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a b s t r a c t

In the paper we study a new problem of finding a minimum global defensive set in a graph
which is a generalization of the global alliance problem. For a given graph G and a subset
S of a vertex set of G, we define for every subset X of S the predicate SEC(X) = true if and
only if |N[X]∩S| ≥ |N[X]\S| holds, where N[X] is a closed neighbourhood of X in graph G.
A set S is a defensive alliance if and only if for each vertex v ∈ S we have SEC({v}) = true. If
S is also a dominating set of G (i.e., N[S] = V (G)), we say that S is a global defensive alliance.

We introduce the concept of defensive sets in graph G as follows: set S is a defensive set
in G if and only if for each vertex v ∈ S we have SEC({v}) = true or there exists a neighbour
u of v such that u ∈ S and SEC({v, u}) = true. Similarly, if S is also a dominating set of
G, we say that S is a global defensive set. We also study the problems of total dominating
alliances (total alliances) and total dominating defensive sets (total defensive sets), i.e., S is
a dominating set and the induced graph G[S] has no isolated vertices.

In the paper we proved the N P -completeness for planar bipartite subcubic graphs of
the decision versions of the followingminimalization problems: a global and total alliance,
a global and total defensive set. We proposed polynomial time algorithms solving in trees
the problem of finding the minimum total and global defensive set and the total alliance.
We obtained the lower bound on the minimum size of a global defensive set in arbitrary
graphs and trees.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Problem definition

In the following we consider solely simple nonempty graphs and follow the standard notation of the graph theory. For
a given simple graph G = (V , E) and a subset S of the vertex set V (G), we define for any non-empty subset X of S the
predicate SECS(X) = true if and only if |N[X] ∩ S| ≥ |N[X] \ S| holds, where N[X] is a closed neighbourhood of X in graph G,
i.e., N[X] = X ∪ N(X), where N(X) = {v ∈ V (G) : ∃u∈X {v, u} ∈ E(G)} is the open neighbourhood of X . In the following we
will use the notation SEC(X) instead of SECS(X) if set S is clearly given. By G[A], where A ⊂ V (G), we mean a subgraph of G
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induced by set A. By n(G) we denote the number of vertices of G, i.e., n(G) = |V (G)|. For the sake of notation simplicity, we
will write N[v] and N[v, u] instead of N[{v}] and N[{v, u}], respectively. Analogously, we will write SEC(v) and SEC(v, u).
By a subcubic graph Gwe mean a graph with the maximum degree of a vertex bounded by 3 (i.e., ∆(G) ≤ 3).

Definition 1. Set S is a defensive set inG if and only if for each vertex v ∈ Swehave SEC(v) = true or there exists a neighbour
u ∈ S of v (i.e., {v, u} ∈ E(G)) such that SEC(v, u) = true. If S is also a dominating set of G (i.e., N[S] = V (G)), we say that S
is a global defensive set.

By ds(G) we denote the size of the minimum defensive set in G, and by γds(G) we denote the size of the minimum global
defensive set in G.

1.2. Alliances vs. defensive sets

A set S is a defensive alliance (or alliance) if and only if for each vertex v ∈ Swehave SEC(v) = true. If S is also a dominating
set of G, we say that S is a global defensive alliance (or global alliance). By γa(G) we mean the size of the minimum global
alliance in G.

The concept of alliances in graphs was introduced in two conference papers: [10] and [8], where the authors defined
and studied the problem of alliances and global alliances in graphs, respectively. The problem attracted the attention of
researchers due to certain interesting applications in web communities [6,13] or fault-tolerant computing [17,23].

In [9], which was the first paper on global alliances (i.e., global defensive alliances), the authors proved bounds on the
minimum global alliance for general graphs (lower bounds:

√
4n+1−1

2 and n
⌈

∆
2 ⌉+1

, upper bound: n−⌈
δ
2⌉), for bipartite graphs

(lower bound: ⌈
2n

∆+3⌉), and trees (lower bound: n+2
4 , upper bound: 3n

5 ), where n is the number of vertices of a graph, and δ
and ∆ its minimum and maximum degree, respectively. In [19] the authors proved two lower bounds for general graphs:
⌈

2n
∆+3⌉ and ⌈

n
λ+2⌉, where λ is the spectral radius of the graph. The lower bounds on the minimum global alliance for planar

graphs were given in [5] and [18], where the authors independently proved the lower bounds ⌈
n+6
6 ⌉ and ⌈

n+12
8 ⌉ (n > 6),

respectively. In [18] the authors proved the lower bound for triangle-free planar graphs ⌈
n+8
6 ⌉ (n > 6). The lower bound

⌈
2m

∆1+∆2+1⌉ for line graphs is given in [22], where m is the number of vertices of L(G) (i.e., the number of edges of G), ∆1

and ∆2 are two maximal degrees in graph G. The lower and upper bounds for the Cartesian product of paths and cycles are
given in [4]. For more bounds on trees, see [1] and [2]. The exact values of the minimum global alliance were given in [9] for
complete graphs, complete bipartite graphs, cycles, paths and wheels, for k-ary trees (k = 2, 3, 4) in [4], and independently
in [7] (for k = 2, 3), and for star graphs in [12]. In [3] the authors proved the N P -completeness of the global alliance
problem for general graphs, and in [14] the author proved it even for bipartite or chordal graphs. A quite comprehensive
survey of results concerning defensive alliances can be found in [24]. A certain sort of generalization of alliances are the
so-called k-alliances, which were studied in [21], whereas global defensive k-alliances were studied in [20].

The concept of defensive sets arises from the concept of alliances, but is a kind of relaxation of the alliance problem. It
is a straightforward observation that any (global) alliance is a (global) defensive set. The converse is not true, as shown in
Figs. 1 and 2.

Fig. 1. Dominating set {a, b, c, d, x} is a minimum global alliance:
SEC(a) = SEC(b) = SEC(c) = SEC(d) = SEC(x) = true.

Fig. 2. Dominating set {a, b, c, d} is a minimum global defensive set:
SEC(a) = SEC(d) = SEC(b, c) = true, note that SEC(b) = SEC(c) = false.

In the alliance problem at most one vertex can be attacked at the moment. In the defensive set problem, the vertex being
under attack (say x) can be defended by itself and its neighbours, otherwise, one of its neighbours (say a) joins ‘the war’,
i.e., the attack can be simultaneously done on two vertices (x and a), and in that case each attack on x and amust be defended.
This situation is depicted in Figs. 3 and 4, where white vertices are attacking vertices and black vertices form a defensive
set.
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Fig. 3. There is an attack on vertex x that cannot be
defended by x and a (SEC(x) = false).

Fig. 4. Each simultaneous attack on x and a can be defended,
which is equivalent to SEC(x, a) = true.

1.2.1. Total alliances and total defensive sets
Set X ⊂ V (G) is a total dominating set in a nonempty connected graph G if and only if N(X) = V (G) (every vertex

of G is adjacent to some vertex in S), or equivalently, graph G[X] has no isolated vertices and X is a dominating set. The
total domination problem is a well-studied graph concept, we refer the reader to [11] for a comprehensive survey of recent
results.

Definition 2. An alliance S is a total alliance if and only if S is a total dominating set in G. A defensive set S is a total defensive
set if and only if S is a total dominating set in G.

By γta(G) and γtds(G) we denote the size of the minimum total alliance and total defensive set, respectively. An example
graph with the minimum global alliance (defensive set) smaller than the minimum total alliance (defensive set) is shown
in Figs. 5 and 6, where white vertices are attacking vertices and black vertices form an alliance (defensive set). From the
definitions we have γds(G) ≤ γa(G), γds(G) ≤ γtds(G) and γa(G) ≤ γta(G).

Fig. 5. γds = γa = 7. Fig. 6. γtds = γta = 8.

1.3. Edge alliances

In Definition 1, if SEC(v) = false for some v ∈ S, then we require to satisfy SEC(v, u) = true for some u ∈ N(v). This
concept can be restricted in a naturalway to the situationwhen for each edge e = {v, u} ∈ E(G[S])wehave SEC(v, u) = true.
This leads us to a new concept of edge alliance in a graph. Let us introduce the definition formally.

Definition 3. Set S is an edge alliance if and only if G[S] has no isolated vertices and for each edge e = {v, u} ∈ E(G[S]) we
have SEC(v, u) = true. A set S is a global edge alliance if it is also a dominating set of G.

By γea(G) we denote the size of the minimum edge alliance. Observe that a global edge alliance S is a total dominating
set (i.e., N(S) = V (G)). What follows from the definitions of total alliance and total defensive set is that each total alliance
is a total defensive set, and each global edge alliance is a total defensive set. Figs. 7–9 illustrate some example graphs.

The concept of edge alliances was widely studied in [16], where the authors proved the N P -completeness for bounded
degree graphs, showed polynomial time algorithms for some classes (e.g., for trees), and proved some bounds on the
minimum global edge alliance number for general graphs and trees.

1.4. Our results

In the paper we study the problems related to the alliance problem. We proved that the following problems are
N P -complete for subcubic bipartite planar graphs: a global alliance, a total alliance, a global defensive set and a total
defensive set. We constructed polynomial time algorithms solving in trees the problem of finding the minimum total and
global defensive set and the total alliance. We obtained a lower bound on the minimum size of a global defensive set in
arbitrary graphs and trees.

2. N P -completeness results for subcubic bipartite planar graphs

In this sectionwewill prove theN P -completeness for subcubic bipartite planar graphs of theminimalization problems:
a global alliance, a global defensive set, a total alliance and a total defensive set. Each of these problems is a decision problem
defined as follows: for a graph G and k > 0 we ask if there is S ⊂ V (G) of at most k vertices satisfying an adequate
property. Our reduction is from the total domination problem for subcubic bipartite planar graphs, which is proved to be
N P -complete [15].
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Fig. 7. γtds = γta = 2 < γea = 3. Fig. 8. γtds = γea = 3 < γta = 5. Fig. 9. γtds = 5 < γea = 6 < γta = 7.

Theorem 1 ([15]). The total domination problem for subcubic bipartite planar graphs is N P -complete. �

Proposition 1. Let G be a subcubic graph and S ⊂ V (G). Then, S is a total dominating set of G if and only if S is a total alliance
in G.

Proof. Obviously, if S is a total alliance, then S is a total dominating set. Let S be a total dominating set and let v ∈ S. Since
|N[v] ∩ S| ≥ 2, by deg(v) ≤ 3 we have that |N[v] ∩ S| ≥ |N(v) \ S|. Thus, SEC(v) = true. �

Proposition 2. Let G be a subcubic graph and S ⊂ V (G). Then S is an alliance in G if and only if S is a defensive set in G.

Proof. Obviously, if S is an alliance, then S is a defensive set. Let S be a defensive set and let v ∈ S. If deg(v) = 1, then
SEC(v) = true. If deg(v) ≥ 2, then |N[v] ∩ S| ≥ 2 and, analogously, SEC(v) = true. Thus, S is an alliance. �

By Propositions 1 and 2 as well as by Theorem 1 we have the following

Theorem 2. The problems of total alliance and total defensive set for subcubic bipartite planar graphs are N P -complete. �

By Theorem 1 we prove the following

Theorem 3. The problem of global alliance for subcubic bipartite planar graphs is N P -complete.

Proof. We construct a polynomial time reduction from the total domination problem to the problem of global alliance. For
a given subcubic bipartite planar graph G with p leaves (i.e., pendant vertices) and n(G) ≥ 3, we construct a graph G′ as
follows: for every leaf v ∈ V (G) we attach a gadget H , as shown in Fig. 10. Let L(G) = {v ∈ V (G) : deg(v) = 1} be a set of
all pendant vertices of G. In the following all neighbourhoods N are defined in G. Since n(G) ≥ 3, for any w ∈ N(v), where
v ∈ L(G), we have that |N(w)| ≥ 2.

Fig. 10. Hv is attached to a
pendant vertex v.

Fig. 11. v is not in an alliance,
w, x are in an alliance.

Fig. 12. Both vertices v and
w are in an alliance.

We prove that there is a total dominating set U of G of at most k vertices if and only if there is a global alliance A in G′

such that |A| ≤ k + 3p, where p = |L(G)|.
(⇒) Let U ⊂ V (G) be a total dominating set of G such that |U| ≤ k. By Proposition 1 we have that U is a global alliance in

G. Let A = U ∪


v∈L(G){v1, v2, v3} (see Fig. 10). Hence, for any v ∈ L(G) we get two possibilities, as shown in Figs. 11 and 12,
where black vertices in G are from U . Obviously, we have SEC(vi) = true, for i = 1, 2, 3, and since {v1, v2, v3} dominates
Hv , we get that A is a global alliance in G′ and |A| ≤ k + 3p.

(⇐) Let A be a global alliance in G′ such that |A| ≤ k + 3p. Since A is dominating set of G′, we have |A ∩ V (Hv)| ≥ 3,
for every v ∈ L(G). Moreover, if for some v ∈ L(G), vertex u is a neighbour of v in G′ such that u ∈ A ∩ V (Hv), then
|A ∩ V (Hv)| ≥ 4.

For any v ∈ L(G) and any of its neighbours u such that u ∈ A ∩ V (Hv), let us define a local replacement A′
=

A ∩ (V (G′) \ V (Hv)) ∪ {w} ∪ {v1, v2, v3}. If v ∉ A, then x ∈ A, for some x ∈ N(w), where w ∈ N(v). Fig. 11 illustrates
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set A′ after the local replacement operation. If v ∈ A, then set A′ after the local replacement is depicted in Fig. 12. Obviously,
A′ is a global alliance and since |A ∩ V (Hv)| ≥ 4, |A′

| ≤ |A| ≤ k + 3p.
Now, let us assume that for all v ∈ L(G) we have u ∉ A′, possibly after a certain number of successive local replacement

operations, as previously described. Let us define a global transformation A′′
= A′

∩ V (G) ∪


v∈L(G){v1, v2, v3}. Obviously,
A′′ is a global alliance and |A′′

| ≤ |A′
| ≤ k + 3p.

LetU = A′′
∩V (G). Since A′′ is a dominating set ofG′,U is a dominating set ofG. For any pendant vertex v ∈ V (G), if v ∈ U ,

then w ∈ U , where w ∈ N(v), as shown in Fig. 12. Let v ∈ U and deg(v) ≥ 2. Since SEC(v) = true, |N[v] ∩ U| ≥ |N[v] \ U|.
Hence, there is a neighbour of v belonging to U . Thus, U is a total dominating set of G and |U| ≤ k. �

By Proposition 2 we have the following

Theorem 4. The problem of global defensive set for subcubic bipartite planar graphs is N P -complete. �

3. Polynomial time algorithms for trees

In [4] the authors constructed O(n log∆)-time algorithm for finding the minimum global alliance in trees. In this section
we present polynomial time algorithms for finding a minimum total alliance, a minimum global defensive set and a
minimum total defensive set using the bottom-up technique.

3.1. General sketch of the algorithms

We construct the optimal solution for a given tree T using the bottom-up technique in accordance with the defined
orientation of T . First, we orient all edges of T in an in-tree manner with a leaf as root, i.e., we choose any leaf r as root and
orient all edges of tree T towards the root r . As a result, for each vertex v ∈ V (T ) \ {r}, there is exactly one oriented edge
outcoming from a vertex v towards r , let us denote this edge by ev = {v, rv}. By Tv we denote a subtree of T rooted at v and
consisting of all (oriented) edges that lead to vertex v. By T ∗

v we mean a tree Tv with an attached edge ev , i.e., T ∗
v = Tv ∪ ev .

Let p = deg(v) − 1 and let Nb
v = {v1, . . . , vp} be a set of vertices adjacent to v and different from rv .

The key idea of the approach is to use the recursive schema, in which we build a data structure Av , related to the vertex v,
fromdata structures Av1 , . . . , Avp related to the children of vertex v. Wewill use some auxiliary data structures (Bv) to clarify
the process of building Av from Av1 , . . . , Avp . It is important to ensure that one can apply the data structures associated with
all children of vertex v to build Av . The algorithm makes use of the bottom-up technique, as follows:

1. Starting from leaves, first build Av , and go towards root r .
2. Traversing tree T for each vertex v ≠ r:

(i) construct an auxiliary data structure Bv using Av1 , . . . , Avp ,
(ii) construct Av from Bv .

3. Use As, where s is the only neighbour of root r , to find an optimal solution for the problem in tree T .

The total time complexity of the algorithm depends on the time complexity of the construction of structures Av and Bv ,
and we derive it for a particular problem. In fact, by this schema we calculate in most cases the size of the optimal solution.
The construction of an optimal solutionmay be possible by using additional data structures for remembering the appropriate
information while building structures Av and Bv , which, however, does not change the time complexity of the algorithm.

3.2. O(n log∆)-time algorithm for finding a minimum total alliance

In this section we construct data structures Av , B0
v and B1

v for the algorithm solving the problem of finding a minimum
total alliance in a tree, which is a slight generalization of the algorithm for global alliances in trees. In the following we use
the symbol ∞ to denote some illegal cases, and we assume ∞ ≥ a, ∞ ± a = ∞ and min{∞, a} = a, where a is a number
or ∞. Let v ∈ V (T ) \ {r}, and p = deg(v) − 1.

Let us formally define matrices Av , B0
v and B1

v for this problem as follows:

(Av) Let Av be a matrix of the size 2× 2 and let Av[j, h] = min{|S \ {rv}| : S is an alliance in T ∗
v ∧ Cjh}, for j, h ∈ {0, 1}, where

Cjh is an additional condition defined as follows:
(00) C00 if and only if S is a total alliance in Tv and v, rv ∉ S,
(01) C01 if and only if for every u ∈ Nb

v set S ∩ V (Tu) is a total alliance in Tu, and v ∉ S, rv ∈ S,
(10) C10 if and only if S is a total alliance in Tv , and v ∈ S, rv ∉ S,
(11) C11 if and only if S is a total alliance in T ∗

v , and v, rv ∈ S.
Let us observe that j = 1 if and only if v ∈ S, and h = 1 if and only if rv ∈ S. If Av[j, h] cannot be legally defined,
we preset the value as ∞. If v is a leaf, then by definition we initially put Av[0, 0] = ∞, Av[0, 1] = 0, Av[1, 0] = ∞,
Av[1, 1] = 1.

(Bj
v) Let Bj

v (for j ∈ {0, 1}) be a matrix of the size p × 3, where for i = 1, . . . , p and j = 1, 2 we set Bj
v[i, 0] = i and

Bj
v[i, 1] = 1, if Avi [1, j] > Avi [0, j], otherwise, Bj

v[i, 1] = 0, and finally
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• if Bj
v[i, 1] = 1, then Bj

v[i, 2] = Avi [1, j] − Avi [0, j],
• if Bj

v[i, 1] = 0, then Bj
v[i, 2] = Avi [0, j] − Avi [1, j].

Let us observe that if Avi [0, j] = ∞ or Avi [1, j] = ∞, then Bj
v[i, 2] = ∞. Let us define ajv =

p
i=1(1 − Bj

v[i, 1]) and
bjv =

p
i=1 min{Avi [0, j], Avi [1, j]}. Let us observe that if for some i we have Avi [0, j] = Avi [1, j] = ∞, then bjv = ∞. Let

B̂j
v be a matrix obtained from Bj

v by sorting rows Bj
v[i] (for i = 1, . . . , p) in a non-decreasing order with respect to the third

value of the row, i.e., Bj
v[i, 2]. Thus we get B̂j

v[1, 2] ≤ B̂j
v[2, 2] ≤ · · · ≤ B̂j

v[p, 2]. The construction of matrix B̂j
v can be done

in O(deg(v) log deg(v)) time.
Now, we construct matrix Av from B̂j

v and bjv satisfying the conditions Cjh.

(00) We have to ensure that v is dominated by at least one vi, where i = 1, . . . , p. If a0v > 0 (v is dominated), then
Av[0, 0] = b0v , otherwise Av[0, 0] = b0v + B̂0

v[1, 2] (the minimum cost of dominated v).
(01) Since v is dominated by rv , just take the best solution: Av[0, 1] = b0v .
(10) We have to ensure that SEC(v) = true and v is dominated by at least one vi, where i = 1, . . . , p. If a1v + 1 ≥ p+ 1− a1v

(i.e., 2a1v ≥ p) (SEC(v) = true), then Av[1, 0] = b1v + 1. Otherwise, if 2a1v < p, then let t be the smallest integer such
that 2t ≥ p − 2a1v . Thus, a

1
v + t + 1 ≥ p + 1 − a1v − t . Let k be the smallest integer such that t =

k
i=1 B̂

1
v[i, 1], and let

cv =
k

i=1 B̂
1
v[i, 2] · B̂1

v[i, 1] (the minimum cost of making SEC(v) = true). Hence, we put Av[1, 0] = b1v + cv + 1.
(11) We have to ensure that SEC(v) = true. Analogously, if a1v + 2 ≥ p − a1v (i.e., 2a1v + 2 ≥ p) (SEC(v) = true), then

Av[1, 1] = b1v + 1. Otherwise, if 2a1v + 2 < p, then let t be the smallest integer such that 2t ≥ p − 2a1v − 2. Thus,
a1v + t + 2 ≥ p − a1v − t . Let k be the smallest integer such that t =

k
i=1 B̂

1
v[i, 1], and let cv =

k
i=1 B̂

1
v[i, 2] · B̂1

v[i, 1]
(the minimum cost of making SEC(v) = true). Hence, we put Av[1, 1] = b1v + cv + 1.

The construction of matrix Av can be done in O(deg(v) log deg(v)).
Finally, γta(T ) = min{As[1, 1] + 1, As[1, 0]}, where {s} = N(r). The time complexity of the algorithm is obviously

O(n log∆).

3.3. O(n∆2 log∆)-time algorithm for finding a minimum global defensive set

In this section we construct data structures Av and Bv for the algorithm solving the problem of finding a minimum global
defensive set in a tree. In the following we use the symbol ∞ to denote some illegal cases, and assume ∞ ≥ a, ∞ ± a = ∞

and min{∞, a} = a, where a is a number or ∞.
Let v ∈ V (T ) \ {r}, p = deg(v) − 1 and q = deg(rv) − 1. Let us define a tree T q

v obtained from T ∗
v by attaching q pendant

vertices Lq = {u1, . . . , uq} to vertex rv .
In the following, for the sake of notation simplicity, we will use gds instead of global defensive set. Let us formally define

data structure Av and Bv = (B0
v, B

1
v) for this problem as follows.

(Av) Let Av = (a00v , a01v , a10v , a11v , A11
v ), where ajhv is an integer or∞ (for j, h ∈ {0, 1}), and A11

v is amatrix of the size (q+1)×1,
defined as follows:
(00) a00v = min{|S \ {rv}| : S is a gds in Tv ∧ v ∉ S ∧ rv ∉ S},
(01) a01v = min{|S \ {rv}| : S is a gds in T ∗

v ∧ v ∉ S ∧ rv ∈ S},
(10) a10v = min{|S \ {rv}| : S is a gds in T ∗

v ∧ v ∈ S ∧ rv ∉ S},
(11) a11v = min{|S \ {rv}| : S is a gds in T ∗

v ∧ v ∈ S ∧ rv ∈ S}

A11
v [k] = min{|S \ (Lq ∪ {rv})| : S is a gds in T q

v ∧ v ∈ S ∧ rv ∈ S ∧ |Lq ∩ S| = k}, for any k = 0, . . . , q.
Let us observe that for ajhv , we have j = 1 if and only if v ∈ S, and h = 1 if and only if rv ∈ S.
If any min(·) cannot be legally defined, we preset the value as ∞. If v is a leaf, then by definition we initially put
a00v = ∞, a01v = 0, a10v = 1, a11v = 1 and A11

[k] = 1 for 2k + 2 ≥ q, and A11
[k] = ∞ for 2k + 2 < q.

(B0
v) Let B0

v be a matrix of the size p × 3, where for i = 1, . . . , pwe set B0
v[i, 0] = i and B0

v[i, 1] = 1, if a10vi > a00vi , otherwise,
B0

v[i, 1] = 0, and finally
• if B0

v[i, 1] = 1, then B0
v[i, 2] = a10vi − a00vi ,

• if B0
v[i, 1] = 0, then B0

v[i, 2] = a00vi − a10vi .
Let us observe that if a10vi = ∞ or a00vi = ∞, then B0

v[i, 2] = ∞. Let us define a0v =
p

i=1(1 − B0
v[i, 1]) and

b0v =
p

i=1 min{a10vi , a
00
vi

}. Let us observe that if for some i we have a10vi = a00vi = ∞, then b0v = ∞. Let c0v be the
minimum value of B0

v[i, 2] such that B0
v[i, 1] = 1.

(B1
v) Let B1

v be a matrix of the size (p + 1) × p × 6, where for k = 0, . . . , p and i = 1, . . . , p we set B1
v[k, i, 0] = i, and

(a) if A11
vi

[k] ≤ a01vi and A11
vi

[k] ≤ a11vi , then B1
v[k, i, 1] = 0 and B1

v[k, i, 2] = A11
vi

[k], moreover we set B1
v[k, i, 3] =

B1
v[k, i, 4] = B1

v[k, i, 5] = 0,
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(b) if a11vi ≤ a01vi and a11vi < A11
vi

[k], then B1
v[k, i, 1] = 0 and B1

v[k, i, 2] = a11vi , and B1
v[k, i, 3] = 1, B1

v[k, i, 4] = A11
vi

[k]−a11vi ,
B1

v[k, i, 5] = 0,
(c) if a01vi < A11

vi
[k] and A11

vi
[k] ≤ a11vi , then B1

v[k, i, 1] = 1 and B1
v[k, i, 2] = a01vi , and B1

v[k, i, 3] = 0, B1
v[k, i, 4] =

A11
vi

[k] − a01vi , B
1
v[k, i, 5] = 0,

(d) if a01vi < a11vi < A11
vi

[k], then B1
v[k, i, 1] = 1 and B1

v[k, i, 2] = a01vi , and B1
v[k, i, 3] = 1, B1

v[k, i, 4] = a11vi − a01vi ,
B1

v[k, i, 5] = A11
vi

[k] − a11vi .

Now, we construct Av from Bv .

(00) We have to ensure that v is dominated by at least one vi, where i = 1, . . . , p. If a0v > 0, then a00v = b0v , otherwise,
a00v = b0v + c0v .

(01) Since v is dominated by rv , just take the best solution: a01v = b0v .
(10) We have to ensure that vertex v satisfies the defensive set property. For every k = 1, . . . , p, let us define sk =

min{|S \ {rv}| : S is a gds in T ∗
v ∧ v ∈ S ∧ rv ∉ S ∧ |Nb

v ∩ S| = k}, or sk = ∞, if there is no such S. Obviously,
a10 = min{s1, . . . , sp}.

For k = 1, . . . , p we calculate sk or prove that there is l > k, such that sl ≤ sk. Let a =
p

i=1(1 − B1
v[k − 1, i, 1]), and

b =
p

i=1 B
1
v[k−1, i, 2]. We have to ensure that exactly k vertices from {v1, . . . , vp} satisfy the defensive set property,

and the rest of them is outside the defensive set.
If a > k, then it is easy to observe that for some l ≥ a we have sl ≤ sk. Thus, without loss of generality we can assume
that a ≤ k.
If a = k, then we have two cases: (1) there is i such that B1

v[k − 1, i, 1] = B1
v[k − 1, i, 3] = 0 (case (a) from the

definition of B1
v), and thus sk = b + 1, (2) for all i = 1, . . . , p we have B1

v[k − 1, i, 1] = 1 or B1
v[k − 1, i, 3] = 1 (case

(b), (c) or (d) from the definition of B1
v). Let U = {1, . . . , p}, c = min{B1

v[k − 1, i, 4] + B1
v[k − 1, i, 5] : i ∈ U} and

Uc = {i ∈ U : B1
v[k − 1, i, 4] + B1

v[k − 1, i, 5] = c}. If for every i ∈ Uc we have B1
v[k − 1, i, 1] = 1 (case (c) or (d) in

the definition of B1
v), then sk+1 ≤ sk. Hence, without loss of generality we can assume that for some i ∈ Uc we have

B1
v[k − 1, i, 1] = 0 and B1

v[k − 1, i, 3] = 1 (case (b)). Thus, we can put sk = b + c + 1.

If a < k, then we have two cases: (1′) there is i such that B1
v[k − 1, i, 1] = B1

v[k − 1, i, 3] = 0 (case (a)), or (2′)

for all i = 1, . . . , p we have B1
v[k − 1, i, 1] = 1 or B1

v[k − 1, i, 3] = 1 (case (b), (c) or (d)). In the first case (1′)

let B̂v be a matrix of the size p × 6 obtained from B1
v[k − 1] by sorting rows B1

v[k − 1, i] (for i = 1, . . . , p) in a
non-decreasing order with respect to the value B1

v[k − 1, i, 4]. Thus, we get B̂[1, 4] ≤ B̂[2, 4] ≤ · · · ≤ B̂[p, 4]. The
construction can be done in O(p log p) time. Let k0 be the smallest integer such that k − a =

k0
i=1 B̂v[i, 1], and let

c =
k0

i=1 B̂v[i, 4] · B̂v[i, 1]. Hence, we put sk = b + c + 1. In the second case (2′) if 2k ≥ p (i.e., SEC(v) = true),
then we put analogously as in case (1′) sk = b + c + 1. Let k < 2p. Then, we have to ensure that SEC(v, vi0) = true
for some vi0 ∈ Nb

v . We consider two subcases: (2′

1) B1
v[k − 1, i0, 1] = 0 and B1

v[k − 1, i0, 3] = 1 (case (b)), the
minimal additional cost of ensuring SEC(v, vi0) = true is c1 = B1

v[k − 1, i0, 4] + c ′

1, (2
′

2) B1
v[k − 1, i0, 1] = 1 (case

(c) or (d)), the minimal additional cost of ensuring SEC(v, vi0) = true is c2 = B1
v[k − 1, i0, 4] + B1

v[k − 1, i0, 5] + c ′

2.
In both cases, by c ′

l (for l = 1, 2) we mean an additional cost of ensuring that exactly k vertices from Nb
v are in a

defensive set. Thus, we can put sk = min{b + c1 + 1, b + c2 + 1}. In the subcase (2′

1) we take any i0 such that
B1

v[k − 1, i0, 4] = min{B1
v[k − 1, i, 4] : i ∈ {1, . . . , p} ∧ B1

v[k − 1, i, 1] = 0}. Let c ′

1 =
k0

i=1 B̂v[i, 4] · B̂v[i, 1] be
calculated analogously as in case (1′). Let U0 = {i ∈ {1, . . . , p} : B1

v[k − 1, i, 1] = 1}. In the subcase (2′

2) we have to
find a subset U ⊂ U0, |U| = k − a, and a vertex i0 ∈ U such that the sum


i∈U B1

v[k − 1, i, 4] + B1
v[k − 1, i0, 5] is

minimized. For every t ∈ U0 we calculate ct2 = B1
v[k− 1, t, 4] + B1

v[k− 1, t, 5] +
k0

i=1,i≠t B̂v[i, 4] · B̂v[i, 1], where k0 is

the smallest integer such that k − a − 1 =
k0

i=1,i≠j B̂v[i, 1], and B̂v is constructed analogously as in case (1′). Finally,

c2 = min{c j2 : j = 1, . . . , p}. Thus, we constructed a10v and the construction can be done in O(p2 log p) time.
(11) The construction of a11v is analogous as in case (10).

Now, for any l = 0, . . . , qwe construct A11
v [l] in time O(p2 log p).

We have to ensure that vertex rv satisfies the defensive set property (i.e., SEC(rv) = true or SEC(v, rv) = true) and
vertex v satisfies one of the following: SEC(v) = true, SEC(v, rv) = true or SEC(v, vi) = true for some i ∈ {1, . . . , p}.
The proof goes analogously as in case (10): for every k = 1, . . . , p, let us define sk = min{|S\{rv}| : S is a gds in T q

v ∧v ∈

S ∧ rv ∈ S ∧ |Nb
v ∩ S| = k − 1 ∧ |Lq ∩ S| = l}, or sk = ∞, if there is no such S. Analogously as in case (10), we

have to ensure that exactly k − 1 vertices from {v1, . . . , vp} satisfy the defensive set property, and the rest of them
is outside the defensive set. Let us observe that SEC(rv) = true if and only if 2l + 2 ≥ q and SEC(v, rv) = true if
and only if 2k + 2l ≥ q + p. Hence, we have two positive cases: (1) SEC(v, rv) = true, and (2) SEC(rv) = true and
SEC(v, rv) = false. In case (1) vertex v satisfies the defensive set property and it suffices to ensure the defensive set
property for k − 1 vertices from the set {v1, . . . , vp}, analogously as in case (10). In case (2) we have to ensure that
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SEC(v) = true or SEC(v, vi) = true for some i ∈ {1, . . . , p}, and we must ensure the defensive set property for k − 1
vertices from the set {v1, . . . , vp}, which can be done in the same manner as in case (10). The construction of matrix
A11

v can be done in O(qp2 log p).

Finally, γds(T ) = min{a10s , a01s + 1, a11s + 1}, where {s} = N(r). Since the construction of data structure Av can be done
in O(qp2 log p), the time complexity of the algorithm is obviously O(n∆2 log∆).

3.4. O(n∆2 log∆)-time algorithm for finding a minimum total defensive set

The construction of the exact algorithm for finding a minimum total defensive set goes very similar to the algorithm
from Section 3.3, and we can use some ideas from Section 3.2. Thus, there is an O(n∆2 log∆)-time algorithm for the total
defensive set problem.

4. Lower bounds on the minimum global defensive set

For a given set S ⊂ V and any U ⊂ S let us define N+
[U] = N[U] ∩ S, N−

[U] = N[U] ∩ (V \ S). For a defensive set S of
graph G = (V , E) we define a partition of S into two sets, S0 = {v ∈ S : SEC(v) = false} and S1 = {v ∈ S : SEC(v) = true}.
Observe that S0 = ∅ if and only if S is an alliance.

Proposition 3. Let S be a defensive set of a graph G and X1, X2 ⊂ S. Then |N−
[X1]| + |N−

[X2]| ≥ |N−
[X1 ∪ X2]|.

Proof. |N−
[X1]| + |N−

[X2]| ≥ |N−
[X1] ∪ N−

[X2]| ≥ |(N[X1] ∪ N[X2]) ∩ (V \ S)| = |N−
[X1 ∪ X2]|. �

Proposition 4. Let S be a defensive set of a graph G. Then for every w ∈ S there is |N−
[w]| ≤ |S|.

Proof. If w ∈ S1, then |N−
[w]| ≤ |N+

[w]| ≤ |S|. If w ∈ S0, then there is a neighbour u ∈ N(w) ∩ S such that
|N−

[w, u]| ≤ |N+
[w, u]| ≤ |S|. Thus, |N−

[w]| ≤ |N−
[w, u]| ≤ |S|. �

4.1. Lower bound in general graphs

In this section we will prove a lower bound on the minimum size of a global defensive set in an arbitrary graph.
By definition we have γds(G) ≤ γa(G) for any graph G. Observe that for a tree T depicted in Fig. 14, we have γds(T ) = 5,

and each of three lower bounds on γa(T ) (from [9]) is greater than 5: n
⌈

∆
2 ⌉+1

> 6, ⌈ 2n
∆+3⌉ = 6, and n+2

4 > 6. In [9] the authors

proved the following

Theorem 5 ([9]). For any graph G with n vertices γa(G) ≥

√
4n+1−1

2 . �

For a defensive set S of graph G = (V , E) let us define E1(S) = {{v, u} ∈ E(G) : v ∈ S ∧ u ∈ S ∧ SEC(v, u) = true}, and
let r(S) be the maximum cardinality of a subset of E1(S) of independent edges.

Lemma 5. For any global defensive set S of graph G = (V , E)

|S| ≥


4n(G) + (r(S) − 1)2 + r(S) − 1

2
.

Proof. Let S be any defensive set of G, and let n = n(G), s = |S| and r = r(S).
If r = 0, then S is an alliance, and by Theorem 5 we have |S| ≥

√
4n+1−1

2 .
Now, let r > 0. The thesis is equivalent to s2 − (r − 1)s − n ≥ 0. Let us assume that s2 − (r − 1)s < n. Hence,

|N−
[S]| = |V (G) \ S| = n − s > s2 − r · s.
Let M1

= {{v1, u1}, . . . , {vr , ur}} be any maximum cardinality subset of E1(S) of independent edges. For any edge
{vi, ui} ∈ M1 (i ∈ {1, . . . , r}) we have SEC(vi, ui) = true. Thus, |N−

[v, u]| ≤ |N+
[v, u]| ≤ s.

By Proposition 3 we have |N−
[S \U]|+

r
i=1 |N−

[vi, ui]| ≥ |N−
[S]|, where U =

r
i=1{vi, ui}. Thus we get |N−

[S \U]| >
s(s − 2r).

By Proposition 4 for every vertex w ∈ S \ U we have |N−
[w]| ≤ s. Thus, |N−

[S \ U]| ≤


w∈S\U |N−
[w]| ≤ s(s − 2r), a

contradiction. �

Corollary 6. For any graph G with n vertices

γds(G) ≥ max{L(S): S is a global defensive set and γds(G) = |S|},

where

L(S) =


4n(G) + (r(S) − 1)2 + r(S) − 1

2
,

and this bound is tight for any r ≥ 1.
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Proof. The bound is tight for complete bipartite graphs Kr,l, where l ≥ r , with attached l(l + r) pendant vertices (K ∗

r,l) or,
more precisely, l+ r pendant vertices to each vertex of the second partition (with l vertices). Thus, n(K ∗

r,l) = l+ r + l(l+ r)
and γds(K ∗

r,l) = l+ r , where S = V (Kr,l) is a defensive set with l+ r vertices, and there is no smaller one. Obviously r(S) = r .
Let us notice (without the proof) that γa(K ∗

r,l) = l + r + l⌊ l
2⌋ > γds(K ∗

r,l), for r = 1 and l ≥ 2 or 2 ≤ r ≤ l. �

Theorem 6. For any graph G with n(G) = k2 + i, where k ≥ 1 and 1 ≤ i ≤ 2k + 1, the following tight bounds hold:

(1) if γds(G) < γa(G), then γds(G) ≥
√
n,

(2) if γds(G) = γa(G) and i ∈ {k + 1, . . . , 2k + 1}, then γds(G) ≥
√
n,

(3) if γds(G) = γa(G) and i ∈ {1, . . . , k}, then γds(G) ≥
√
n − i = ⌊

√
n⌋.

Proof. (1) If γds(G) < γa(G), then r(S) ≥ 1 for any defensive set S such that γds(G) = |S|. Hence, by Corollary 6 we have
γds(G) ≥

√
n.

The bound is tight for trees Tk (k ≥ 2) such that Tk = K ∗

1,k, for which γds(Tk) =
√
n(Tk) = k + 1. Graph T4 is shown in

Fig. 14, for which have n(T4) = 25, γds(T4) = 5 and γa(T4) = 13. Obviously, by [9] we have γa(Tk) ≥
n(Tk)+2

4 =
(k+1)2+2

4 .
Thus, γa(Tk) > γds(Tk) for any k ≥ 2.

(2) Since i ∈ {k + 1, . . . , 2k + 1} we have ⌈

√
4k2+4i+1−1

2 ⌉ = k + 1 = ⌈
√
n ⌉. Thus, by Theorem 5 we get γds(G) ≥

√
n.

The bound is tight for cliques of size k + 1 with attached k(k + 1) pendant vertices (G∗

k ) or, more precisely, k pendant
vertices to each vertex of the clique. Hence, n = (k + 1)2 and γa(Gk) = γds(Gk) = k + 1 =

√
n.

(3) Since i ∈ {1, . . . , k} we have ⌈

√
4k2+4i+1−1

2 ⌉ = k =
√
n − i = ⌊

√
n⌋. Thus, by Theorem 5 we get γds(G) ≥

√
n − i.

The bound is tight for cliques of size k with attached k2 pendant vertices (Gk) or, more precisely, k pendant vertices to
each vertex of the clique. Hence, n = k2 + k and γa(Gk) = γds(Gk) = k. The example of such a graph for k = 4 is depicted
in Fig. 13. �

Fig. 13. γds = γa = 4, n = 20. Fig. 14. γds(T4) = 5, n = 25, ∆ = 6.

4.2. Lower bound in trees

By Theorem 6 we have that the minimum global defensive set is at least ⌈
√
n⌉ or ⌊

√
n⌋, depending on n and the graph

properties. For global alliances the lower bound n+2
4 for trees is proved in [9], but this bound does not hold for global

defensive sets due to the trees depicted in Fig. 14.

Theorem 7 ([9]). For any tree T with n vertices γa(T ) ≥
n+2
4 . �

Since for any n > 10 there is ⌈
n+2
4 ⌉ ≥ ⌈

√
n ⌉, by Theorem 6 we have the following corollary

Corollary 7. Given a tree T with n(T ) > 10, γds(T ) ≥
√
n(T ) and this bound is tight. �

For any non-empty tree T = (V , E) by L(T ) ⊂ V (T ) we denote a set of all leaves (pendant vertices) of T . Let us denote
C(T ) = V (T ) \ L(T ).

Proposition 8. Let S be a global defensive set S in a tree T . Then T [S] is a tree if and only if C(T ) ⊂ S, which is equivalent to
V (T ) \ S ⊂ L(T ).

Proof. Let x ∈ C(T ) \ S and T1 = T \ {x}. Hence, T1 is disconnected. Since S is a dominating set and T [S] is a subtree of T1,
T [S] is disconnected.

Let C(T ) ⊂ S. Hence, V (T ) \ S ⊂ V (T ) \ C(T ) = L(T ) and so, T [S] is connected. �

We will characterize all trees with γds(T ) = ⌊
√
n(T )⌋ < ⌈

√
n(T )⌉ with n(T ) ≤ 10 vertices.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1870 R. Lewoń et al. / Discrete Mathematics 339 (2016) 1861–1870

Lemma 9. The only trees such that γds(T ) = ⌊
√
n⌋ < ⌈

√
n⌉ are shown in Figs. 15–18.

Proof. By Theorem 6(3) we have that every such a tree must have 2, 5, 6 or 10 vertices. If γds(T ) ≥ 4 and n(T ) ≤ 10, then
obviously γds(T ) ≥ ⌈

√
n⌉. Let us notice that if γds(T ) = 1, then n(T ) ≤ 2, and if γds(T ) ≤ 2, then n(T ) ≤ 6. It is easy to

verify that trees depicted in Figs. 15–17 are the only trees satisfying γds(T ) ≤ 2 and γds(T ) = ⌊
√
n⌋ < ⌈

√
n⌉.

Let γds(T ) = 3. Thus, from γds(T ) = ⌊
√
n⌋ < ⌈

√
n⌉ we have that n = 10. If S is a global defensive set in a tree T with 10

vertices, and |S| = 3, then T [S] is connected, otherwise n(T ) ≤ 8. Hence, by Proposition 8 we have V (T ) \ S ⊂ L(T ). Thus,
at least one vertex from S must have three neighbouring leaves from V (T ) \ S (otherwise n(T ) < 10). This, however, leads
us easily to the graph depicted in Fig. 18. �

Fig. 15. γds = ⌊
√
2⌋ = 1. Fig. 16. γds = ⌊

√
5⌋ = 2. Fig. 17. γds = ⌊

√
6⌋ = 2. Fig. 18. γds = ⌊

√
10⌋ = 3.

By Corollary 7 and Lemma 9 we have

Theorem 8. For any tree T with n vertices that is non-isomorphic to one of the trees shown in Figs. 15–18 there is γds(T ) ≥
√
n

and this bound is tight. For any tree T from Figs. 15–18 there is γds(T ) = ⌊
√
n⌋ < ⌈

√
n⌉. �

References

[1] M. Bouzefrane, M. Chellali, A note on global alliances in trees, Opuscula Math. 31 (2) (2011) 153–158.
[2] M. Bouzefrane, M. Chellali, T.W. Haynes, Global defensive alliances in trees, Util. Math. 82 (2010) 241–252.
[3] A. Cami, H. Balakrishnan, N. Deo, R. Dutton, On the complexity of finding optimal global alliances, J. Combin. Math. Combin. Comput. 58 (2006) 23–31.
[4] C.-W. Chang, M.-L. Chia, C.-J. Hsu, D. Kuo, L.-L. Lai, F.-H. Wang, Global defensive alliances of trees and cartesian product of paths and cycles, Discrete

Appl. Math. 160 (2012) 479–487.
[5] R.I. Enciso, R.D. Dutton, Lower bounds for global alliances on planar graphs, Congr. Numer. 187 (2007) 187–192.
[6] G.W. Flake, S. Lawrence, C.L. Giles, Efficient identification ofweb communities, in: Proc. of the 6thACMSIGKDD International Conference onKnowledge

Discovery and Data Mining, Boston, MA, 2000, pp. 150–160.
[7] A. Harutyunyan, Some bounds on global alliances in trees, Discrete Appl. Math. 161 (2013) 1739–1746.
[8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Global defensive alliances, in: Proc. of. the 17th Int. Symposium on Computer Information Science, 2002,

pp. 303–307.
[9] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (2003) 139–146. Research Paper 47.

[10] S.M. Hedetniemi, S.T. Hedetniemi, P. Kristiansen, Introduction to alliances in graphs, in: Proc. of. the 17th Int. Symposium on Computer Information
Science, 2002, pp. 308–312.

[11] M.A. Henning, A. Yeo, Total Domination in Graphs, in: Springer Monographs in Mathematics, 2013.
[12] C.-J. Hsu, F.-H. Wang, Y.-L. Wang, Global defensive alliances in star graphs, Discrete Appl. Math. 157 (2009) 1924–1931.
[13] H. Ino, M. Kudo, A. Nakamura, Partitioning of web graphs by community topology, in: Proc. of the 14th International Conference onWorldWideWeb,

2005, pp. 661–669.
[14] L.H. Jamieson, Algorithms and complexity for alliances and weighted alliances of various types (Ph.D. thesis), Clemson University, Clemson, SC, USA,

2007.
[15] A. Kosowski, M. Małafiejski, P. Żyliński, Cooperative mobile guards in grids, Comput. Geom. 37 (2) (2007) 59–71.
[16] R. Lewoń, A. Małafiejska, M. Małafiejski, K. Wereszko, Global edge alliances in graphs, in preparation.
[17] D. Peleg, Local majorities coalitions and monopolies in graphs: A review, Theoret. Comput. Sci. 282 (2) (2002) 213–257.
[18] J.A. Rodríguez-Velázquez, J.M. Sigarreta, Global alliances in planar graphs, AKCE Int. J. Graphs Comb. 4 (1) (2007) 83–98.
[19] J.A. Rodríguez-Velázquez, J.M. Sigarreta, Spectral study of alliances in graphs, Discuss. Math. Graph Theory 27 (1) (2007) 143–157.
[20] J.A. Rodríguez-Velázquez, J.M. Sigarreta, Global defensive k-alliances in graphs, Discrete Appl. Math. 157 (2009) 211–218.
[21] J.A. Rodríguez-Velázquez, I.G. Yero, J.M. Sigarreta, Defensive k-alliances in graphs, Appl. Math. Lett. 22 (2009) 96–100.
[22] J.M. Sigarreta, J.A. Rodríguez, On defensive alliances and line graphs, Appl. Math. Lett. 19 (2006) 1345–1350.
[23] P.K. Srimani, Z. Xu, Distributed protocols for defensive and offensive alliances in network graphs using self-stabilization, in: Proc. of the International

Conference on Computing: Theory and Applications, Kolkata, India, 2007, pp. 27–31.
[24] I.G. Yero, J.A. Rodríguez-Velázquez, Defensive alliances in graphs: a survey, 2013, Aug-9, pp. 1–25. arXiv:1308.2096v1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref1
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref2
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref3
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref4
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref5
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref7
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref9
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref11
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref12
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref14
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref15
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref17
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref18
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref19
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref20
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref21
http://refhub.elsevier.com/S0012-365X(16)30003-6/sbref22
http://arxiv.org/1308.2096v1
http://mostwiedzy.pl

	Global defensive sets in graphs
	Introduction
	Problem definition
	Alliances vs. defensive sets
	Total alliances and total defensive sets

	Edge alliances
	Our results

	 NP -completeness results for subcubic bipartite planar graphs
	Polynomial time algorithms for trees
	General sketch of the algorithms
	 O (nlogΔ) -time algorithm for finding a minimum total alliance
	 O (nΔ2logΔ) -time algorithm for finding a minimum global defensive set
	 O (nΔ2logΔ) -time algorithm for finding a minimum total defensive set

	Lower bounds on the minimum global defensive set
	Lower bound in general graphs
	Lower bound in trees

	References


