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Abstract — In this paper the optical linear sensor, a 

representative of low resolution sensors, was investigated in the 

multi-class recognition of near field hand gestures. The 

Recurrent Neural Network (RNN) with a GRU (Gated Recurrent 

Unit) memory cell was utilized as a gestures classifier. A set of 27 

gestures was collected from a group of volunteers. The 27 000 

sequences obtained were divided into training, validation, and 

test subsets. The primary research goal was to define the most 

appropriate model architecture in terms of the accurate 

recognition of each gesture. An additional aim of the research 

was to investigate the kind of input data, i.e., raw data, or 

preprocessed (feature) data, which generally produces better 

results. Therefore, three datasets were generated: raw data, 

simple features data, and high level features data (this includes 

information about hand poses which are already recognized). 

The random search method was applied to achieve 

hyperparameter optimization to find the best possible topology 

for the neural network. The analysis performed shows that 

selected models were characterized by a test score at a level of 

96.89% for the raw data, 95.75% for simple features, and 

93.38% for high level features. Results indicate that the direct use 

of raw data obtained from the optical linear sensor evaluated on 

the RNN with GRU memory cells allows for the reliable 

recognition of even complex gestures. Therefore, such solutions 

may have the potential to serve as a support to, or as an 

alternative to video based sensors especially for mobile devices. 

Index Terms — gesture recognition, human computer 

interaction, optical sensors, recurrent neural networks. 

I. INTRODUCTION

HE gesture recognition within low complexity sensors

deserves to be revisited due to the constant development

of mobile devices and the increased computational 

capabilities of modern computers, that enable deep learning of 

complex models. Over the years, the variety of applications 

has significantly increased due to the enhanced accessibility 
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and reduced price of devices equipped with gesture sensors. 

Also, improved computational capabilities has led to the 

utilization of larger models, which were not considered before 

due to the required significant training and inference time. 

Focusing on basic optical sensors, the low power single 

LED four photodiodes (PDs) gesture sensor, with a partially 

open cavity package, recognizing hand swipes with an 

accuracy of 100%, was proposed by Kim et al. [1]. The sensor 

for capturing the gestures of a virtual computer mouse, based 

on 10 IR transceivers, was described by Tang et al. [2]. A set 

of gesture sensors based on several LED-photodiodes (exact 

number depends on the configuration) used for smart glasses, 

as a ring or a universal clip, handling up to 9 gestures, was 

investigated by Withana et al. [3]. Other input methods, which 

have gained a lot of popularity in the early years of the human 

system interaction systems, are hand glove solutions. 

Murakami et al. utilized a special hand glove for recognition 

of some examples from Japanese sign Language [4], while 

hand trajectories could be detected with the glove, proposed 

by Vamplew et al. [5]. Later, video based interfaces started to 

become more popular [6], [7]. Maraqa et al. also utilized a 

colored glove, in addition to a video signal, for hand region 

identification [8]. Standard RGB streams were often 

complemented by depth information from an additional 

camera like Kinect [9]–[11]. Hand gestures were also 

recognized from point cloud obtained from devices like Leap 

Motion [12][13]. 

Considering gesture detection methods, relatively basic 

sensors (in comparison to video based versions) were often 

satisfied with models, which do not demand high prior or 

preprocessing computation. Often, sensors handling a small 

number of clearly defined gestures (like "swipe") were relying 

on hardware programmable rules like Finite State Machines 

(FSM). In some research, FSM was applied, e.g., to recognize 

gestures performed with the use of a virtual mouse [2] but also 

to recognize hand trajectory gestures from a video (no hand 

pose differentiation) [14]. Although the FSM model is useful, 

its implementation is time consuming, and finding 

unequivocal rules could be tedious. Therefore, more advanced 

machine learning models are being considered at present for 

handling many complex gestures, where trajectory and/or a 

pose matters. Basic sensors have also benefitted from them in 

recent years. For example, Withana et al. included Support 

Vector Machine (SVM) and Bayes Network in their two stage 

classifier for photodiodes based gesture sensors [3]. As 

presented, 5 to 8 gestures (depending on the configuration of 

the sensor) were distinguished with an accuracy of 94.8%. 
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Lately, more complex models have been utilized for 

handling a larger amount of data, e.g., video streams. Many of 

the recently proposed recognition systems use Hidden Markov 

Models (HMM). One of the first implementations of HMM, 

for the identification of gestures from a video stream, was 

accomplished by Starner and Pentland [15]. The input-output 

HMM were utilized for gesture recognition by Marcel et al. 

[16]. Stefanov and Beskow used HMM, fed with 

parameterized images of a person with localization of skeleton 

and joints from Kinect camera, for the recognition of Swedish 

sign language [9]. Dynamic hand gesture classification with 

centroid tracking and discrete HMM was used by Premaratne 

et al. [17]. Sign language recognition with the use of inertial 

motion sensing hand glove and HMM was done by Galka et 

al. [18]. SVM method fed with data from a Leap Motion 

sensor was used to classify hand poses for American sign 

language [12], as well as digits and letters based on circled 

trajectory of a hand [13]. Gesture and action recognition 

(trajectory and hand pose) based on processed depth images 

from Kinect camera were also approached through utilization 

of other methods, e.g., K-nearest neighbors [10] or artificial 

neural networks for 1 and 2 dimensional data often used as an 

input to a sequence handling model. Kim et al. utilized 1-D 

convolutional neural network (CNN) for classification of radio 

impulses, reflected from hand performing a gesture [19]. 

CNNs along with joint trajectory maps were used by Wang et 

al. to classify actions from video sequences [20]. Feedforward 

neural network model, with similarity matching for the 

recognition of gestures from an accelerometer based sensor, 

were used by Xie et al. [21]. 

Currently, a very common approach is to make use of 

special types of neural networks (Recurrent Neural Networks), 

which preserve their state over time steps due to memory cells. 

Their output relies not only on a recent input but also on a 

whole sequence of inputs  [22]. They are often used in 

sequence to sequence processing tasks, e.g., language 

translation or speech recognition [23], but they are also good 

at classification. Since gestures are made up of a sequence of 

poses, RNNs were also utilized in the gesture recognition 

domain. The first experiments with Recurrent Neural 

Networks for gesture recognition were conducted by 

Murakami and Taguchi [4]. Their proposed solution allows for 

highly accurate (96%) recognition of 10 different Japanese 

sign language gestures using 16 inputs from a special hand 

glove. Vamplev and Adams used RNN with 3 inputs 

describing the position of a hand in an electronic glove [5]. 

They recognized 16 hand motions with a mean accuracy of 

98.9%. Additionally, the recognition of gestures before 

completion was also checked based on checking whether a 

threshold value was eventually exceeded. The recognition of 

Arabic sign language from a video stream, with the use of a 

colored glove, the Elman recurrent network and a fully 

recurrent neural network was performed by Maraqa and Abu-

Zaiter [8]. The fully recurrent network, achieved a detection 

accuracy of 95.11%, whereas the Elman network achieved 

89.66% only, when evaluated with 30 signs. Ng and 

Ranganath [6] used combined outputs from RNN and HMM 

for a vision-based gesture recognition system. The identified 

hand poses and a motion vector of hands, between recent and 

previous sampling events, were given as inputs to independent 

classifiers. For each gesture (out of 14) separate RNN and 

HMM models were applied. Recognition of trajectory gestures 

with a sensor based on accelerometer and continuous time 

RNN (CTRNN) was applied by Bailador et al. [24]. The 

Jordan Recurrent Neural Network (JRNN) for gesture 

recognition as a sequence of hand poses was proposed in [25]. 

In another research, Araga et al. utilized the JRNN for 

recognition of gestures, performed by a hand in a glove, from 

video stream [25]. The multimodal approach (video streams 

combined with skeleton joint streams) to gesture recognition 

using RNN was applied by Nevarova et al. [26]. 

However, a single recurrent neuron is a very basic cell and 

has limitations, in e.g., a length of the analyzed sequence 

(such as the vanishing gradients problem) [27]. Yet, with the 

progress made in deep learning and the invention of memory 

cells with gated activation functions like LSTM and GRU, 

RNN has become resistant to such problems [28], [29]. With 

these, analysis of longer sequences, e.g., from sensors 

sampling with higher frequency, turned out to be more 

efficient [20], [30], [31]. Shin and Sung approached the 

techniques of gesture recognition based on video and 

accelerometer signals, both analyzed with the low complexity 

fixed-point RNNs, with LSTM memory cell [32]. Sign 

language recognition with the use of LSTM based on four 

joint trajectories (left/right hand and left/right elbow) obtained 

from Kinect camera, was investigated by Liu et al. [11]. 

LSTMs were also used to classify ink traces (trajectories), 

which were expressed as a set of features by Otte et al. [33]. 

The CNN-LSTM network based gesture recognition from 

video sequences was proposed and expanded by Tsironi et al. 

[7], [34]. Data from RGB and depth cameras were used by 

Chai et al. [35] to recognize gestures (no hand pose 

differentiation) in a two stream RNN with LSTM cells. 

Vanilla RNN, along with LSTM, and GRU were tested in the 

recognition of Schaeffer sign language by Oprea et al. [30]. 25 

gestures were extracted from Kinect video sequences of 8 

upper body joints using CNN; sliding window was applied and 

sequences of varied length were passed to RNN. The most 

effective network was a three-layered LSTM with 25 blocks 

on each layer. The achieved gesture recognition accuracy for 

LSTM and GRU based models were 93.13% and 91.07% 

respectively. 

The goal of this paper is an analysis of the accuracy of a 

multi-class hand gesture recognition, method utilizing the 

linear optical sensor and RNN model based on GRU memory 

cells. Of particular interest is the impact on the detection 

accuracy of different data types representing a captured 

gesture: as raw signals from the sensor, as signals processed 

into features, as higher level features. 

The paper is organized as follows: Section I consists of the 

introduction, the state of the art, and objectives of the work. 

Section II presents a description of the utilized gesture sensor, 

a gestures dataset, and methods used for recognition. Section 

III shows the results obtained from training and testing on 

differently processed datasets, followed by the discussion of 

achieved results. The paper is concluded in Section IV. 
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II. MATERIALS AND METHODS 

A. Linear optical gesture sensor 

The research was conducted with the designed low 

resolution linear optical gesture sensor consisting of nPD=8 

aligned IR photodiodes (TSL260RD) and nLED=4 IR LEDs 

(KP-3216F3C) (Fig. 1). The photodiodes (PD) of the sensor 

are 1 cm apart, whereas the LEDs were mounted with a 

spacing of 2 cm. The applied light collimator limits the field 

of view of PDs and LEDs to 60° and 120° respectively. The 

specific photodiode model (which for the wavelength of 

λ=940 nm saturates with the irradiance at the level of around 

65 μW/cm
2
) was selected, as it has an in-built operational 

amplifier and does not require additional hardware signal 

conditioning.
 

The described formation of optoelectronic 

elements of the sensor was confirmed to have good properties 

in terms of hand pose recognition capabilities as presented in 

our previous studies [36][37]. The sensor is also equipped 

with a PIC24FV16KA302 microprocessor supplied with 5 V, 

which was sampling signals from the photodiodes and sending 

data via an UART interface to the PC. 

The principle of operation depends on the operating mode 

of the sensor. In the active mode, light from pulsating LEDs is 

reflected by a nearby hand and produces a specific light 

intensity pattern on the sensor’s surface, sampled spatially and 

temporally by distributed photodiodes. In the passive mode, 

LEDs are not utilized and ambient light (if present), when 

covered by a hand, produces a shadow intensity pattern. In this 

research, at the beginning of each period matched by the 

sampling frequency, the sensor performed sampling in both 

the active (LEDs on) and passive (LEDs off) mode. 

Subtracting the obtained patterns allows for a reduction in the 

impact of possible ambient light changes. 

The values of light intensity, obtained during each 

sampling, are 8 numbers describing how much the given 

photodiode is illuminated with the IR light. Such array of 8 

values will be referred to as a data frame (DF). Obtained 

values are in the range from 0 V (no light) to 3.8 V (PDs 

saturation). In this research, the LEDs were pulsating together 

with a frequency of 100Hz. The time set for LEDs on was 

375μs.  

In previous works, different formations of optoelectronic 

elements within a linear optical sensor structure and other 

geometrical, and technical parameters were already studied 

based on measurements and simulations. They were also 

referred to quantities obtained from experiments, performed 

on a group of volunteers [36]. The utilized touchless linear 

gesture sensor is dedicated for unobtrusive interaction and was 

designed to detect hand poses, performed within a close 

distance to the device (up to 5 cm) [36]. As different hand 

poses (finger arrangements) produce differentiated 

reflection/shadow patterns, the ability of the sensor to classify 

hand pose was evaluated. Utilizing artificial neural networks, 

it was able to classify three static poses (single finger, two and 

four joined) with the accuracy of 90.02%, when operating in 

the active mode. In further research, we improved the 

classification accuracy in the active mode to 93.34%, and 

obtained 98.76% for the passive mode [37]. In that research 

the sensor was also evaluated in differentiated ambient light 

conditions and at different angles to the light source. It proved 

to maintain high pose classification accuracy in the passive 

mode, when enough light was present. Additionally, the 

methodology for evaluating the objective condition for 

switching the operating mode of the sensor between active and 

passive, depending on the ambient light conditions, was 

presented. Because of the sensors features, high pose 

classification accuracy and possibility of operating mode 

adaptation was investigated in this study in the recognition of 

various gestures based mainly on the described hand poses.  

 
Fig.  1. Linear optical gesture sensor (optical block not presented for clarity). 

B. Gestures set 

In previous works, the classification of 3 compact hand 

poses by the linear sensor was performed [38]. The poses are: 

single finger, two, and four joined fingers (encoded as 1FS, 

2FJ, and 4FJ respectively). Additionally, a two separated 

fingers pose (encoded as 2FS), investigated in [36], was also 

considered in this study. Such poses were selected as the linear 

construction of the sensor allows for the recognition of 1D 

patterns of reflected light, created by objects, located in its 

field of view. Therefore, there are only few different hand 

poses that could be distinguished. Three and four separated 

fingers were not considered due to the limited resolving power 

of the sensor and the physiological inconveniency of arranging 

finger into them in comparison to enlisted poses. The poses 

mentioned will form the basis of various discrete gestures 

(Fig. 2). 

 
Fig.  2. Base hand poses utilized for gestures. 

 

However, a gesture can be generally described as a 

sequence of poses in time. In this paper, we focus on a model 

supporting off-line gestures, what requires a completion of a 

gesture in order to provide a response to the user (when 

inferred within a system). This means that a decision about 

performed gestures may also be made based on the knowledge 

about the full gesture. That determines both the start and finish 

phase of a gesture to be precisely defined. For the linear 

optical sensor, a standard deviation of a data frame, sdDF, was 

found to be a good indicator of the presence of a hand [37].  

It was calculated as: 

 

                 
   

 

     
 (1) 

 

where  i is the output voltage of i-th photodiode,    is the mean 
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value of all PDs, and nPD is the number of PDs in the sensor. 

Therefore, the process of capturing a gesture may be summed 

up in three precise steps: 

 no pattern observed (sdDF <Tsd) – sensor waits, 

 object appears in front of the sensor (sdDF >Tsd) – data 

storage / transfer begins, 

 object leaves the field of view of the sensor (sdDF <Tsd) 

– evaluation of the performed gesture starts, 

where Tsd is the standard deviation threshold. In this study, as 

in our former research [38], a value of Tsd =0.1 V was used. 

This value was chosen after experiments with the use of 

simple models of joined fingers and after experiments with the 

participation of 11 volunteers (each performing multiple 

poses). This configuration enabled very good results of gesture 

recognition. However, the threshold value could be optimized 

in the future works. 

Until step 2 ends, the sensor samples subsequent data 

frames, which, when a gesture is complete, will constitute a 

sequence. In terms of data formats, the sequence can be put 

into an array of a specified number of columns (reflecting the 

number of features / length of a data frame) and the number of 

rows depending on the duration of a gesture (number of 

sampling events - timestamps). 

The gestures included in this study are discrete (system 

responses after activity), which is a category of the flow 

dimension of the taxonomy introduced by Wobbrock et al. 

[39]. The gestures were divided into three groups according to 

Wobbrock's form dimension categories. Most of the names of 

the gestures, considered in this study, were proposed by the 

authors (except the Cut gesture, which can be find e.g. in [3]). 

 

1) Static pose 

The cases from the first group are gestures, where a certain 

pose is inserted in front of the sensor for a short time (less than 

a second) and taken back. The rule is that both the pose and 

the position of the hand (except the phase of putting the hand 

inside/outside of the field of view of the sensor) remains 

unchanged during the gesture. 

In order to demonstrate how this group can be enriched, 

some of the gestures were demonstrated above the center of 

symmetry of the sensor (x=0 cm) at a specific height, h=3 cm, 

above the center but further (h=5 cm), and some on the sides 

(h=3 cm, x=±3 cm). Gestures for which execution localization 

matters, are classified under a world-depended category from 

Wobbrock's binding dimension. 

 

2) Static pose and path 

For the second category gestures, the hand pose does not 

change, but the path varies. They include: swipe motions 

along the x axis (we distinguish right / left direction and slow / 

fast velocity) performed at h=3 cm, zoom-related actions 

(zoom in and zoom out) from outside the field of view of the 

sensor up to h=1 cm or inversely, shakes, where the hand pose 

oscillates rapidly about 3 times in the vertical or horizontal 

direction, while remaining in the field of view of the sensor; 

ellipse, where such trajectory is circled. 

 

3) Dynamic pose 

The third group gathers gestures, in which pose varies 

during the activity. The Cut gesture is a sequence of 2FS, 2FJ 

and 2FS, all performed during the single-hand appearance in 

front of the sensor. The Dbcut (double cut) is a sequence like 

Cut, but additionally followed by 2FJ, 2FS. They mimic the 

single and double click of the computer mouse. While 

performing the Chopin gesture, a person puts a full hand in 

front of the sensor and pretends to play on a virtual piano, 

waving fingers asynchronously above the sensor for a short 

time. 

Taking into account the static pose position and movement 

direction degrees of freedom, the total number of gestures is 

27. Table I summarizes the gestures included in the study. 

Each gesture is described by a base pose or poses required for 

performing it. Additionally, localization describes the position 

of a hand mainly in reference to the x axis (Fig. 1), when a 

hand does not change its position during a gesture. Otherwise, 

the movement of a hand is described by a path (e.g., Right: +x, 

Left: -x, In: -y, Out: +y, etc.). The last column of Table I 

presents Wobbrock's category of a gesture. 

C. Experimental design 

26 adult volunteers (13 females, 13 males; 34.3±10.4 yrs) 

were invited to participate in the experimental study consisting 

of repeating each gesture 20 times. Therefore, more than 500 

representations of each gesture were recorded. Altogether, 

more than 13000 gesture sequences were registered with the 

sensor and successfully transmitted to a computer for further 

processing. 

During the study, the gesture sensor was mounted in a 

holder on a desk (face up) in front of volunteers sitting on a 

chair, so they could conveniently control their movements. A 

sheet of cardboard with the expected trajectories of desired 

gestures was mounted perpendicular to a face of the sensor in 

order to increase the reproducibility of individual gestures 

performed by different participants (Fig. 3).  

Pictures of a holder with a mounted sensor and a cardboard 

sheet along with enhanced trajectories of exemplary gestures 

are presented in Fig. 4. 

 

TABLE I 
DESCRIPTION OF GESTURES INVESTIGATED IN THE STUDY 

Name 
Poses 

involved 

Localization  

Path 

Category of a 

gesture 

1FS  

2FS 

2FJ 
2FJside 

2FJhigh 

4FJ 

1FS 

2FS 

2FJ 
2FJ 

2FJ 

4FJ 

Center 

Center 

Center 
Right / Left 

Center High 

Center 

Static pose 

1FSslow 
2FSslow 

2FJslow 

2FJfast 
4FJfast 

2FJzoom 

4FJzoom 
2FJshakeVer 

2FJshakeHor 

2FJellipse 

1FS 
2FS 

2FJ 

2FJ 
4FJ 

2FJ 

4FJ 
2FJ 

2FJ 

2FJ 

Right / Left 
Right / Left 

Right / Left 

Right / Left 
Right / Left 

In / Out 

In / Out 
Vertical shake 

Horizontal shake 

Ellipse 

Static pose and path 

Cut 

Dbcut 

Chopin 

2FS, 2FJ 

2FS, 2FJ 

4FJ waving 

Center 

Center 

Center 

Dynamic pose 
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Fig.  3. Image with trajectories and positions for performing repeatable 

gestures that was printed on the sheet of cardboard and mounted on the holder 

behind the linear sensor. The face of the sensor was placed at the level of 
black bold horizontal line (bottom of an image). 

 

 
Fig.  4. Exemplary gestures. Static pose: 2FJ, 2FJsideR (a, b); static pose and 
path: 2FJslowR, 2FJellipse (c, d). Red arrows indicate a path for the hand to 

track, the dashed line shows the spot on the cardboard, at which the hand is 

pointing. The black part at the bottom of each image is the gesture sensor with 
an overlay. Note the position of the shadow produced by the hand as it 

indicates the top projection (important for static pose gestures). The hand size 

on the image may not reflect the exact scale in relation to the sensor. 

D. Datasets 

In further processing, three kinds of datasets were 

considered. They are composed of the same exact sequences, 

performed by the same volunteers, but differed in the type of 

data representing the gestures. Some methods, described in the 

Introduction section, feed a model with an implicit hand pose 

(e.g. by joints localization). We compare the performance of 

feeding the RNN with implicit and explicit information about 

the current hand pose. 

1) Gesture as raw data 

As gesture was defined as a sequence of poses timestamps; 

the most fundamental representation of a gesture recorded by a 

linear sensor would be a 2D array. This array, composed of 

data frames, contains raw values of light intensity patterns in 

subsequent samplings (8 columns: each with a light intensity 

value from one photodiode of the optical sensor). This data 

does not contain any interpretation of the presented hand pose, 

or hand position, hence the gesture recognition model has to 

reason it by itself. Such dataset will be referred to as raw data. 

2) Gesture as features 

Gestures can be also considered as a series of elementary 

poses in time and space. Therefore, for each of timestamps, in 

all sequences, a set of features was calculated. These are the 

features based on which a gesture recognition system (GRS), 

for pose classification, was proposed: number of peaks in DF 

(PKS); center of gravity of DF (COG); mean(DF); sdDF; and 

number of values in DF smaller than 2sdDF [36], [38]. In order 

to enable the model to track the movements of a hand with 

greater precision, the described set of features was 

supplemented with max(DF). Therefore, a timestamp of the 

second dataset consists of 6 columns and it will be referred to 

as features. This data contains explicit information about the 

position of a hand (COG, max) in relation to the sensor. Also, 

the model will get features that describe a pose, hence it will 

possibly converge faster. 

3) Gesture as higher level features 

The third dataset consists of just 3 features. The first feature 

is the recognized as a hand pose (1FS, 2FS, 2FJ or 4FJ) 

obtained from a GRS with a 2-layer neural network [38]. The 

remaining two features are COG and max to reflect the 

position of the hand. This dataset will be referred to as 

HLfeatures. 

E. Recurrent Neural Network model 

Unlike in the pose classification problem, the position or 

trajectory (path) of a hand in subsequent sampling cycles for 

gestures is also of importance. Therefore, Recurrent Neural 

Network model for supervised sequence classification was 

selected in this study as the gesture recognition method. 

Training and testing phases of a model were performed with 

the sequence to vector fashion, where a recurrent network is 

fed with a k timestamps-long sequence and only the last (k-th) 

output of the network is analyzed. 

In our preliminary tests, it was confirmed that standard 

RNN memory cells are not suitable for the recognition of long 

(more than 30 timestamps), strongly varied in length 

sequences. On the other hand, training sessions with GRU 

memory cell converged faster and the computation took less 

time than for the more complex LSTM units at longer 

distances. Hence, in this study, we investigate GRU cells only. 

The sequences were extracted and preprocessed using Matlab 

software. The RNN implementation was developed using 

TensorFlow and Scikit-learn libraries [40] and run on 

NVIDIA DGX Station with 4 Tesla V100 GPUs
1
. 

The random search approach was applied for 

hyperparameters optimization of the model [41]. For each of 

the three datasets, 128 trial training sessions, which lasted for 

at most 1000 training epochs, e, were performed. The 

hyperparameters were sampled from the following sets: 

 learning rate uniformly from the range <1E-7, 0.05>, 

 number of layers chosen with an equal probability from 

the set of [1, 2, 3, 4, 5], 

 number of neurons (the same for each layer) chosen with 

equal probability from the range <10, 100>, 

 activation function of hidden layer chosen with equal 

probability from the set of [tanh, softsign, ReLU, ELU, 

SELU [42]], 

 dropout output keep probability chosen with equal 

probability from the set of [0.5, 0.7, 0.7, 1], 

 kernel initializer of the GRU cell chosen with equal 

probability from the set of [He initialization, Xavier 

                                                           
1 sources available at: https://github.com/ChrisQlasty/RNNforGestures 
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initialization, None], 

Dropout of 0.7 was specified twice to have a higher 

sampling probability than the other two options, as it was 

found to be effective in some research in which experiments 

are sensitive to hyperparameters [43]. 

After hyperparameters sampling and during training 

sessions, the following rules (e.g. early stopping) and limits 

were applied to make computations more efficient: 

 if (n_layers == 1), doDropout = False, 

 while (n_neurons∙n_layers > 100), n_neurons-=3, 

 if (activation function == ReLU), scale the inputs to the 

range of <0, 1>, <-1, 1> otherwise, 

 stop training session if no progress of accuracy on the 

validation set was observed for 100 epochs, 

 stop training session at the epoch e if the best observed 

validation accuracy was observed before epoch e/2 [41], 

 stop training session if accuracy on the validation set was 

0% across four checks in a row, as most likely an event 

of exploding or vanishing gradient has occurred, 

 minimum of 100 and maximum of 1000 epochs were 

applied for training when non-zero validation accuracy 

was obtained. 

One may observe that the total number of neurons limit 

leads to an investigation of shallow wide and deep narrow 

networks. The applied optimizer was Adam. A small batch 

size (256) was selected because for the cost of the longer 

computation time the trained model is likely to generalize 

better [44]. Also, batch shuffling was employed to increase the 

generalization. Gradient clipping with a norm equal to 1 for all 

of the datasets was applied as well. A dense layer with 27 

neurons (number of gestures to recognize) and the softmax 

activation function was used as the output of the network. The 

evaluation step interval was 5 epochs. 

F. Final gestures datasets 

The symmetry of the sensor allows for the performance of 

data augmentations. The applicable transformations are: 

mirror (swap along x axis), time reverse (swap in time) and 

mirror and time reverse. However, they have to be carefully 

applied as, for swipes or zoom gestures transformation, it may 

be turned into an instance of the opposite class (e.g. 1FSslow 

right swipe instead of 1FSslow left swipe). Additionally, the 

ellipse gesture is liable to only one transformation (mirror and 

time reverse at once). Therefore, 1000 sequences per gesture 

were obtained. The average length of a sequence is 

58.66±40.91 timestamps (with min = 4; max = 332). 

During the experiments, when participants were asked to 

perform slow and fast swipe gestures, no specific constraints 

on the pace of a swipe were given (similar to real situations). 

Therefore, they performed gestures according to an individual 

sense of speed. As a result, in terms of hand movement 

velocity, slow gestures, performed by some participants, were 

comparable to fast gestures for other participants. Therefore, a 

sharp threshold defining the permissible duration of a slow 

and fast swipe was introduced. It was based on the number of 

timestamps producing a maximal sensitivity for two speed 

classes (21 timestamps). The estimation of velocity can be 

fully outsourced from the RNN model, so the user could set 

the threshold to his needs, but in this work, it was investigated 

how well models are able to distinguish the same gestures 

performed at varied time scales. 

The datasets were divided into training, validation and 

testing sets with the ratio 0.7/0.15/0.15 utilizing stratified 

sampling and obtaining sets with perfectly balanced classes. 

The training set consists of 18900 gestures (700 instances per 

class), the validation set has 4050 gestures (150 instances per 

class), and the testing set also consists of 4050 gestures (150 

instances per class). 

III. RESULTS AND DISCUSSION 

We compare results for three ways of representing a gesture 

in the form of cumulated plots. Among 128 random trials, 

almost 50% of models trained with raw data reached at least 

90% classification accuracy on the validation set. The best 

model obtained with raw data has a validation score at the 

level of 96.86%. Over 35% of models trained with the 

features, reached 90%, whereas the best model reached 

95.95%. For the HLfeatures, scarcely above 30% of trials 

exceeded 90% of classification accuracy with a 93.78% for the 

most accurate model. The cumulated plots are presented in 

Fig. 5. 

 
Fig.  5. Accuracy on the validation subset for models trained with three types 
of datasets. 

 

The standard deviation of accuracy of the top 3 models 

trained on each of the datasets was less than 0.08%. Therefore, 

from among them, we selected models trained for the largest 

TABLE II  

GESTURES DETECTION ACCURACY, EVALUATED ON THE TESTING SET,  
FOR EACH OF THE SELECTED MODELS DEDICATED FOR THREE TYPES OF DATA 

(HIGHLIGHTED CELLS INDICATE DETECTION WITH THE ACCURACY  95%) 
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gesture 

Detection 

accuracy [%] 

Detection 

accuracy [%] 

97.33 96.67 90.67 1FS 94.67 94 90 2FJfastR 

98.67 96 98 2FS 94.67 89.33 89.33 2FJfastL 

94 94 88.67 2FJ 93.33 90 88 4FJfastR 

96.67 99.33 100 2FJsideL 98 92.67 90.67 4FJfastL 

99.33 99.33 99.33 2FJsideR 97.33 92.67 91.33 2FJzoomi 

100 98.67 92 2FJhigh 99.33 94 86.67 2FJzoomo 

100 98.67 93.33 4FJ 98.67 95.33 89.33 4FJzoomi 

99.33 99.33 100 1FSslowR 98.67 100 99.33 4FJzoomo 

98.67 98 96.67 1FSslowL 91.33 98 96 2FJshakeVer 

98 96.67 96 2FSslowR 94 98 99.33 2FJshakerHor 

94.67 91.33 88.67 2FSslowL 95.33 94 96.67 2FJellipse 

98 95.33 90.67 2FJslowR 99.33 97.33 95.33 Cut 

98 94.67 92 2FJslowL 95.33 98 96 Dbcut 

    94.67 94 90 Chopin 
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number of epochs as the models, that will be evaluated on the 

testing subsets. The accuracy of detection of individual 

gestures from the testing subsets, by each of the selected 

models, is presented in Table II. The summary of the selected 

models containing values of sampled hyperparameters and 

their performance on the testing set is presented in Table III.  

 

The error confusion matrix (ECM) for the best model, 

trained on raw data and evaluated on the testing set, which 

achieves 96.89% accuracy, is presented in Fig. 6. The range of 

color map from the image was set to emphasize the detection 

errors. The diagonal from the ECM was obtained by 

subtracting its values from 100%. Hence, the values in each 

row, not located on a diagonal, sum up to a value on a 

diagonal. 

 
Fig.  6. Error confusion matrix of the best model recognizing gestures from 

raw data. The color bar indicates the percentage of error. Values on the 

diagonal present the sum of classification error for a given class. 

 

From Fig. 5. one can see that statistically it is slightly easier 

to train RNN on the HLfeatures than on raw data and to reach 

a high classification accuracy (up to 80%). At this point, the 

number of models, trained on both of these datasets, exceeds 

the number of models, trained on the features data, by over 10 

percentage points. However, as training sessions get deeper 

(where classification accuracy exceeds 90%), the HLfeatures-

based model becomes less competitive. This is most likely 

because the utilized pose classifier (which delivers one of 

three inputs for these models) has its own classification error, 

which burdens the overall recognition ability of the RNN, 

although in this dataset the pose is already identified for the 

top RNN model. The raw dataset is the only one, where over 

half of the sampled sets of hyperparameters occurred to 

constitute models able to classify gestures with a recognition 

accuracy of over 90%. Also, the performance of the selected 

model trained on raw data surpassed the best models trained 

on features data. Although the raw model was not trained for 

the largest number of epochs, it is characterized by the lowest 

standard deviation of the classification accuracy of individual 

classes, 2.39% (the lower the better), and with the highest 

value of the observed worst performance on any of the 

gestures from the analyzed set, 91.33% (the higher the better). 

Additionally, from the top10 models trained on the raw 

data, 7 consisted of 3 or more hidden layers. On the other 

hand, from the top10 models trained on features data only 3 

models had a number of hidden layers greater or equal to 3. 

For HLfeatures, half of the top10 models had at least 3 layers. 

This shows that when a network was already given extracted 

information (features), shallow topologies were favored. By 

contrast, when given raw data, deep networks proved to have 

generally more competitive learning capabilities. However, 

the selected models do not confirm this observation. Table III 

also shows that selected models preferred a large number of 

neurons in the network, which was close or equal to the 

applied limit (100). Hence, models with a larger capacity may 

be considered in the future. 

The performance of static pose gesture recognition by the 

selected model trained on the HLfeatures dataset cannot be 

directly compared with the performance of the hand pose 

classifier [38]. However, it may be observed that RNN model 

detected 2FJ poses with relatively similar (±1%) accuracy. By 

contrast, the recognition of 1FSs was smaller by 7%, while for 

4FJs it was larger by around 8%. However, the model trained 

using the raw dataset, proved to be able to recognize static 

poses much better in general. Considering the raw dataset, 

detection of swipe gestures (static pose and path) most often 

failed in the recognition of proper hand poses and also in the 

differentiation of swipe speed (Fig. 6). The dynamic pose cut 

gesture was marginally confused with double cut gestures 

(Fig. 6). The ellipse gesture was frequently confused with the 

horizontal shake and 2FJ was confused with the ellipse (Fig. 

6). This could be due to the pace of the performed gestures, 

therefore, additional spatiotemporal filtering should be 

considered in future work. 

The overall performance of the applied network trained on 

raw data is at a high level (96.89%), which may be compared 

to the works of other authors investigating similar sensors 

(94.8% across the configurations [3]). However, when 

considering low resolution sensors, most of the methods 

proposed by other authors handle a much lower amount of 

gestures. Therefore, RNN based model with GRU memory 

TABLE III 

SUMMARY OF THE SELECTED MODELS FOR EACH TYPE OF DATA 

Dataset type: raw features HLfeatures 

n_inputs 
n_neurons 

n_layers 

Learning rate 
Dropout keep probability 

Activation function 

Kernel initializer 
Best epoch 

8 
97 

1 

0.0027 
1.0 

tanh 

Xavier 
280 

6 
48 

2 

0.0051 
0.7 

softsign 

He 
520 

3 
32 

3 

0.0036 
0.7 

ELU 

None 
245 

Validation set accuracy 

Test set accuracy 

Minimal test score for class 
Median test score for class 

Maximal test score for class 

Stdev. of test scores for class 

96.69% 

96.89% 

91.33% 
98% 

100% 

2.39% 

95.83% 

95.75% 

89.33% 
96 % 

100% 

2.90% 

93.75% 

93.38% 

86.67% 
92% 

100% 

4.26% 
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cells is able to keep track of both hand pose and trajectory of a 

hand with good accuracy. 

The size of the networks of selected models for all datasets 

is very similar, hence, utilizing features or HLfeatures would 

not present any advantage considering the forward pass time 

during inference (and could even be worse due to the time 

demanded for feature calculation). The high overall 

performance of the network may possibly be improved by 

excusing the network from the task of recognizing a motion 

pace. Also, the impact of reduced sampling frequency on 

gesture classification accuracy may be verified. In future 

works, the size of a hand may also be taken into account in 

gesture recognition, which would probably decrease the 

classification error even more. Further research may well refer 

to more efficient hyperparameter searches based on one of the 

optimization techniques [45] or an increased number of trials. 

When considering the current consumption of the 

optoelectronic elements of the sensor, it is estimated to be at a 

level of 5.05 mA (25.25 mW), which was obtained from the 

usage reported in [36] and taking into account the sampling 

frequency applied within this study (100Hz). 

Gesture interfaces based on video streams from RGB 

cameras, e.g., Kinect or Leap Motion sensor, are very 

powerful but require analysis of large amount of data in 

comparison to devices with several sensing elements like a 

linear optical sensor. Smaller amount of data allows to train 

smaller classification models, what is an important factor, 

when considering the utilization of gesture sensors within 

mobile devices with limited battery capacity and computation 

capabilities. 

The optical linear sensor, utilized in this study, has also 

already been evaluated within the frame of smart glasses (Fig. 

7). In this form, it has been tested in the detection of basic 

discrete and continuous gestures [46]. In the future research on 

the human system interactions, the RNN gesture recognition 

models, elaborated in this study using the TensorFlow library, 

will be implemented within wearable devices like the eGlasses 

platform. In our early research, the trained models were 

evaluated on a Samsung Galaxy S8 smartphone in order to 

measure the inference time. For each of three selected models, 

(Table III) a sequence of adequately processed data of a mean 

length (60 timestamps), was fed and each test was repeated 16 

times. The average time of sequence inference for raw data (1 

layer model) was 374±14ms, for features (2 layers) it was 

765±29ms and for HLfeatures (3 layers) 1049±15ms. The 

same tests were performed on a PC with G2130 processor and 

the corresponding inference times were 1 order of magnitude 

smaller (20±3ms, 32±7ms and 42±9ms). It indicates that some 

optimization of an application for mobile devices can be done 

to improve the responsiveness of potential gesture interface 

based on the linear sensor. In our preliminary studies, we have 

also performed a resampling of gesture sequences and an 

effective sampling frequency was reduced from 100Hz to 

25Hz, making the sequences four times shorter. As an effect, 

the gesture classification accuracy of new models trained on 

resampled sequences has dropped to 93.35%, 95.43%, and to 

89.87% for raw, features and HLfeatures representations 

respectively. However, shorter sequences were processed 

faster (for 15=60/4 timestamps) and the corresponding 

inference times on Samsung Galaxy S8 were 115±21ms, 

210±6ms and 292±16ms.  

 

 
Fig.  7. Person interacting with smart glasses (eGlasses) utilizing the linear 

optical gesture sensor. 

IV. CONCLUSION 

In this paper, we have investigated the recognition of wide 

base of hand gestures (27), recorded by linear optical sensor 

consisting of 8 photodiodes. Three types of gesture 

representation, differing in the processing level (raw, features, 

HLfeatures) were considered for recurrent neural networks of 

different topologies. It was presented that a low resolution 

optical sensor, when utilized with a model of high complexity 

and unprocessed data (raw), may deliver a large amount of 

gestures, which are recognized with a high average accuracy 

of 96.89%. As previously stated, the performance may 

possibly be increased when taking into account the performed 

observations (motion speed or hand size issues). It has also 

been denoted, that the proposed set of gestures can be 

significantly enriched by many other combinations of poses 

and paths.  

The presented gesture recognition abilities and low power 

consumption of the linear sensor open the possibility to 

consider the basic sensors as a strong, power saving support, 

or even as an alternative to video based interfaces for mobile, 

wearable devices, e.g., smart glasses and smartphones. 
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