig. 13, Fig. 14 and Fig. 15, do not exhibit the shape typical for 

structure with imperfection. Corresponding curves that denote iteration numbers needed to satisfy 

convergence criteria in this case are (almost) stable i.e. only one iteration is necessary. 

5. Conclusions 

The complete formulation of the Cosserat-type elastic material law appropriate for the resultant 6-

parameter shell theory is presented. The equations have been obtained from the Cosserat plane stress 

relation that is integrated in the thickness direction under assumptions of Reissner-Mindlin kinematics. 

The obtained formulae contain explicitly two material parameters of Cosserat continuum, i.e. the 

micropolar modulus cG  and the characteristic micropolar length l . The numerical results for thin 

shells obtained in geometrically nonlinear regime support the following conclusions: 

• due to numerical reasons we assume limit the values of N  so that 0 1N   to avoid 

singularity of the constitutive matrix C , 

• the micropolar modulus cG  has smaller influence on the results in comparison with the 

influence of the characteristic micropolar length l ; 

• depending on 0/l h  ratio we have shown that the results belong to the zones indentified in [28]; 

• for 0/ 10l h   we have observed substantial over-stiffening behavior of the analyzed shells in 

FEM simulations, 

• if 00 / 0.1l h   the over-stiffening is not visible. 
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Fig. 1. Kinematics of the shell  

 

Fig. 2. Pinched hemisphere, geometry and deformed configuration: 16λ = , 
2

2
N = , 

0

1

1000

l

h
=  , 

boundary conditions used as in MacNeal and Harder [36] 

 

Fig. 3. Pinched hemisphere, 0.1N = , variable l : left equilibrium paths, right number of iterations  
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Fig. 4. Pinched hemisphere, 2
2

N = , variable l , left equilibrium paths, right number of iterations 

 

Fig. 5. Pinched hemisphere, 0.9N = , variable l , left equilibrium paths, right number of iterations 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 6. Pinched hemisphere, variable N , variable l , normalized displacement 
bu , 16λ =   

 

Fig. 7. Hyperbolic paraboloidal shell, geometry and deformed configuration: 16λ = , 
2

2
N = , 

0

1

1000

l

h
=  
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Fig. 8. Hyperbolic paraboloidal shell, 0.1N = , variable l , left equilibrium paths, right number of 

iterations  

 

Fig. 9. Hyperbolic paraboloidal shell, 
2

2
N = , variable l , left equilibrium paths, right number of 

iterations  
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Fig. 10. Hyperbolic paraboloidal shell, 0.9N = , variable l , left equilibrium paths, right number of 

iterations  

 

Fig. 11. Hyperbolic paraboloidal shell, variable N , variable l , normalized displacement 
cw , 16λ =  
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Fig. 12. I-beam column, geometry and deformed configuration: 3.91513λ = , 
2

2
N = , 

0

1

1000

l

h
= , 

arrows shown in circled cross-sections denote imposed boundary conditions (BC), BC at point c) 

applies to all nodes at beam axis, BC at point d) applies to the nodes placed on the upper, lower flange 

and on the web  

 

Fig. 13. I-beam column, 0.1N = , variable l , left equilibrium paths, right number of iterations 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

Fig. 14. I-beam column, 
2

2
N = , variable l , left equilibrium paths, right number of iterations 

 

Fig. 15. I-beam column, 0.9N = , variable l , left equilibrium paths, right number of iterations 
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Fig. 16. I-beam column, variable N , variable l , normalized torsional buckling load 
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