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The development of contemporary electronic components, particularly antennas, places significant 
emphasis on miniaturization. This trend is driven by the emergence of technologies such as mobile 
communications, the internet of things, radio-frequency identification, and implantable devices. 
The need for small size is accompanied by heightened demands on electrical and field properties, 
posing a considerable challenge for antenna design. Shrinking physical dimensions can compromise 
performance, making miniaturization-oriented parametric optimization a complex and heavily 
constrained task. Additionally, the task is multimodal due to typical parameter redundancy resulting 
from various topological modifications in compact antennas. Identifying truly minimum-size designs 
requires a global search approach, as the popular nature-inspired algorithms face challenges related 
to computational efficiency and the need for reliable full-wave electromagnetic (EM) simulation to 
evaluate device’s characteristics. This study introduces an innovative machine learning procedure 
for cost-effective global optimization-based miniaturization of antennas. Our technique includes 
parameter space pre-screening and the iterative refinement of kriging surrogate models using 
the predicted merit function minimization as an infill criterion. Concurrently, the design task 
incorporates design constraints implicitly by means of penalty functions. The combination of these 
mechanisms demonstrates superiority over conventional techniques, including gradient search 
and electromagnetic-driven nature-inspired optimization. Numerical experiments conducted on 
four broadband antennas indicate that the proposed framework consistently yields competitive 
miniaturization rates across multiple algorithm runs at low costs, compared to the benchmark.
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Present-day electronics, particularly in high-frequency design, heavily emphasizes miniaturization, a crucial 
aspect for an expanding array of application domains. Examples include mobile communications1, the internet 
of things2, medical imaging3, wearable devices4, and radio-frequency identification5. Developing compact 
antennas proves challenging because reducing size tends to compromise electrical parameters6,7, while 
simultaneously facing (often stringent) performance requirements related to antenna characteristics such as 
impedance matching8, gain9, and sidelobe levels10. Moreover, modern antennas are expected to fulfil diverse 
functionalities such as multi-band operation11, multiple-input-multiple-output (MIMO) operation12, circular 
polarization13, and polarization diversity14. Practical designs of miniaturized antennas necessitate working out 
size and performance trade-offs.

The initial phase in the development of compact antennas involves selecting their geometry, often based on 
parametric studies15 and what is known as topology evolution16. This process frequently incorporates elements 
such as stubs17, slots18, defected ground structures (DGS)19, stepped-impedance feeds20, shorting pins21, line 
meandering22, and others. While these modifications contribute to size reduction, they also significantly intensify 
the design process. On one hand, compact antennas are parameterized using relatively large numbers of variables. 
On the other hand, their precise evaluation necessitates full-wave electromagnetic (EM) analysis. Given the 
former, determining the optimal antenna dimensions requires formal optimization, preferably employing global 
search procedures. The latter aspect makes the task computationally intensive, as any optimization involves 
extensive EM simulations of the structure at hand23,24. Additionally, explicit miniaturization is a constrained 
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problem with costly conditions (e.g., acceptance thresholds for antenna reflection25, gain26, or axial ratio27), 
further complicating the issue28. Lastly, topological complexity results in counterintuitive relationships between 
certain antenna dimensions and electrical characteristics, potentially leading to misleading impressions that 
specific modifications are beneficial for size reduction when proper optimization may reveal their actual 
irrelevance29. It should also be mentioned that some recent works reported methods for unsupervised antenna 
design, which include automated generation of the antenna topology, either free-form topology optimization30–32, 
or through adjustment of pre-defined structures (e.g., pixel antennas, etc.)33–36. In these cases, the development 
of antenna geometry is carried out simultaneously with parametric optimization.

Rigorous optimization methods have been gradually receiving attention in the antenna community, and are 
not only applied in solving a variety of design tasks (matching improvement37, pattern synthesis38, isolation 
enhancement in MIMO systems39), both in single-40, and multi-criterial regime41, but also used for global 
optimization42–44, and uncertainty quantification45–47. An excellent review of the various optimization methods 
for antenna design, and exposition of real-world design scenarios can be found in48. As mentioned earlier, EM-
driven size reduction is a particularly challenging task, not only because of being constrained, but also due to 
its multimodality. The first problem has been addressed through the development of both implicit49–51, and 
explicit constraint handling approaches42, all coupled with local (gradient-based) search routines53. Global 
optimization is nowadays mainly performed using nature-inspired population-based algorithms, a plethora 
of which have been developed over the years, e.g., genetic and evolutionary algorithms, differential evolution, 
particle swarm optimization (PSO), harmony search, ant systems, grey wolf optimization, firefly algorithm54–61, 
and many others62–66. The global search capability of these methods is arguably linked to their intrinsic 
randomness, manifested in various forms such as stochastic selection procedures67 and randomized relocation 
rules68. Additionally, these methods involve exchanging information within the ensemble of potential solutions 
handled by the procedure, employing operations like recombination69 or biasing relocation towards the best 
solution found thus far70. However, when viewed from the standpoint of EM-driven design, nature-inspired 
methods suffer from a fundamental drawback – their considerable computational complexity. Conducting direct 
optimization at the EM simulation level is simply impractical given the typical number of merit function calls, 
which varies from hundreds to many thousands. An exception is when the individual EM simulation time is 
short (e.g., when using 2.5D solvers such as Sonnet em) or the antenna structure at hand is simple and simulated 
without extra components (e.g., connectors). In such cases, direct EM-driven global optimization is still feasible.

The challenges associated with the excessive expenses of global search can be mitigated through the 
application of surrogate modelling techniques71–74. Surrogate-assisted nature-inspired methods, often referred 
to as machine learning procedures75,76, typically operate in an iterative manner, refining the initial metamodel 
using electromagnetic (EM) data accumulated in the course of the optimization run77. The generation of 
infill points aims to enhance the model’s predictive power (design space exploration78), identify the optimum 
(exploitation79), or achieve a balance between both objectives80. The infill points are the designs produced 
during the optimization process, e.g., by optimizing the underlying surrogate model, which are used to enhance 
the available dataset (for the purpose of improving the surrogate’s reliability) and facilitate identification 
of the optimum. Various modelling methods applied for these purposes include kriging81, Gaussian Process 
Regression (GPR)82, and neural networks83. In the case of antennas, a limiting factor is high nonlinearity of 
frequency responses, rendering the modelling process challenging and necessitating significant investments in 
terms of training data acquisition84. Consequently, many of the reported methods are only demonstrated using 
low-dimensional examples85–87. Nonetheless, the recent literature provides a growing number of examples of 
utilizing machine learning schemes for antenna optimization, using diverse underlying surrogate modelling 
methods such as GPR or various types of artificial neural networks88–92. Possible ways of alleviating this 
difficulty are performance-driven modelling93,94 (although their incorporation into global search frameworks 
is not trivial), variable-resolution modelling95, but also a response feature technology96. The latter has been 
demonstrated successful in accelerating optimization processes97, enabling quasi-global search capabilities98, as 
well as reducing computational expenses of surrogate model construction99.

This research introduces an innovative technique for globally reducing the size of broadband antennas 
through electromagnetic (EM) optimization. The proposed methodology is a machine learning procedure that 
leverages initial pre-screening of the parameter space. Furthermore, it employs implicit handling of design 
constraints, transforming the size reduction problems into an unconstrained task. The underlying surrogate 
modelling approach is kriging interpolation, whereas the infill criterion is based on minimizing the predicted 
merit function. The candidate designs (infill points) are rendered by globally optimizing the metamodel, using 
a particle swarm optimizer (PSO)100. The pre-screening strategy’s utilization enables finding the search space 
region that contains the feasible region boundary, which reduces the size of the dataset needed to build a 
dependable metamodel. The proposed strategy has been verified using several microstrip antennas and compared 
to various benchmark techniques, including gradient search, nature-inspired algorithms, and machine learning 
procedures directly working with complete antenna responses (without pre-screening). The results obtained 
demonstrate competitive miniaturization rates achievable with the proposed algorithm, consistency across a 
set of independent runs, and low computational cost, averaging about two hundred EM antenna simulations.

The key original components of this article can be succinctly outlined as follows: (i) the introduction of an 
innovative machine learning procedure explicitly designed for reducing the size of broadband antennas, (ii) the 
integration of knowledge-based parameter space pre-screening, (iii) the implementation of implicit constraint 
handling to facilitate global search through nature-inspired algorithms, and (iv) the demonstration of practical 
advantages associated with the proposed method, including enhanced design reliability and computational 
efficiency. To the authors’ best knowledge, no framework for size reduction has been reported to date that 
is comparable to the one presented in this work. This assessment encompasses not only the methodological 
components of the algorithm but also its overall effectiveness.
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EM-driven size reduction. Explicit and implicit constraints
This section formulates optimization-based antenna size reduction task as a constrained nonlinear minimization 
problem. We also discuss explicit and implicit constraint handling, as well as provide a few specific examples. 
Finally, we briefly outline available solution approaches. The global optimization search suggested in this study is 
elucidated in Section "Global size reduction using machine learning and parameter space pre-screening".

Antenna miniaturization through EM-driven optimization
As previously highlighted, achieving a compact size is imperative for an expanding array of practical applications, 
encompassing mobile communications, wearable or implantable devices, and the internet of things. Electrically 
small antennas are typically crafted by introducing various topological modifications to basic structures (e.g., 
patches, monopoles), such as stubs17, metamaterial components101, or defected ground structures19. However, 
attaining the smallest possible size necessitates meticulous tuning of all antenna parameters. Traditional 
parametric studies (typically, based on sweeping one parameter at a time) are grossly unable to produce 
optimum designs, especially due to the necessity of handling multiple antenna characteristics. Utilization of 
formal numerical optimization is recommended instead.

Table 1 encompasses the nomenclature utilized in the article. The problem at hand can be defined as

 
x∗ = arg min

x∈Xf
 (1)

The feasible space Xf in (1) (cf. Table 1) is the region containing all points that satisfy the conditions imposed 
upon the antenna.

Design constraints. Explicit and implicit constraint handling
At this juncture, it is crucial to acknowledge that aside from strictly geometrical conditions (e.g., those associated 
with constraints imposed upon the ranges of antenna parameters), the constraints associated with electrical 
and field properties, making them costly to evaluate, necessitating electromagnetic (EM) analysis. Managing 
expensive constraints is typically challenging. A potential solution involves implicit constraint handling, wherein 
the original problem (1) is reformulated as follows:

 
x∗ = arg min

x
Up(x) (2)

with the objective function UP assuming the form of

 
Up(x) = U(x) +

ng+nh∑
k=1

βkck(x) (3)

The functions ck(x), acting as penalties, quantify the constraint violations, with βk representing the penalty 
factors. It is important to note that although all constraints are treated uniformly here, most constraints in 
antenna design belong to the first category (inequality type). Some relevant examples are detailed in Table 2. The 
function c(x) provided in the table gauges the relative constraint violation, with c(x) ≠ 0 only when the constraint 
is actually breached. Additionally, the use of the second power [.]2 is to make sure that the penalty function is 
smooth at the feasible region boundary. The latter aids in the search across the feasible region, which is crucial 
since at least one of the constraints is active at the minimum-size design.

The implicit approach formally poses the miniaturization problem as an unconstrained task, yet the 
performance of the search process depends on the selection of the parameters βk. Excessively low values may 

Symbol Meaning Comment

x = [x1 . . . xn]T Vector of antenna design parameters Typically, the variables are antenna geometry parameters (dimensions in mm)

X Parameter space Typically, X is an interval [l u], where l = [l1 … ln]T and u = [u1 … un]T are lower 
and upper bounds on design parameters so that lk ≤ xk ≤ uk, for k = 1, …, n

A(x) Antenna size For planar antennas, A(x) is typically a footprint area in mm2

REM(x) Antenna responses at design x Aggregated antenna responses obtained through EM analysis

S11(x,f) Antenna reflection coefficient at the design x and 
frequency f

Reflection coefficient is a complex number; in the design process we handle its 
modulus |S11|, expressed in decibels

G(x,f) Antenna gain at the design x and frequency f For example, G may stand for a realized gain in a broadside direction, expressed 
in decibels

AR(x,f) Antenna axial ratio at the design x and frequency f Axial ratio in a specified (e.g., broadside) direction, expressed in decibels

gk(x) ≤ 0, k = 1, …, ng, Inequality constraints Typically, expressed using acceptance thresholds for selected antenna 
characteristics, e.g., |S11(x,f)|≤ –10 dB for f within the frequency range of interest

hk(x) = 0, k = 1, …, nh, Equality constraints Typically, expressed using target values for selected antenna characteristics

Xf Feasible space Xf ⊂ X contains parameter vectors x for which all constraints are satisfied, i.e., 
gk(x) ≤ 0 for k = 1, …, ng, and hk(x) = 0 for k = 1, …, nh

Table 1. EM-driven antenna size reduction. Notation and terminology.
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lead to severe violation of constraints. Values that are too high make the merit function extremely steep near 
the feasible region boundary, which makes it difficult to be explored. Appropriate selection of βk is a non-trivial 
problem. Recently, some adaptation strategies have been proposed (e.g.,25,27). Also, the algorithms with explicit 
constraint handling have been introduced52. Both offer acceptable trade-offs between achievable miniaturization 
ratios and constraint control. Nevertheless, the mentioned techniques are all local methods, which does not 
address inherent multimodality of the size reduction task.

Global size reduction using machine learning and parameter space pre-screening
This section elucidates the details of the optimization-based antenna size reduction procedure presented in the 
work. We start by discussing the pre-screening procedure (Section "Parameter space pre-screening"), which 
aims at initial identification of the promising search space region based on possible prior knowledge about the 
antenna structure at hand, as well as general properties of antenna characteristics at the minimum-size design. 
Section "Surrogate model construction" briefly recalls kriging interpolation, which is employed in this work as 
the primary surrogate modelling method. At this point, it should be mentioned that essentially any other data-
driven approach could be used in place of kriging (e.g., neural networks, polynomial chaos expansion, etc.) as the 
specific modelling approach is of secondary importance from the point of view of the ML process. Generation 
of the infill points is explained in Section "Generating Infill Points". The complete optimization procedure is 
summarized in Section "Complete optimization procedure". At this point it should be indicated that the major 
novelty of the proposed approach is in appropriate selection and combination of the ML and pre-screening 
concepts along with a suitable formulation of the design task (here, using implicit constraint handling). Clearly, 
none of these components by itself is new, yet specific implementation and their incorporation into the complete 
framework is original and efficient, as corroborated through extensive demonstration case studies provided in 
Section "Demonstration examples".

Parameter space pre-screening
The fundamental difficulty of global optimization of antenna systems is related to CPU-intensive evaluation 
of antenna responses, here, executed using EM simulation. This factor alone makes any sort of direct global 
search, e.g., using nature-inspired methods62–66, prohibitive in most cases. At the same time, the employment of 
surrogate modelling methodologies is challenging due to large size of the search space, not only with respect to 
its dimensionality but also parameter ranges, although some recent works successfully aimed at addressing this 
issue, e.g.,102–104.

Highly nonlinear characteristics of antennas only aggravate the problem. In the case of size reduction, an 
additional issue is the presence of expensive constraints (e.g., acceptance thresholds for reflection, gain, axial 
ratio, etc., cf. Section "EM-driven size reduction. Explicit and implicit constraints").

The aforementioned problems may be mitigated by appropriate pre-screening of the parameters space, 
which should be based on the known general properties of the system under design, but also any supplementary 
information that might be available (typically inferred from previous experience with the same system). In this 
work, we focus on broadband antennas, which will be used to illustrate the approach. Size reduction for this type 
of antennas is especially detrimental to impedance matching at lower frequencies, therefore the pre-screening 
process may be based on the location of the first antenna resonance, but also a knowledge of what antenna size 
is possible to be achieved.

Figure 1 shows the procedure for choosing random samples using the above criteria. The minimum and 
maximum antenna size, Amin and Amax, respectively, are obtained from a general engineering insight concerning 
this class of antennas (and, if available, information from prior design work on a particular structure). The first 
resonance acceptance range is determined by the target operating bandwidth. For example, for ultra-wideband 
antennas with F = [3.1 10.6] GHz, one may set F0 = [2.5 4.5] GHz. The maximum in-band reflection level Lmax 
is normally set in a relaxed manner (e.g., –4 dB), in order to only reject exceptionally bad designs. It should be 
noted that EM analysis is only executed for samples satisfying geometry conditions A(x) ≥ Amin and A(x) ≤ Amax. 
Also, all samples for which EM analysis was carried out will be used for surrogate model construction, although 
the procedure is run until a prescribed number Npre of observables that satisfy all pre-screening conditions 
have been identified. Figure 2 shows an exemplary compact wideband antenna and selected reflection responses 
obtained by sampling within the complete search space X, and observables generated using the pre-selection 

Constraint description Penalty function

Given and operating bandwidth F, ensure that the antenna reflection |S11(x,f)| does not exceed –10 dB within F, 
i.e. |S11(x,f)|≤ –10 dB for f ∈ F

c(x) =
[ max{S(x)+10,0}

10

]2
 where 

S (x) = max{f ÎF : |S11 (x, f)|}

Ensure that the axial ratio AR(x,f) of a CP antenna does not exceed 3 dB within the operating range F, i.e., 
AR(x,f) ≤ 3 dB for f ∈ F

c(x) =
[ max{AR(x)−3,0}

3

]2
 where 

AR(x) = max{f ∈ F : AR(x,f)}

Ensure that variability of realized gain G(x,f) is below 2 dB within the antenna operating range F, i.e., 
ΔG(x,f) ≤ 2 dB for f ∈ F, where ΔG(x,f) = max{f ∈ F : G(x,f)} – min{f ∈ F : G(x,f)} (note that ΔG(x,f) is the 
difference of the maximum gain over F, i.e., max{f ∈ F : G(x,f)} and the minimum gain over F, i.e., min{f ∈ F : 
G(x,f)})

c(x) =
[ max{G(x)−2,0}

2

]2
 where 

G(x) = max{f ∈ F : ΔG(x,f)}

Table 2. Examples of design constraints and penalty functions.
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procedure of Fig. 1. The latter are confined to a relatively small subset of the space X, which facilitates a subsequent 
identification of the metamodel.

A similar pre-screening criteria may be readily developed for other types of antennas, e.g., multi-band 
structures, circular polarization devices, etc. In each case, appropriate acceptance conditions should be 
formulated depending on the constraints imposed upon electrical and field responses.

Surrogate model construction
In this research, we use kriging interpolation71,105 as the modelling method of choice. Following the pre-
screening procedure, an initial surrogate model s(0)(x) is constructed based on the set of training designs {

x
(j)
B , R

(j)
B

}
, j = 1, . . . , Ninit, withR

(j)
B = REM

(
x

(j)
B

)
  cf. Figure 1. Subsequently, the surrogate model 

is refined to s(j), j = 1, 2, …, by incorporating the extended set of samples {xB
(j),RB

(j)}, j = 1, …, Ninit, Ninit + 1, …, 
obtained as described in Section "Generating Infill Points". For the reader’s convenience, a concise overview of 
kriging is outlined in Fig. 3, considering scalar system responses. The extension to vector-valued functions is 
straightforward. Specifically, the components of the vector-valued metamodel s(j) represent kriging interpolation 
surrogates created for pertinent antenna responses (in this case, the reflection characteristic) at all individual 
frequencies within the frequency sweep under consideration.

Fig. 1. Pre-screening procedure for size reduction of broadband antennas.
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Generating Infill Points
The pre-screening stage (Section "Parameter space pre-screening") and a rendition of the initial metamodel s(0) 
(Section "Surrogate model construction") is followed by a machine learning (ML) process, where a series of 
designs (infill points) is generated as x(i), i = Ninit + 1, Ninit + 2, … ML also produces the refined surrogate models 
s(j), j = 1, 2, … .

The design x(i+1) is found through optimization of the current metamodel, i.e., we have

 
x(i+1) = arg min

x∈X
UP (s(i)(x)) (4)

The merit function UP has identical analytical form as the function described in Section "Design constraints. 
Explicit and implicit constraint handling"; however, it is evaluated using the surrogate model rather than EM 
simulation. This is indicated by explicitly including s(i) as an argument of UP. The problem (4) is solved in a global 
sense by means of the particle swarm optimization (PSO) algorithm100. As the metamodel is computationally 
cheap, a particular choice of the algorithm is of minor importance. Furthermore, it can be executed without much 
concern about computational budget as the cost of virtually unlimited number of merit function evaluations can 
be neglected when compared to a single EM analyzis of the antenna.

Upon solving (4), EM analysis is carried out at x(i+1) to obtain REM(x(i+1)). This data complements the training 
dataset. The refined surrogate model s(i+1) is then constructed from the sample set {xB

(j),RB
(j)}, j = 1, …, Ninit, 

Ninit + 1, …, Ninit + i, Ninit + i + 1, and employed as predictor for the subsequent iteration.
In the context of machine learning, generating the candidate design as per (4) is analogous to employing the 

infill criterion based on minimization of the predicted objective function106. This choice is motivated by two 
main factors. Firstly, the global accuracy of the metamodel is of secondary importance in comparison to the 
primary goal of identifying the constrained optimum in the process. Secondly, the pre-screening stage outlined 
in Section "Parameter space pre-screening" enables a rough allocation of the most promising region within the 
search space, along with generating several samples in that area. This ensures a satisfactory quality of the initial 
surrogate.

The termination criteria of the ML process are as follows:

• Convergence in argument, ||x(i+1) – x(i)||< ε,
• No improvement of the merit function over the last Nno_improve iterations.

The default values of the control parameter utilized in the numerical experiments of Section "Demonstration 
examples" are: ε = 10–3, Nno_improve = 20.

Complete optimization procedure
Here, we put together the proposed machine learning size reduction procedure. The pseudocode of the method 
is provided in Fig. 4. Meanwhile, Fig. 5 provides its flow diagram. The two main stages of the algorithm include 
pre-selection described in Section "Parameter space pre-screening", and the core search process (generating a 
sequence of infill points), elaborated on in Section "Generating Infill Points". As mentioned in Section "Surrogate 
model construction", the surrogate modelling technique of choice is kriging interpolation. Table 3 gathers the 
control parameters, which are only two, both related to the termination condition, and used to decide upon the 
resolution of identifying the optimum. For example, ε of 10–3 corresponds to 0.001 mm, which is more than 
sufficient for typical antenna components.

Fig. 2. A broadband antenna example: (a) antenna structure, (b) |S11| responses at random designs, 
(c) reflection responses at designs obtained using pre-screening; horizontal line denotes target operating 
frequency range (here, 3.1 GHz to 10.6 GHz) and level (here, –10 dB). Note that the responses obtained 
through pre-screening generally correspond to higher-quality designs, e.g., fulfilling the constraint 
|S11(x,f)|≤ –10 dB for f ∈ F; also, due to constraints imposed on minimum/maximum size, they are confined to 
a relatively small subset of the search space, which facilitates a subsequent identification of the fast metamodel.
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Table 4 puts together the pre-screening-related parameters, most of which are problem dependent. As 
mentioned earlier, the minimum and maximum antenna size thresholds normally come from both general 
engineering insight and possibly antenna-specific information, for example, previous experience with the same 
or similar structures. The frequency and level acceptance threshold are more generic and typically established in 
a relaxed manner (e.g., the frequencies f0.1 and f0.2 may be set at about 0.8f1 and 1.5f1, respectively).

Demonstration examples
This part of the paper addresses verification of the machine learning algorithm for global size reduction of antennas, 
introduced in Section "Global size reduction using machine learning and parameter space pre-screening". We 
start by outlining the verification case studies, which include four broadband microstrip structures. An outline of 
the experimental setup is followed by presentation of the results, as well as optimization process visualization for 
selected algorithm executions. Our approach is juxtaposed against several benchmark techniques: (i) a multiple 
start gradient-based search, (ii) gradient-based search with adaptive penalty coefficients, (iii) nature-inspired 
optimization using a particle swarm optimization routine, and (iv) a machine-learning-based algorithm, which 
does not employ the pre-screening procedure. The numerical experiments are oriented towards investigating 
the performance indicators of the considered methods, i.e., the ability to identify the optimum designs and to 
control design constraints, as well as computational efficiency. It should also be emphasized that for illustration 
purposes, antenna size reduction is carried out using a single constraint, which is a condition |S11|≤ –10 dB 

Fig. 3. Kriging interpolation modeling 71.
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over the frequency range of interest. It can also be noted that fulfilling this constraint automatically ensures 
that the operating bandwidth of the antenna is achieved as well. Optimization under multiple constraints (e.g., 
associated with gain variability, etc.) will be addressed elsewhere.

Verification antennas
The validation of our algorithm is conducted using four broadband antenna structures depicted in Figs. 6(a), 
(b), (c), and (d). These antennas are denoted as Antenna I107, Antenna II108, Antenna III109, and Antenna IV110, 
respectively. Essential parameters of Antennas I through IV, such as substrate data, geometry variables, and 
search spaces, are provided in Fig. 6(e). It is worth noting that all four antennas are microstrip-fed monopoles, 
and the target operating bandwidth is from 3.1 to 10.6 GHz. Further details about the structures can be found 
in the referenced literature107–110. The electromagnetic analysis is carried out using the time-domain solver of 
CST Microwave Studio. The EM models incorporate subminiature version A (SMA) connectors111. The average 
simulation times of the EM models of Antennas I, II, III, and IV are 2.5, 7.1, 4.5, and 1.8 min, respectively.

The main design goal is to reduce the antenna size A(x), which is understood here as the substrate area. 
Optimization is constrained with a condition imposed upon the impedance matching. More specifically, 
we have |S11(x,f)|≤ –10 dB for the frequencies from 3.1 GHz to 10.6 GHz. As mentioned earlier, we employ 
penalty functions for handling constraints, as elaborated on in Section "Design constraints. Explicit and implicit 
constraint handling".

One should emphasize that the search spaces are extensive. The number of parameters is seven, eleven, 
eleven, and fourteen for Antenna I through IV, respectively. Also, the ranges of design variables are significant: 
the average ratio between upper and lower bound is 20, 5, 35, and 13 (parameters with zero lower bound are 
excluded), for Antenna I, II, III, and IV, respectively. Antenna IV is particularly challenging, as it will become 
evident based on the results shown in Section "Results".

It should be mentioned that for compact antennas, it is the electrical size that is often considered instead of 
the absolute area expressed in, e.g., mm2. The electrical size is defined as k⋅a, where k is the wave number and a 
is the radius of the smallest sphere enclosing the antenna. However, from practical perspective absolute area is 
normally more important because of the certain physical space allocated for an antenna in a particular system. 
From this perspective, the particular value of k⋅a is of secondary importance.

Experimental setup
The proposed algorithm has been used to optimize the antennas of Section "Verification antennas" for minimum 
size. The control parameters have been set to ε = 10–3, and Nno_improve = 20 (cf. Section "Global size reduction 
using machine learning and parameter space pre-screening"), except Antenna IV, for which Nno_improve has been 
set to 40. The reason is that Antenna IV is by far the most complex test case, and it is expected that the objective 

Fig. 4. Pseudocode of the proposed machine-learning-based size reduction algorithm.
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Parameter Meaning Default value

ε Termination threshold for convergence in argument, cf. Section "Surrogate model construction" 10–2

Nno_improve Termination threshold for no objective function value improvement, cf. Section "Surrogate model construction" 20

Table 3. Suggested miniaturization procedure: control parameters.

 

Fig. 5. Proposed machine-learning-based antenna size reduction algorithm: flow diagram.
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function value would fluctuate more than in the case of Antennas I through III from one iteration to another. 
Table 5 shows the values of pre-screening parameters, which are identical in terms of F0, Lmax, and Npre. Also, the 
maximum footprint area threshold Amax has been set identical for all antennas. The only differences are in the 
case of the minimum area threshold, which varies between 180 mm2 for Antenna III and 250 mm2 for Antenna 
II. These numbers come from prior work with the same structures. Nonetheless, the differences are minor, e.g., 
setting Amin = 200 mm2 for all antennas would be just fine. The penalty coefficients β were set to 104 which 
provides a good trade-off between the miniaturization rate and the quality of constraint handling. In particular, 
given that the typical antenna size is a few hundred mm2, the contribution of the penalty term (cf. (3)) is 100 for 
constraint violation of 0.1 dB, and quickly goes up if the violation increases. This setup is generally sufficient to 
ensure that the constraint violation at the optimized design does not exceed a fraction of dB, which is practically 
acceptable.

Our procedure has been juxtaposed against four state-of-the-art algorithms outlined in Table 6. The first 
benchmark method is a gradient-based optimizer112, initialized from a random starting point. It uses penalty 
functions (cf. Section "Design constraints. Explicit and implicit constraint handling") with a fixed penalty 
coefficient β set to 103 (version I), 104 (version II), and 105 (version III). This particular setup allows us to 

Fig. 6. Test antenna structures: (a) Antenna I, (b) Antenna II, (c) Antenna III, (d) Antenna IV (light gray 
shade used to indicate ground planes), (e) essential parameters.

 

Parameter Meaning Default value

Amin Minimum antenna size Problem dependent

Amax Maximum antenna size Problem dependent

F0 = [f0.1f0.2] Frequency acceptance bounds for first antenna resonance Problem dependent

Lmax Acceptance level for for maximum in-band |S11| 4 dB

Npre Number of pre-selected data points 80

Table 4. Proposed miniaturization procedure: pre-screening parameters.
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illustrate the design trade-offs when the penalty factors are too small or too large, as compared to the setup 
utilized by the proposed technique. The second method is a trust-region optimizer using an adaptive penalty 
function method107, where the penalty coefficient is dynamically adjusted to improve the control over the design 
constraint107. Gradient-based methods are included to illustrate the necessity of global search for the specified 
test problems. The third method employed is a particle swarm optimizer (PSO)113, chosen as a representative 
nature-inspired approach. It is important to highlight that the maximum number of objective function evaluation 
for algorithm is set to 1000, which is relatively low for this category of techniques but almost impractical for 
electromagnetic (EM)-driven optimization (typical running time of two to three days!). The fourth method is a 
machine learning procedure using the same infill criterion as described in Section "Global size reduction using 
machine learning and parameter space pre-screening" (predicted objective function improvement); however, it 
is executed without any pre-screening procedure. Due to this, the initial surrogate is constructed to achieve ten 
percent of relative RMS error (estimated using cross-validation114), with the maximum number of data samples 
set to 400 (whichever occurs first). This method is included to corroborate the relevance of the pre-screening 
stage.

Results
Tables 7, 8, 9, and 10 gather the numerical results. Note that the performance figures reported in the tables 
(antenna size, constraint violation, and CPU cost) are the average values and the standard deviations computed for 
ten independent runs of each method (benchmark algorithms and the proposed procedure). The computational 
cost of the optimization process is expressed in the following format: NEM × R [NT h], where NEM is the average 
number of EM simulations (averaged over the ten algorithm runs), whereas NT is the total optimization time 
(the underlying unit is hours). Figures 7, 8, 9, and 10 show the antenna responses, as well as the changes of 
the antenna size and violation of the impedance matching condition over the algorithm iterations, for the two 
selected algorithm runs.

Discussion
The data compiled in Tables 7 through 10 enable us to draw several observations regarding the operation of the 
suggested machine learning technique and to compare it to the benchmark methods. The analysis encompasses 
various aspects of the search process, including design quality measured by the attained antenna size and 
violation of constraints, reliability assessed through solution repeatability, and computational efficiency.

• Design quality. Exquisite design quality is one of the essential advantages of the presented approach. For 
all four antenna structures, our technique yields the smallest size while ensuring excellent control over the 
reflection characteristics (average constraint violation is a small fraction of a decibel). The achieved footprint 

Algorithm Algorithm type Setup

I Trust-region gradient based 
optimizer112

Algorithm setup:
• Random initial design;
• Response gradients estimated using finite differentiation115;
• Termination criteria based on convergence in argument and reduction of the trust region size112;
• Implicit constraint handling with fixed penalty coefficient: β = 103 (version I), β = 104 (version II), and β = 105 (version III),

II
Trust-region gradient based 
optimizer with adaptive 
penalty coefficients107

Algorithm setup:
• Random initial design;
• Response gradients estimated using finite differentiation;
• Termination criteria based on convergence in argument and the trust region size reduction;
• Implicit constraint handling with adaptive penalty coefficients107

III Particle swarm optimizer 
(PSO)

Algorithm setup:
• Swarm size N = 10,
• Standard control parameters (χ = 0.73, c1 = c2 = 2.05);
• Number of iterations set to 100

IV Machine learning 
procedure

Algorithm similar to that of Section "Global size reduction using machine learning and parameter space pre-screening":
• Initial surrogate set up to ensure relative RMS error not higher than 10% with the maximum number of training samples 
equal to 400;
• No pre-screening procedure applied;
• Infill criterion: minimization of the projected objective function improvement113

Table 6. Benchmark size reduction procedures.

 

Parameter

Antenna

I II III IV

Amin 200 mm2 250 mm2 180 mm2 200 mm2

Amax 350 mm2 350 mm2 350 mm2 350 mm2

F0 = [f0.1f0.2] [2.5 4.5] [2.5 4.5] [2.5 4.5] [2.5 4.5]

Lmax 4 dB 4 dB 4 dB 4 dB

Npre 80 80 80 80

Table 5. Pre-screening parameters for Antennas I through IV.
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Optimization 
algorithm

Performance figure

Antenna size
A [mm2]a Std(A) [mm2]b Constraint violation C [dB]c Std(C) [dB]d CPU coste

Algorithm I

β = 103 212.8 14.3 1.0 0.4 164.9 × R [12.1 h]

β = 104 255.0 25.1 0.2 0.1 138.1 × R [10.2 h]

β = 105 280.1 47.4 0.1 0.1 154.0 × R [11.3 h]

Algorithm II 215.6 3.6 0.3 0.1 189.9 × R [14.0 h]

Algorithm III 425.7 145.8 0.2 0.2 1,000 × R [74.2 h]

Algorithm IV 194.8 2.2 0.2 0.2 451.6 × R [33.5 h]

Machine learning 
with pre-screening 
stage (this work)

194.6 1.4 0.08 0.05 151.3 × R [11.2 h]

Table 9. Antenna III: optimization results. aOptimized footprint area of the circuit averaged over ten 
algorithm runs. bStandard deviation of the optimized footprint area averaged over ten algorithm runs. 
cViolation of the design constraint, defined as C = max{f ∈ [3.1 10.6] GHz:|S11(x,f)|} + 10 dB, averaged over 
ten algorithm runs. dStandard deviation of the constraint violation, averaged over ten algorithm runs. eCost 
expressed in terms of equivalent number of EM analyzes (averaged over ten algorithm runs.)

 

Optimization 
algorithm

Performance figure

Antenna size
A [mm2]a Std(A) [mm2]b Constraint violation C [dB]c Std(C) [dB]d CPU coste

Algorithm I

β = 103 250.4 24.0 1.2 0.5 124.2 × R [14.6 h]

β = 104 318.6 60.0 0.1 0.1 180.3 × R [21.2 h]

β = 105 331.6 63.4 0.1 0.1 133.2 × R [15.7 h]

Algorithm II 281.6 37.1 0.2 0.2 181.7 × R [21.4 h]

Algorithm III 399.4 143.6 0.6 0.4 1,000 × R [118 h]

Algorithm IV 310.5 83.5 0.7 0.4 467.9 × R [55.2 h]

Machine learning 
with pre-screening 
stage (this work)

259.1 27.6 0.7 0.5 162.3 × R [19.2 h]

Table 8. Antenna II: optimization results. aOptimized footprint area of the circuit averaged over ten algorithm 
runs. bStandard deviation of the optimized footprint area averaged over ten algorithm runs. cViolation of the 
design constraint, defined as C = max{f ∈ [3.1 10.6] GHz:|S11(x,f)|} + 10 dB, averaged over ten algorithm runs. 
dStandard deviation of the constraint violation, averaged over ten algorithm runs. eCost expressed in terms of 
equivalent number of EM analyzes (averaged over ten algorithm runs.)

 

Optimization 
algorithm

Performance figure

Antenna size
A [mm2]a Std(A) [mm2]b Constraint violation C [dB]c Std(C) [dB]d CPU cose

Algorithm I

β = 103 318.1 42.6 1.2 0.4 43.8 × R [1.8 h]

β = 104 317.7 42.3 0.4 0.7 42.2 × R [1.8 h]

β = 105 318.8 43.3 0.1 0.2 41.4 × R [1.7 h]

Algorithm II 314.1 42.3 0.3 0.2 50.0 × R [2.1 h]

Algorithm III 360.9 67.5 0.5 0.9 1,000 × R [42.0 h]

Algorithm IV 256.7 11.9 0.3 0.3 473.6 × R [20.0 h]

Machine learning 
with pre-screening 
stage (this work)

251.8 2.0 0.1 0.05 215.3 × R [9.0 h]

Table 7. Antenna I: optimization results. aOptimized footprint area of the circuit averaged over ten algorithm 
runs. bStandard deviation of the optimized footprint area averaged over ten algorithm runs. cViolation of the 
design constraint, defined as C = max{f ∈ [3.1 10.6] GHz:|S11(x,f)|} + 10 dB, averaged over ten algorithm runs. 
dStandard deviation of the constraint violation, averaged over ten algorithm runs. eCost expressed in terms of 
equivalent number of EM analyzes (averaged over ten algorithm runs.)
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Fig. 7. |S11| of Antenna I at the minimum-size designs rendered by means of our algorithm (top), the antenna 
size versus iteration index (middle), and design constraint violation versus iteration index (bottom), shown 
for the representative search runs: (a) run 1, (b) run 2. The iteration counter starts after constructing the 
initial surrogate model. The horizontal lines mark the target operating frequency range (here, from 3.1 GHz to 
10.6 GHz), and the acceptance level of –10 dB.

 

Optimization 
algorithm

Performance figure

Antenna size
A [mm2]a

Std(A)
[mm2]b Constraint violation C [dB]c

Std(C)
[dB]d CPU coste

Algorithm I

β = 103 727.9 236.0 1.7 1.5 180.3 × R [5.3 h]

β = 104 829.5 206.4 1.0 1.9 211.2 × R [6.2 h]

β = 105 842.8 130.2 0.4 0.9 248.0 × R [7.2 h]

Algorithm II 753.9 243.0 0.9 0.8 230.3 × R [6.7 h]

Algorithm III 457.8 59.1 0.7 0.4 1,000 × R [29.0 h]

Algorithm IV 482.7 196.8 0.7 0.5 947.2 × R [27.5 h]

Machine learning 
with pre-screening 
stage (this work)

202.2 12.5 0.2 0.06 472.5 × R [13.7 h]

Table 10. Antenna IV: optimization results. aOptimized footprint area of the circuit averaged over ten 
algorithm runs. bStandard deviation of the optimized footprint area averaged over ten algorithm runs. 
cViolation of the design constraint, defined as C = max{f ∈ [3.1 10.6] GHz:|S11(x,f)|} + 10 dB, averaged over 
ten algorithm runs. dStandard deviation of the constraint violation, averaged over ten algorithm runs. eCost 
expressed in terms of equivalent number of EM analyzes (averaged over ten algorithm runs.)
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areas are significantly smaller than for all benchmark methods, and the difference is particularly pronounced 
for Antenna IV, which is the most challenging case. Gradient based methods produce inferior results, which 
corroborates that the considered design tasks are multimodal. Furthermore, constraint control is a problem 
for Algorithm I: a clear trade-off between miniaturization rate and constraint violation is observed, which 
indicates the issues related to manual setup of the penalty coefficients. Algorithm II (adaptive penalty factor 
adjustment) effectively alleviates this difficulty, yet it is unable to overcome a local nature of gradient search. 
Algorithm III, although formally being a global optimization procedure, also produces inferior results, which 
is related to limited computational budget assigned to it (1,000 objective function evaluations). This budget is 
significant (and almost prohibitive) in terms of the CPU time, yet, seems insufficient from the point of view 
of rendering satisfactory outcome. Finally, the machine learning algorithm without pre-screening stage (Al-
gorithm IV) produces results that are relatively close to those generated by our method, but its performance 
is inconsistent (e.g., the results are poor for Antennas II and IV).

• Reliability. Here, we are mainly interested in repeatability of results. The standard deviation of the antenna 
footprint area and of constraint violation is indicative of performance consistency. According to the obtained 
outcomes, the proposed algorithm demonstrates the highest level of result repeatability, excelling in both 
antenna size and constraint violation. For Antenna I and III, standard deviation of the size is less than one 
percent of the average value, and it is by over an order of magnitude lower than for other methods (on the 
average). Furthermore, the small standard deviation indicates that the solutions found by the algorithm are 
most likely close to global optimum. Regarding Antennas II and IV, the standard deviation is approximately 
ten percent and six percent of the average, respectively, representing a substantial reduction compared to the 
benchmark methods. This is pronounced for Antenna IV, where most of the benchmark methods exhibit large 
result variability, especially for Algorithms I and II (gradient-based routines) but also Algorithm IV.

Fig. 8. |S11| of Antenna II at the minimum-size designs rendered by means of our algorithm (top), the antenna 
size versus iteration index (middle), and design constraint violation versus iteration index (bottom), shown for 
the representative search runs: (a) run 1, (b) run 2. The iteration counter starts after constructing the initial 
surrogate model. The horizontal lines mark the target operating frequency range (here, from 3.1 to 10.6 GHz), 
and the acceptance level of –10 dB.
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• Computational efficiency. The expenses associated with the optimization process are notably higher for the 
proposed algorithm than for local methods (Algorithms I and II), with a more pronounced effect observed for 
Antennas I and IV. However, for Antennas II and III, the costs are comparable, highlighting the computational 
efficiency of the presented technique—achieving global search capability at costs similar to local algorithms. 
In comparison to the nature-inspired optimization method (PSO), our technique exhibits considerably better 
efficiency, even though, as mentioned earlier, PSO operates with a low budget compared to the typical setting 
for this class of algorithms. Additionally, the proposed framework is significantly faster than Algorithm IV, 
underscoring the importance of the pre-screening stage. The average reduction of the computational cost is as 
high as sixty percent, and it is accompanied by the added benefit of improved design quality. It should also be 
noted that the computational cost of the optimization process is not monotonically increasing with respect to 
the parameter space dimensionality (e.g., the costs are higher for Antenna I than for Antennas II and III). The 
likely reason is more complex relationship between antenna responses and geometry variables (e.g., higher 
nonlinearity), which normally translates to higher expenses due to problems with rendering accurate surro-
gate model. At this point, it should be reiterated that local optimizers (Algorithms I and II) are definitely faster 
than global search methods, and our purpose was not to beat them in terms of computational efficiency. The 
point was to illustrate that the results obtained by local optimizers are significantly worse in terms of design 
quality than those obtained using global methods (Algorithms III and IV, and the proposed technique), due 
to their inability to identify global optima. This has been clearly demonstrated in Tables 7 through 10.

For additional validation, selected optimum designs were simulated, and the results were presented in Figs. 11, 
12, 13, and 14, for Antennas I through IV, respectively. As can be observed, despite considerable size reduction, 
all antennas maintain omnidirectional radiation as expected for UWB antennas, and excellent level of efficiency. 

Fig. 9. |S11| of Antenna III at the minimum-size designs rendered by means of our algorithm (top), the 
antenna size versus iteration index (middle), and design constraint violation versus iteration index (bottom), 
shown for the representative search runs: (a) run 1, (b) run 2. The iteration counter starts after constructing 
the initial surrogate model. The horizontal lines mark the target operating frequency range (here, from 3.1 to 
10.6 GHz), and the acceptance level of –10 dB.
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Also, the maximum in-band reflection is close to –10 dB, which means that the design constraint is reliably 
controlled.

The designs presented in Figs. 11, 12, 13, and 14, were fabricated and experimentally validated. Figure 15 
shows the photographs of antenna prototypes, as well as a comparison of EM-simulated and measured reflection 
characteristics. As observed, the datasets are well-aligned with minor discrepancies resulting from measurement 
inaccuracies and fabrication/assembly imperfections.

For the sake of supplementary illustration, the results gathered in Tables 7 through 10 have been visualized in 
Fig. 16, which shows the average antenna size, constraint violation, and the optimization cost.

In summary, the presented machine learning approach significantly surpasses the entire range of the 
benchmark methods in terms of performance. Our technique does not only render designs of higher quality 
w.r.t. the achieved antenna size and constraint control, but it is also computationally cheaper than the global 
search methods included in the benchmark set. This level of performance corroborates utility of the algorithmic 
tools incorporated into the procedure, including implicit constraint handling, knowledge-based parameter space 
pre-screening, as well as the predicted objective function improvement as the infill criterion.

In a similar vein, one should note that the our technique is superior to Algorithm IV with respect to all 
performance indicators, which demonstrates the relevance of the parameter space pre-screening. The latter 
allows us to quickly identify the promising subsets of the search space, which enables construction—at lower 
computational cost—a surrogate model featuring improved predictive power. This, in turn, carries over to 
overall computational efficiency and dependability of the antenna miniaturization process.

Conclusion
This paper introduces an innovative machine learning approach designed for the explicit simulation-based 
miniaturization of antenna structures. The inherent challenges in this undertaking stem from the high costs 

Fig. 10. |S11| of Antenna IV at the minimum-size designs rendered by means of our algorithm (top), the 
antenna size versus iteration index (middle), and design constraint violation versus iteration index (bottom), 
shown for the representative search runs: (a) run 1, (b) run 2. The iteration counter starts after constructing 
the initial surrogate model. The horizontal lines mark the target operating frequency range (here, from 3.1 to 
10.6 GHz), and the acceptance level of –10 dB.
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associated with evaluating antenna responses, necessitating full-wave EM simulation, the presence of expensive 
constraints, and the typically extensive search spaces, both with respect to dimensionality and parameter 
ranges. The presented methodology harnesses a pre-screening strategy to pinpoint promising regions within 
the parameter space, effectively mitigating the computational expenses. Furthermore, it incorporates an implicit 
constraint handling mechanism, effectively converting the design problem into a formally unconstrained task. 
The machine learning scheme, utilizing predicted merit function improvement as an infill criterion, expedites 
the algorithm’s convergence.

The proposed algorithm has been verified based on four broadband antennas. It was also favourably compared 
to several benchmark methods, including both local and global optimization procedures. The achieved results 

Fig. 12. Antenna II: simulation results for a selected design found using the proposed technique. Shown are 
reflection response (target operating bandwidth marked using the horizontal line), total efficiency, and H-plane 
radiation patterns at 4 GHz, 6 GHz, and 8 GHz (from left to right).

 

Fig. 11. Antenna I: simulation results for a selected design found using the proposed technique. Shown are 
reflection response (target operating bandwidth marked using the horizontal line), total efficiency, and H-plane 
radiation patterns at 4 GHz, 6 GHz, and 8 GHz (from left to right).
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corroborate remarkable performance of our method with respect to design quality, solution repeatability, but 
also computational efficiency. The standard deviation of the antenna size is only about four percent of the average 
(while being below one percent for two out of four verification structures), which is indicative of allocating 
the global optimum. Furthermore, comparison with machine learning approach that does not rely on the pre-
screening stage corroborates the relevance of the latter in terms of improving all performance indicators, but also 
leading to sixty-percent computational savings.

The size reduction method outlined in this paper presents a promising alternative to existing state-of-the-art 
techniques, particularly when global search requirements are identified, and current methods, especially nature-
inspired algorithms, prove excessively costly for direct handling of electromagnetic (EM) simulation antenna 

Fig. 14. Antenna IV: simulation results for a selected design found using the proposed technique. Shown are 
reflection response (target operating bandwidth marked using the horizontal line), total efficiency, and H-plane 
radiation patterns at 4 GHz, 6 GHz, and 8 GHz (from left to right).

 

Fig. 13. Antenna III: simulation results for a selected design found using the proposed technique. Shown are 
reflection response (target operating bandwidth marked using the horizontal line), total efficiency, and H-plane 
radiation patterns at 4 GHz, 6 GHz, and 8 GHz (from left to right).
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models. Future efforts will concentrate on enhancing the pre-screening stage and incorporating methods to 
more efficiently address dimensionality-related challenges. Another topic for further research is to investigate 
alternative data-driven modelling techniques to construct the surrogate employed by the machine learning 
scheme (e.g., neural networks, polynomial chaos expansion, GPR). Furthermore, application of the proposed 
approach to size reduction of other types of antennas, such as MIMO structures, or directive antennas (e.g., 
quasi-Yagi) will be considered. While this is generally straightforward as our methodology does not leverage any 
specific properties of the antenna under optimization, additional constraints might have to be considered (e.g., 
concerning port isolation, gain, etc.).

Fig. 15. Experimental validation of the optimized designs of Antennas I through IV presented in Figs. 11, 12, 
13, and 14: (a) Antenna I, (b) Antenna II, (c) Antenna III, (d) Antenna IV. Shown are antenna prototype, front 
(left) and back (right), and the comparison between EM-simulated (grey) and measured (black) reflection 
responses.
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Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Fig. 16. Visual comparison of results obtained by the proposed and the benchmark methods. Shown are the 
average antenna size (left), average constraint violation (middle), and average running cost in terms of the 
number of EM simulations of the antenna at hand (right).
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