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ABSTRACT: Ionic liquids (ILs) provide a promising solution in
many industrial applications, such as solvents, absorbents,
electrolytes, catalysts, lubricants, and many others. However, due
to the enormous variety of their structures, uncovering or
designing those with optimal attributes requires expensive and
exhaustive simulations and experiments. For these reasons,
searching for an efficient theoretical tool for finding the
relationship between the IL structure and properties has been
the subject of many research studies. Recently, special attention
has been paid to machine learning tools, especially multilayer
perceptron and convolutional neural networks, among many other
algorithms in the field of artificial neural networks. For the latter,
graph neural networks (GNNs) seem to be a powerful
cheminformatic tool yet not well enough studied for dual molecular systems such as ILs. In this work, the usage of GNNs in
structure−property studies is critically evaluated for predicting the density, viscosity, and surface tension of ILs. The problem of data
availability and integrity is discussed to show how well GNNs deal with mislabeled chemical data. Providing more training data is
proven to be more important than ensuring that they are immaculate. Great attention is paid to how GNNs process different ions to
give graph transformations and electrostatic information. Clues on how GNNs should be applied to predict the properties of ILs are
provided. Differences, especially regarding handling mislabeled data, favoring the use of GNNs over classical quantitative structure−
property models are discussed.

■ INTRODUCTION
Ionic liquids (ILs) are organic salts that exist in a liquid state at
or near room temperature.1 They have been widely studied
due to their unique properties, such as nonvolatility, wide
electrochemical window, high thermal stability, and tunability.
The ionic nature and tunability of ILs allow them to be
designed and tailored for specific uses.2 By choosing suitable
cation and anion combinations, ILs can be engineered to
possess appropriate solvation properties,3 viscosity,4 melting
point,5 density,6 and other physicochemical characteristics for
a particular application.7 This gives ILs the title “designer
solvents”. The structure−property relationships of ILs provide
guidelines for the rational design of novel ILs with targeted
performance as designer solvents.8

The molecular structure of chemical compounds, including
ILs, is the fundamental determinant of their properties, as
different arrangements of atoms within the molecule lead to
varying chemical (both inter- and intramolecular) interactions,

which define the compound’s behavior and characteristics.
Understanding the relationships between molecular structure
and properties is important for rational materials design and
discovery. Quantitative structure−property relationship
(QSPR) studies aim to model these associations9 mathemati-
cally. The common approach is to represent molecules via a set
of molecular descriptors or depiction of how many times
predefined groups contribute to the formation of a molecule.
QSPR modeling has several advantages over traditional
experimental methods, such as experimental screening or
molecular simulations. It is relatively fast and inexpensive

Received: August 16, 2023
Revised: November 1, 2023
Accepted: November 16, 2023
Published: November 28, 2023

Articlepubs.acs.org/JPCB

© 2023 The Authors. Published by
American Chemical Society

10542
https://doi.org/10.1021/acs.jpcb.3c05521
J. Phys. Chem. B 2023, 127, 10542−10555

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

G
D

A
N

SK
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
Ja

nu
ar

y 
3,

 2
02

4 
at

 1
0:

33
:3

3 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/page/virtual-collections.html?journal=jpcbfk&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Karol+Baran"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adam+Kloskowski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcb.3c05521&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c05521?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c05521?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c05521?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.3c05521?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpcbfk/127/49?ref=pdf
https://pubs.acs.org/toc/jpcbfk/127/49?ref=pdf
https://pubs.acs.org/toc/jpcbfk/127/49?ref=pdf
https://pubs.acs.org/toc/jpcbfk/127/49?ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c05521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCB?ref=pdf
https://pubs.acs.org/JPCB?ref=pdf
https://acsopenscience.org/open-access/licensing-options/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


compared to the synthesis and characterization of large
numbers of compounds.9 QSPR models also provide insights
into the key molecular features influencing a particular
property. This understanding can guide the development of
new chemical entities with targeted properties. Furthermore,
once developed, QSPR models can be used to predict the
properties of untested compounds by using proper mapping of
molecular features describing the structure of a compound with
a target property.10

Multiple linear regression, popular in QSPR, might not
capture nonlinear relationships present in complex and
multidimensional chemical space.11 Linear models are popular
and easy to build and operate on molecular descriptors.
However, there are issues arising in the interpretation and
selection of important features.12 In machine learning (ML),
there are many possible algorithms to deal with that kind of
issue, among which random forest,13 gradient boosting,14 and
simple multilayer perceptron15 should be listed. However,
algorithms that allow capturing the most complex relations are
neural networks (NN).16 The NNs were successfully applied
to predict the density,17 viscosity,18 and toxicity19 of ILs.
Besides the algorithm itself, data set size also seems to be an
important limitation in QSPR studies. Data set length may vary
from about 30 samples20 to as much as 50,000 or more.21 Its
size might play a critical role in the model’s overall
performance.22 A separate issue is the quality of the data set
used for training the model as well as for its validation and
testing. In the literature, set cleaning applies to both the
chemical correctness of structures23 and the values of output
variables.24

Graph neural networks (GNNs) have emerged as a
promising tool for molecular studies due to their ability to
handle graph-structured data. Their application potential
results from the way of representing the molecular structure,
where molecules are represented as graphs where atoms and
their related properties are encoded in the form of nodes, while
chemical bonds are in the form of connections in the graph.
GNNs are a type of deep neural network that can learn
representations of graph-structured data by recursively
aggregating and transforming information from local neighbor-
hoods of nodes. Compared with traditional ML methods that
assume data are represented as vectors or matrices, GNNs can

directly process molecular graphs, which are essential for
studying chemical compounds and their properties. GNNs
represent a significant step forward in the development of deep
neural networks for molecular studies and have the potential to
enable more accurate predictions and discoveries in drug
discovery and material science. However, they account for only
a limited number of studies on molecular property prediction
(MPP).25 Recently, the use of GNNs in many fields of
chemistry is under investigation.23 In the case of predicting
properties of ILs, GNNs were applied to predict the solubility
of carbon dioxide24 and activity coefficients of solutes
important from the environmental perspective.26 The two
studies confirmed that GNNs are well-suited for structure−
property studies. GNNs excel in capturing complex structural
relationships within molecular graphs, which is crucial for ILs’
property prediction due to the intricate dependencies among
molecular constituents and the complex nature of dual
molecular systems. By harnessing GNNs, researchers can
potentially achieve superior predictive accuracy and gain
deeper insight into the structure−property relationships of
ILs, thereby advancing their tailored design for various
applications. However, there are some open questions that
were not addressed in these studies, mostly regarding
comparison of different graph formation possibilities used
and data quality needs of the GNN algorithm. Issues regarding
outlier detection are also interesting to be covered.
Modelability analysis is becoming interesting issue in the
field of MPP, and it is proposed that one should be aware of
algorithmic ways of detecting outliers, as well as points being
close to hyperplanes separating datasubsets.27 Finally, transfer
learning as a tool that might increase models’ performance is
heavily investigated using various deep28 and convolutional29

neural networks.
Therefore, it would be interesting to obtain more in-depth

insight into how GNNs process ILs that are specific
compounds, the properties of which depend not only on the
structure of subcomponents (ions) but also on their
combination. The study used data on the physicochemical
properties of ILs, well described and documented in the
literature, i.e., density, viscosity, and surface tension. The data
sets used also cover the dependencies of the mentioned
properties on the conditions of measurement (temperature and

Figure 1. Overview of factors and methods investigated in the study.
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pressure). Several key issues are detailed, analyzed, and
discussed. First, the impact of data set size and outlier
detection methods is established. Second, the impact of
different ways of representing IL molecules as graphs and how
electrostatic information should be provided to GNNs are
examined. Finally, the possibility of transfer learning and fine-
tuning is examined. In the literature on ILs, the topics
addressed are not widely studied, and the authors would rather
use one of the tested strategies without in-depth validation of
other options.26 Obtaining answers to those questions allows
for obtaining a well-performing model for structure−property
modeling of ILs properties using GNNs in a systematic
approach. Our main goal is to gain some insights into how
GNNs handle chemical structural information for complex
chemicals such as ILs (that might be treated as a mixture of
two different species). Finally, the model performance and
model-building procedure are critically compared with
previously reported findings in the source article.

■ METHODS
Research Problems. Figure 1 shows how studied

problems combine into a systematic study on GNNs
application for molecular property prediction of ILs. First,
input preparation and data set cleaning were discussed. Special
attention was paid to modeling using an expertise-based
cleaned data set that contains data of slightly lower reliability
yet published in the literature on the topic. Moreover, different
ways in which IL, as a pair of a cation and an anion, might be
encoded into a graph were investigated. In addition, a study of
the importance of electrostatic information for GNNs was
made. Furthermore, the impact of the structure optimization
tool, as provided in functions of Open Babel30 and RDKit,31

on GNN performance was checked. Finally, the models’
performance with tested possibilities on transfer learning and
fine-tuning was discussed.
Data Sets. In ML, the data set is a crucial component for

building accurate models since a high-quality and diverse data
set provides the necessary information for the model to
generalize well to new data.
In this study, we used three data sets provided in the series

of articles by Paduszynśki and containing information on the
density (ca. 40,000 points),17 viscosity (ca. 20,000 points),18

and surface tension32 (ca. 6000 points) of ILs. Since the
databases are relatively up-to-date and there are no more
extensive studies in the field, these databases could be treated
as benchmarking in the field of structure−property modeling
of ILs. Analysis of the chemical diversity of the data set, types,
and numbers of different cations and anions, temperature and
pressure ranges, ranges of property values, units, and
experimental uncertainty is available in publications introduc-
ing databases.
Further in the text, there are references to the preprocessing

of databases done by Paduszyski and his terminology referring
to preparing the database for modeling. Therefore, the term
“clean” data set refers to a data set after preprocessing
suggested in the original article. On the other hand, the term
“raw” data set represents a data set collected at original
publications without any critical assessment.
Outlier Detection. Outliers are data points that are

significantly different from the majority of the data in an ML
model. These data points might have a big impact on the
model’s performance, as they can skew the results and lead to
inaccurate predictions. Since there might be outliers in the data

set, its detection using several algorithms was studied.
Algorithms used for that purpose were based on Z score,
interquartile range (IQR), or median absolute deviation
(MAD).33 The Z score technique calculates the scores for
each observation based on the mean and standard deviation of
all observations. Extremely high or low Z scores, typically
above 3 or below −3, denote outliers. The IQR outlier
detection method involves calculating the distance between the
first and third quartiles (Q1 and Q3) in the data. Observations
more than 1.5 times the IQR below Q1 or 1.5 times the IQR
above Q3 are considered outliers. The IQR and corresponding
limits are resistant to outliers, making the method suitable for
small data sets. The median absolute deviation technique uses
the MAD, the median of the absolute deviations from the
data’s median, as a measure of variance. Observations
exceeding 2.5−3.5 times the MAD from the median are
classified as outliers. Like the IQR, MAD is robust against
outliers, making it a preferred method for analyzing skewed
data. All data cleaning was performed using Pandas and
Numpy libraries for Python.
Basic Concepts of GNNs. In GNNs, graphs are used as

data structures to represent complex relationships between
entities. Using graphs as a data structure, GNNs can capture
the dependencies and interactions between entities, making
them well-suited for tasks such as molecular property
modeling.25 Formally, graph G = ({V}, {E}) can be denoted
as a pair of vertices V (nodes) and edges E.
Learning in GNNs is a process of updating information

stored in graph structure while maintaining its integrity.34

Since neural network learning is basically an optimization
process whose goal is to minimize model error, it is done using
back-propagation, during which new model weights θ are
obtained in accordance with the change of loss function with
model weights change ∂L/∂θ multiplied by learning rate
depicting how conservatively weights are updated:

L X( , )l l
l

1 = ++

Thus, it could be stated that information is passed from one
node to another node in a graph, and therefore, this neural-
message-passing schema is a more generalized version of
matrix convolution. Consequently, the graph structure is
preserved, and there is no need to normalize molecules of
different sizes to fit into one unified matrix for all samples'
matrix sizes. One of the techniques used in GNNs, namely,
neural message passing,35 is mathematically interpreted as a
more generalized convolution. It is performed according to the
formula:

x f x x w N v( , : ( ) )v
l l

v
l

w
l1 = { }+

where:

1. l represents the iteration step.
2. N(v) represents the set of nodes connected with v.
3. xv represents the a vector of features of a node v.
4. f represents the aggregation function taking into account
features of node v and all its surroundings.

One of the simplest aggregation function is the weighted
average (which will be further denoted as GCN in accordance
with the nomenclature used in Pytorch-geometric implemen-
tation):
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x W
c

x1
v
l l

w N v v w v
w
l1 1

( ) ,
= ·+ +

{ }

where Wl+1 is the weights adjusted during model training
(depicting how features are summed), and cw,v is a normal-
ization factor.
During this process, information is shared from one node

through its connection by edges to other nodes. Therefore,
each node represents the average information from itself and
its surroundings. Since averaging the information might be
obtained in several ways, there are many possible functions
executing that process. In this study, four of the samples were
tested. Types of graph networks studied in this work are

1. Graph convolutional networks (GCN)36�GCNs ag-
gregate the neighbor feature information from each node
so it can be weighted and passed to neighboring nodes.

2. Graph attention networks (GAT)37�information is not
just simply weighted like in GCNs but rather calculated
by a normalized attention function taking into account
embeddings of nodes between which message passing
occurs.

3. Convolutional GNNs without neighborhood normal-
ization (k-GC)38�the network has an alternative to
GCN formulation of convolution operation and allows
hierarchical architecture and, therefore, is learning
features of subgraphs of an input graph.

4. Convolutional networks learning molecular fingerprints
(MFCs)39�traditional circular fingerprints were rede-

Figure 2. (A−C) Different ways of providing structural information on ILs for GNNs.
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fined by replacing hashing, indexing, and canonicaliza-
tion with differentiable substitutes, leading to a novel
type of graph convolution.

After the neural message passes, the readout phase occurs.
During the readout phase, the pertinent structural data
associated with each node are subsequently amalgamated
into a continuous vector depiction of the graph. This
amalgamation of the hidden states of individual nodes is
achieved through utilization of a pooling function, such as
summation. The resultant vector assumes the role of an input
for a subsequent multilayer perceptron.
Transfer learning, a fundamental concept in deep learning, is

gaining prominence in the domain of cheminformatics. This
approach leverages pretrained neural network models, which
have been initially developed on a vast data set for a related
task, and fine-tunes them for the specific property of interest.
Transfer learning enables the model to adapt its knowledge
and representation of chemical structures from one domain to
another, substantially reducing the need for extensive labeled
data and accelerating the development of robust predictive
models. The pretraining phase involves training a GNN model
on a larger and more diverse chemical data set, where the
network learns mostly how to encode general molecular
features and relationships between atoms and bonds.
Subsequently, the model is fine-tuned on a smaller data set
for which less experimental data are available, allowing it to
specialize in predicting this physicochemical property. Fine-
tuning involves modifying the model’s parameters through
additional training while preserving the knowledge gained
during pretraining. The fine-tuning process seeks to update the
model parameters θ, taking their initial values from the model
trained in the first step rather than random values. Therefore,
initial model parameters θ already represent some knowledge.
This two-step process harnesses the generalization capabilities
of the pretrained model and tailors it to the nuances of the
chemistry of certain properties, enhancing its predictive
accuracy. Transfer learning in this manner enhances the
model’s capacity to extrapolate valuable insights from limited,
specialized data and demonstrates its potential for the
advancement of molecular property prediction in the field of
cheminformatics. Transfer learning is extensively examined in
the field of GNNs.28,29

Modeling and Neural Network Architecture. In this
study, the architecture of the proposed network consisted of 4
graph convolution layers with 128, 256, 256, and 128 neurons
followed by 2 linear (fully connected) layers. The nonlinear
activation function ReLU was incorporated. The first linear
layer contained 256 neurons plus one neuron per condition,
and the second layer contained 128 neurons. A dropout of 0.2
after convolutional layers was applied. Additionally, to drop
out before the final layer, batch normalization was applied.
During training, mean squared error as a loss function was
minimized with Adam as the optimizer. The learning rate was
set to 0.001, with the Cosine Annealing scheduler restarting
every 40 epochs. The learning was performed for 300 epochs,
which were sufficient for the GNNs to converge in all studied
scenarios. Neural network architecture was obtained by
reducing architecture from other studies in the field24 until
metrics were significantly lowered to obtain networks that do
not overfit the data. All operations on neural networks were
performed using PyTorch40 and PyTorch Geometric41 libraries
for Python.

Chemical Representation of Molecules. Molecules
might be interpreted as graphs by representing each atom as
a node and each bond as an edge connecting two nodes. For
this purpose, a proper molecular structure is needed. Even
though bond angles or lengths are not used as features in this
study, molecular geometry affects, for example, partial charge
calculations. Representation as graphs of substances composed
of two molecules (species), such as ILs, should be more heavily
investigated. There were three options examined differing in
molecular geometry optimization schemas, which subsequently
lead to different network configurations. In the first scenario
(Figure 2A), the cation and anion molecular structures were
optimized separately (treated as separate molecular graphs)
and, subsequently, were represented as one matrix. This matrix
combining occurred in a manner in which the cation graph was
in the left upper corner, the anion graph was in the right lower
corner, and the rest of the matrix was filled with null values. In
the second scenario (Figure 2B), ILs as a cation−anion pair
were treated as a single graph. Molecular structures were
optimized in total as if they were one molecule. However, due
to consistency, atoms from the cation are listed above those
from the anion. In the third one (Figure 2C), two separate
graph convolutions (separately for cation and anion) were
performed in parallel, and matrix concatenation was not
applicable. In that case, the cation and anion vectors were
joined before the final linear fully connected layers. Scenarios
A24 and C26 were used previously without an in-depth analysis
of reasons favoring their usage. In this work, a novel factor, i.e.,
the impact of virtual ionic bond insertion (as a factor that eases
the passage of information in the graph), was studied for these
two scenarios. The ionic bond is represented as an additional
edge, with weight −1, added to the end of the adjacency list (as
represented in yellow and text “linking ionic bond” in Figure
2). Virtual ionic bonds are applicable only in scenarios A and
B. An additional edge representing the virtual ionic bond was
added in such a manner that the first atom in the cation
molecule is linked to the last atom in the anion molecule. The
exact order of linking of the atoms is arbitrary. However, it is
not expected to impact graph convolution significantly. It is
worth noting that every possible option will be somehow
misleading because real liquid systems are dynamic. It is also
expected that between scenarios A and B there should be a
significant difference in the value of charges associated with
atoms. This is because ion screening during optimization
should vastly affect that parameter. All the scenarios are
presented visually in Figure 2. The chemical structures and
matrices presented in Figure 2 depict the main concept of each
examined hypothesis in an illustrative manner and do not
directly correspond to specific matrices or graphs employed in
the study.
For proper graph creation, optimization of chemical

geometry and proper molecular feature calculation are
essential. Each entry in the database covers the name of IL,
its SMILES textual representation, conditions (for density data
set�temperature and pressure in which the experiment was
conducted; for viscosity and surface tension data sets, only the
temperature was provided), and the value of the physicochem-
ical property. Then, SMILES was converted into a molecular
object using the RDKit library for Python.31 Structures were
optimized using Open Babel30 or RDKit31 using a conforma-
tional search strategy coupled with force field (FF)
optimization. A key argument favoring a computationally
determined FF is the uniformity and range of performance that
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parametrization confers against standard computationally
expensive theoretical models.42

Regarding the way of transforming structural information
into a graph, each atom in a molecule was treated as a node
with the following properties: atomic number, number of
hydrogens, hybridization, aromaticity, and charge. Chemical
bonds were represented as edges connecting nodes with
weights set according to the multiplicity and aromaticity of the
corresponding chemical bond. To fully compress chemical
information into a molecular graph, nearly all the readily
available atom/bond-level properties were used.43 All the
information was calculated using RDKit, except for partial
charges, which were determined by both used chemical
packages, namely, RDKit and Open Babel. Different methods
exist for calculating partial charges, each with its advantages
and disadvantages. The following are different types of partial
charges incorporated as one of the input parameters for GNNs:
1. Gasteiger-Marsili44 sigma partial charges: This method
assigns partial charges to atoms in a molecule based on
the electronegativity of neighboring atoms and the
number of bonds to those atoms. It is widely used in
computational chemistry due to its speed and accuracy.
However, the procedure was rather designed for neutral
molecules than ions.

2. MMFF94 partial charges42: This method is part of the
Merck molecular FF (MMFF) and is based on a
combination of quantum chemical calculations and
empirical fitting. It is known for its accuracy in
predicting the properties of organic molecules. However,
partial charge calculations strongly depend on the
parametrization of the FF, which might not be the
best choice for niche or novel classes of compounds.

3. Formal charges45: These are charges assigned to atoms
in a molecule based on the number of valence electrons
and the number of bonds to the atom. Formal charges
are often used to identify important resonance structures
and to explain the reactivity of a molecule. However,
formal charges are not true partial charges but rather a
way to assign charges to atoms in a molecule based on
the number of valence electrons and bonds. They do not
take into account the distribution of electron density in
the molecule, so they can describe charge distribution
inaccurately.

4. QTPIE partial charges46: This method takes into
account charge transfer, polarization, and equilibration
effects in a molecule. It is known for its accuracy in
predicting the properties of small molecules and
biomolecules. However, the method was designed for
electrically neutral species.

Data Set Splitting. The data set was divided into training,
validation, and test sets. Special attention was paid to the test
set. The proposed procedure was a little more complex when
compared with a simple random split, but it is necessary to
ensure that enough data are provided for training on clean and
raw data sets. Therefore, the test set was drawn exclusively
from the clean data set and, by assumption, covers 10% of
entries (for the raw data set, the coverage was approximately
3%). Taking into account that the clean data set constituted
26% of the raw set, the obtained test set contained ca. 1% of
unique liquids. Since data sets contain multiple data for one
liquid (due to temperature dependency), it is beneficial to let
the test set capture both structural and conditional relation-

ships. Therefore, a test set was selected by the random
selection of ILs together with associated data points (all
measured for a given IL). The test set is selected by randomly
choosing SMILES strings from the data set and assuring that
they would not be used for training or validation of a neural
network. It was assured that testing examples were selected
only from the clean data set, so the model was not tested on
samples whose solidness or comparability to other data was
undermined. The same test set was used for both clean and
raw data sets. The remaining parts of the data sets (clean and
raw) were split in a proportion of 5:1 for validation and
training purposes, so the overall proportion of sets was
75:15:10 for training, validation, and test sets for the clean data
set, respectively.
Model performance was evaluated using metrics such as R2,

RMSE, and MARE. R2 represents the proportion of the
variance in the dependent variable explained by the
independent variables in the model. RMSE (root mean
squared error) is the measure of the differences between
values predicted by a model and the actual observed values of
the variable being predicted. Mean absolute relative error
(MARE) is the average of the prediction errors divided by the
true value of the property. For each mean, the metric value
based on 4 runs (random seed values with 10 repetitions for
each seed), as well as standard deviation, are provided.

■ RESULTS AND DISCUSSION
Impact of Data Set Cleaning. Data cleaning is an

important yet controversial step in the ML model-building
process.47 The procedure protocols are strongly user-depend-
ent and not interchangeable. In the series of articles sourcing
the databases, cleaning was done via careful assessment of the
comparability of data.17,18,32 In the first step of the database
revision, data sets lacking essential sample information and
experimental methods for property determination were
excluded, and the data with the lowest declared water content
were chosen as reference sets, although inconsistencies
required manual inspection. Problematic data underwent
auxiliary analyses and comparisons with similar data. In the
second step, the remaining data sets were regressed using
established equations on temperature dependence and other
statistical methods with outliers detected and excluded
iteratively based on statistical significance, as shown through
Williams plots and leverage analysis. However, it leads to
excluding many experimental findings, and modeling using
only half or fewer of the data available in the literature might
seem to be too strict an approach.
In the databases, there are about 40,000 points with

experimental data for density, 20,000 for viscosity, and 6000
for surface tension. However, after a cleaning procedure
applied by the author, only 58, 22, and 27% (respectively,
density, viscosity, and surface tension) remain for modeling.
Additionally, when comparing structural diversity in raw and
clean data sets, it can be seen that only 16 or 24% (for viscosity
and surface tension, respectively) of unique ILs in the raw data
set are still present in the clean data set. Only for density, it can
be stated that the raw and clean data sets cover similar
chemical space since 93% of ILs present in the raw data set are
also present in the clean one. Paduszynśki used only the clean
data sets for modeling and stated that modeling using the
“raw” values produced incredibly low-grade and erroneous
results.18 Therefore, it would be greatly beneficial to obtain a
model that could utilize the data regarding whether they are

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.3c05521
J. Phys. Chem. B 2023, 127, 10542−10555

10547

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.3c05521?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://mostwiedzy.pl


immaculate. The adopted assumption obviously leads to the
use of possibly large data sets, which enable the use of self-
learning techniques, such as graph networks. This way would
be possible to eliminate personal involvement by omitting the
typical stage of clearing the collection of data of questionable
quality and at the same time verifying the resistance of the
methodology to the presence of questionable data.
In Table 1, model performance with different data set

cleaning scenarios is presented. As a starting model setup,
building schema using (i) separate optimization for one graph
(compare Figure 2A) with (ii) formal charges and (iii) GCN
convolution function was adopted. Model performance was
evaluated on samples selected from the clean data set, so that
model was tested on certainly reliable data. For each property,
training on both raw and clean data sets was performed, and
the best results are in bold. It could be seen that for the
prediction of density (MAD detection, R2 = 0.955) and surface
tension (no detection, R2 = 0.79), the most predictive models
were obtained using raw data sets rather than models trained
solely on a clean data set. In the case of viscosity, deterioration
in the statistical parameters of the models was observed, which
is discussed later. This observation might suggest that GNNs
are able to handle mislabeled data efficiently. It is consistent
with the previously reported fact that deep neural networks can
generalize well even when some percentages of training data

are not labeled correctly.48 However, this fact only expresses
the observation of a model having equal performance when
compared to the one trained on a clean data set. The metrics of
the model should not exceed that value if only mislabeled data
played a role. Therefore, obtaining even better performance by
a model is governed by another factor. The observation might
be explained by referring to chemical space covered in raw and
clean data sets. The raw data set contains a much more
structurally diverse set of ILs, resulting in GNNs better
adapting to process structural information. Better adaptation is
possible due to presenting to the network more diverse
examples in the training set, leading to the optimization of
convolutional layers to extract more general molecular features.
On the other hand, the results obtained for viscosity indicate

that the quality of the input data must not be below a certain
level. Undoubtedly, in this case, removing outliers from the
data set to the level of 76% of the raw set was insufficient (the
clean set contains only 17% of the raw data set). Therefore,
careful preprocessing remains an issue, especially when a large
amount of outliers is present, particularly in combination with
the range of property value variation, which, in the case of
viscosity, is extremely high and amounts to 7 orders of
magnitude.
The results described earlier show that often there is no

need to perform tedious cleaning as was needed for the

Table 1. Model Performance in Accordance with a Different Method of Dataset Cleaning

property

outliers
detection
method

raw data set clean data set

data set size in % of raw
data set (and its
skewness)

RMSE/R2 ± standard dev. on the test
set for a model trained on the data set

data set size in % of raw
data set (and its
skewness)

RMSE/R2 ± standard dev. on the test
set for a model trained on the data set

surface
tension

no detection 100% (0.52) 3.19 ± 0.22/0.79 ± 0.05 27% (0.44) 4.50 ± 0.29/0.60 ± 0.04
Z score 99.3% (0.33) 3.91 ± 0.43/0.68 ± 0.17 26.9% (0.23) 4.96 ± 0.82/0.50 ± 0.18
IQR 99% (0.29) 3.98 ± 0.50/0.66 ± 0.18 26.8% (0.22) 4.93 ± 0.93/0.51 ± 0.17
MAD 96.7% (0.09) 4.17 ± 1.07/0.60 ± 0.15 26.3% (0.03) 5.02 ± 0.65/0.43 ± 0.07

viscosity no detection 100% (39) 19.58 ± 1.88/0.55 ± 0.08 22% (16) 15.80 ± 1.92/0.70 ± 0.05
Z score 99.3% (6.9) 20.53 ± 1.48/0.50 ± 0.09 22% (4.9) 15.90 ± 2.28/0.70 ± 0.08
IQR 86.2% (1.8) 19.18 ± 1.50/0.56 ± 0.07 19.2% (1.5) 16.18 ± 2.20/0.69 ± 0.06
MAD 76.2% (1.1) 19.75 ± 2.50/0.54 ± 0.10 17.4% (1.0) 16.01 ± 1.88/0.69 ± 0.05

density no detection 100% (0.34) 75.77 ± 31.2/0.77 ± 0.14 58% (0.27) 42.59 ± 15.4/0.93 ± 0.06
Z score 99.6% (0.13) 57.88 ± 23.4/0.87 ± 0.13 57.8% (0.10) 42.23 ± 13.9/0.93 ± 0.06
IQR 99.7% (0.13) 66.63 ± 16.7/0.85 ± 0.08 57.9% (0.11) 36.24 ± 2.25/0.92 ± 0.07
MAD 98.5% (0.01) 34.76 ± 8.30/0.96 ± 0.02 57.4% (0.02) 41.67 ± 13.1/0.93 ± 0.05

Figure 3. Loss function changes during training for clean and raw data set comparison.
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classical group contribution method. Moreover, one does not
need to predefine chemical groups that should contribute to
the value of the physicochemical property, which is an
additional benefit, making model creation even simpler.
Nevertheless, the decision on the method of initial data
preparation and its range should, in each case, be the result of
knowledge of the specificity of the target parameter.
Figure 3 shows how the loss function changes during the

learning process by the example of a model for predicting
density. The curve obtained for a clean data set seems to have
three different slopes. In the first stage (approximately the first
20 epochs), the expected rapid decrease of loss due to
adjusting initially random weights to the data takes place. In
the second stage (epochs 20−100), slower yet fast loss
minimization is observed. In the final stage, loss changes
significantly, but converging to a minimum occurs slowly. In
the case of a loss curve for a raw data set, the first two stages
are similar to what is observed in the case of the curve for a
clean set. However, after approximately 100 epochs, the model
has almost converged to the minimum. This might suggest that
using raw data sets not only improves performance but also

decreases the number of epochs needed to reach convergence
and might decrease training time.
From the point of view of building similar structure−

property models on ILs with GNNs, it is worth noting that
solely for prediction density and on the raw data set, one is
able to overreach the value of R2 of 0.90. It might imply that
the amount of data needed for that algorithm is exceptionally
high. Based on the earlier discussion, the raw data set was
selected as the default option in modeling, except for a highly
skewed one (viscosity) for which a clean data set was selected.
Impact of the Outlier Detection Technique. The

results presented in Table 1 indicate that the impact of the
outlier elimination method depends on both the type of
property being modeled and the preliminary analysis of the
collected data. It can also be assumed that the size of the
analyzed set is also an important factor. In the case of models
obtained for density (initially ca. 40,000 points), it can be seen
that the extensive limitation of the set size at the curation stage
(∼40% reduction) makes the outliers search stage redundant.
The quality of predictions for models calculated using a clean
data set does not differ significantly regardless of the

Figure 4. Outlier detection impact on distributions for viscosity raw and clean data sets.
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computational technique used (0.92 < R2 < 0.933). On the
other hand, a significant, user-assisted reduction in the training
set may negatively affect the GNN learning process: in the
analyzed case, only a slight correction of the raw set using the
MAD technique (1.5% reduction) allowed obtaining a model
with the highest predictive ability, described as R2 = 0.955. It
turns out that the critical value in this case is the size of the
training data set.
Somehow, the opposite case is the results obtained for

viscosity (initially ca. 20,000). As already mentioned, this
parameter is very specific from the point of view of predictive
techniques because it is characterized by the largest range of
variability. It is also important that this parameter be very
sensitive to the quality (purity) of the liquid used in viscosity
measurements. This last factor was the reason for the
extremely large set reduction, which for the clean set meant
the elimination of 83% of the output data. The obtained effect
is partially similar to that observed for density: the obtained R2
values for all models trained on a clean data set are practically
the same (0.688 < R2 < 0.695) for each of the outlier detection
techniques used. Differences appear when comparing the
results obtained using the raw data set. For viscosity, all trained
models have lower predictive ability than those found using a
clean data set. The quality of the model is also more dependent
on the technique of indicating outliers: the difference between
the lowest (Z score) and the highest (IQR) R2 is
approximately 10%. It seems that the key is the relationship
between the skewness of the distribution of parameter values
and the range of its variability.
It is the case for viscosity when the skew of the data set is as

high as 39 without removing any outliers and 1.8 if choosing
the IQR. Even when MAD was applied, skew is about 1.0,
which is still quite high and might impact the performance of a
neural network. However, it should be noted that the highest
number of data is excluded in all cases while using the MAD
detection method. Thus, data reduction reaches one-fourth of
the output set and seems to be overdone, as it lowers the R2
value compared to the IQR model. Distribution changes over
different outlier detection techniques are listed in Figure 4. It
can be observed that the difference between the minimum and
maximum values at distribution is 7 orders of magnitude.
Moreover, the mean and median differ by 1 order of
magnitude, which is an extreme example of an outlier impact.
A similar situation occurs for the clean data set; however, the
range of viscosity variability for each clean data set is several
times smaller than for the raw set, which seems to be a decisive
factor in this case.
Surface tension (initially ca. 6000) seems to be an

intermediate case in terms of the importance of indicating
outliers. First, it can be noticed that the data curation stage,
with a large range of almost 75% reduction of the data (close
to viscosity) does not ensure a significantly high quality of the
trained models (R2 < 0.6). Moreover, all models found using
clean data sets have significantly lower predictive ability
compared with models obtained using raw data sets. It can
even be noticed that a further, even slight, reduction in the
amount of training data significantly worsens the quality of the
models. For the most restrictive technique, the MAD R2 is only
0.43 compared with the value of 0.593 obtained using the
intact clean data set. Interestingly, a similar effect can be seen
for the raw data set, where the best predictive ability, R2 = 0.79,
was obtained, as well as for the intact raw data set. The
observations above clearly indicate that the factor limiting the

quality of predictive models in the case of surface tension is the
size of the training set, which is at the limit of the applicability
of GNNs.
Finally, for further research, it was decided to use data sets

with the highest training abilities for graph networks for each
of the analyzed parameters (bold in Table 1).
Different Splitting Scenarios. Mainly, two splitting

scenarios into training and validation sets could be established.
However, since this work focuses on structural information on
ILs, the test set is treated entirely separately and covers ILs
excluded from training and validation sets. Since temperature
(and pressure) are also important inputs for a model, splitting
can ensure that chemicals are (unrestricted) or are not
(chemically restricted) present simultaneously in both sets. In
the first case, neural network information about a whole
temperature and pressure dependence of a property is given.
That is not the case in the second case, of unrestricted split. In
that situation, it is possible that just some data points (e.g.,
measurement in one exact temperature) are in a validation set,
while some others (also measured for that compound) are
represented in a training set.
A comparison of the two approaches was studied by the

example of the surface tension data set since it is the smallest
and contains the smallest chemical variety while guaranteeing
the highest variation with temperature.
Performance in training sets is similar for chemically

restricted splitting, and random one R2 on a train set is 0.84
and 0.83, respectively. However, performance in validation and
test sets is significantly higher for random splitting scenarios. In
the case of a validation split, the difference is about 20% (R2 =
0.83 for random split and R2 = 0.65 for restricted). Model
performance for a test set on unseen structures is also
significantly higher: the value of R2, while using the restricted
split is about 0.72 compared to 0.79 for splitting, which ignores
chemical information.
It can be concluded that if GNNs were trained on the full

temperature range, it concentrates too much on properly
predicting the temperature dependence rather than structural
information. Even though temperature dependence is
important, a model should leverage between structural input
and conditions. That is obtained when using the split ignoring
the chemical scaffold. Based on the findings, it was decided to
use a random split in further analysis.
Impact of Electrostatic Information on GNN Perform-

ance. ILs are compounds composed only of ions, and
electrostatic information is a known factor of inconsistency
between molecular simulations and experiments.49 Therefore,
it would be interesting to study how a novel GNN algorithm
deals with that kind of input information for predicting the
properties of ILs. Model performance without considering
partial charges is also investigated since some authors who use
GNNs for structure−property modeling of simpler compounds
do not use partial charges as part of their input.50

In modeling, charges were included for systems where the
cation and anion were optimized separately and jointly, using 5
(no charge, formal charges, and Gasteiger-Marsili, MMFF94,
QTPIE partial charges) different methods of calculating
charges, which leads to 10 in total. Results are listed in
Table 2. The geometry of a compound that is composed of
cation and anion can be optimized in two scenarios�both ions
simultaneously or separately (so without information about
counterion). It can be seen that the impact of how an IL
molecule was optimized is more important than the way of
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calculating charges. It might be the case since partial charges
differ according to how atoms are oriented in space. The
impact of screening the charge by other atoms is, therefore,
greater than the estimation itself. Therefore, charge distribu-
tion seems to be more decisive for GNNs than the exact value
of the partial charge itself. This statement is supported by the
observed fact of good performance even while providing only
formal charges since, in convolutional layers, the information is
somehow distributed to nodes near the node with the assigned
formal charges.
Studying more in-depth models trained with ions optimized

separately, it can be observed that additional information about
partial charges does not improve model quality significantly.
Even a model that is not informed about charges in the system
performs similarly to electronegativity-based (Gasteiger) or
FF-based (MMFF) methods. This might suggest that GNNs,
on their own, reproduced the information on charge
distribution based on the atoms’ connectivity. However,
introducing this information might lead to a decrease in the
standard deviation of the predictions, as seen in a formal
charge scenario.
Moreover, even for all studied methods, R2 is still about 0.70,

which denotes that differences between the methods of
calculating partial charges do not impact GNN performance
by more than 5%. Therefore, it might be concluded that rough
information on charge distribution is more important to
obtaining a well-performing network than precise parameter-
based or FF-based estimation.
Finally, it is worth mentioning that there is generally a

slightly higher standard deviation observed for a model trained
with no information about charges when compared to other
scenarios. This might suggest that the model is less stable in
prediction if it has to deduce electrostatic information solely
from structural data.

For further analysis, formal charges were used in modeling
due to their simplicity and promotion of a model with a low
standard deviation. However, issues regarding geometry
optimization strategies seemed to arise, and further analysis
of the problem was performed in the following paragraphs.
Comparison of IL Structure-to-Graph Conversion

Methods. IL, since they arise from a combination of two
separate molecules, is quite complex chemically. In conse-
quence, there are different ways of transforming into a graph.
The analysis was performed based on previous findings on
ways of optimizing the structure of ILs and is presented in
Table 3. Results are obtained, similarly as in Table 2, for the
data set on surface tension.
The engine used to optimize the molecular structure of ILs

did not play an important role. Differences between studied
scenarios of transforming IL into a graph were significantly
larger than those caused by using different engines. However,
Open Babel performed significantly better while dealing with
structures. While using RDKit for the studied property, there
were optimization problems for 20 of 279 ions. Even though
RDKit was successfully applied in some previous work in the
field of predicting ILs’ properties using GNNs,26 in the studies
on the property under investigation, it failed to propose an
initial 3D structure. On the contrary, Open Babel optimized
geometry for all of the ions in the data set. Therefore, Open
Babel, as a more robust tool, was selected for further analysis.
It can be observed that the best model performance was
obtained when IL molecules were treated as one graph but
with separately optimized ions. Therefore, ILs might be treated
as a mixture with some open space for including interactions
between ions that are reflected in the convolutional layers.
Studies on the impact of adding a virtual ionic bond do not

lead to consistent conclusions. In the case when separately
optimized structures were provided to the GNN model, no
difference was observed. However, when studying systems that
were optimized jointly, the addition of that edge slightly
improves the model quality. This leads to the further
observation that dual molecular systems are not well described
as a simple one molecule with structures of cation and anion
optimized jointly.
All findings lead to the conclusion that ILs cannot be treated

as simple organic molecules like in previously reported GNN
models. Thus, it was decided to use structures optimized
separately for one graph with a fictitious ionic bond in further
analysis.
Impact of Convolution Layer Type on GNN Perform-

ance. Finally, some experiments regarding the type of
convolutional layer were performed. It was observed that
both the GCN network and GAT network performed equally

Table 2. Model Metrics with Different Ways of Calculating
Partial Charges

charge
representation

ions converted to one graph
with separately optimized
geometryRMSE/R2 (test set)

± standard dev.

ions converted to one graph
with jointly optimized
geometryRMSE/R2 (test
set) ± standard dev.

no charges 3.23 ± 0.29/0.79 ± 0.06 3.48 ± 0.57/0.74 ± 0.11
formal
charges

3.19 ± 0.22/0.79 ± 0.05 3.40 ± 0.39/0.76 ± 0.07

Gasteiger
charges

3.28 ± 0.18/0.78 ± 0.04 3.54 ± 0.58/0.74 ± 0.11

MMFF94
charges

3.32 ± 0.13/0.78 ± 0.04 3.60 ± 0.42/0.73 ± 0.08

QTPIE
charges

3.39 ± 0.28/0.77 ± 0.05 3.72 ± 0.46/0.72 ± 0.09

Table 3. Different Ways of Transforming IL Structural Information into a Graph

engine

method

separately optimized geometry for one graph (R2
train/validation/test ± standard dev.)

jointly optimized geometry for one graph (R2
train/validation/test ± standard dev.)

separately optimized geometry for two graphs (R2
train/validation/test ± standard dev.)

Open
Babel

with an ionic bond: 0.85 ± 0.02/0.84 ± 0.01/0.78
± 0.05

with an ionic bond: 0.85 ± 0.01/0.84 ± 0.01/
0.73 ± 0.10

separate pooling: 0.84 ± 0.02/0.84 ± 0.02/
0.75 ± 0.16

without ionic bond: 0.84 ± 0.02/0.84 ± 0.01/
0.79 ± 0.05

without ionic bond: 0.86 ± 0.01/0.85 ± 0.01/
0.76 ± 0.07

join pooling: 0.85 ± 0.01/0.85 ± 0.01/
0.72 ± 0.13

RDKit with an ionic bond: 0.85 ± 0.02/0.84 ± 0.03/
0.78 ± 0.06

with an ionic bond: 0.86 ± 0.01/0.85 ± 0.01/
0.75 ± 0.09

separate pooling: 0.84 ± 0.02/0.83 ± 0.03/
0.75 ± 0.06

without ionic bond: 0.84 ± 0.02/0.84 ± 0.01/
0.78 ± 0.05

without ionic bond: 0.85 ± 0.01/0.84 ± 0.01/
0.75 ± 0.09

join pooling: 0.84 ± 0.02/0.84 ± 0.01/
0.74 ± 0.07
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well on the test set, with R2 close to 0.79. Even though metrics
in both cases are quite similar, there is a significant difference
in standard deviations on the test set, as shown in Table 4.
Results are obtained, similarly as in Tables 2 and 3, for the data
set on surface tension.
Moreover, another tested approach involved another

implementation of graph convolution easing higher-order
graph operations (k-GC), which resulted in a significantly
lower R2 = 0.51. It might be stated that probably substructures
that should be extracted in that procedure are not really as
important for GNN prediction. Finally, the MFC network was
tested since it was designed specifically for handling chemical
structural data by reproducing molecular fingerprints. Un-
fortunately, the performance was not satisfactory. Even though
performance in the training set for the property data is high
(0.91 vs 0.84 in classical graph convolution), performance on
the test set is poor (R2 < 0). It leads to the conclusion that this
type of convolution layer is concentrated too much on
structural features and generalizes poorly for novel compounds.
Therefore, it was decided to use the simplest convolutional
function in further analysis.
Transfer Learning and Fine-Tuning Possibilities. It is a

well-established fact that neural network architecture with
weights might be transferred from one task to the other.51

However, transfer learning in GNNs is relatively poorly
studied.52 Therefore, it might be interesting to investigate
how well knowledge (in terms of weights) might be transferred
from the neural network for predicting density (because its
performance is sufficiently good) to other studied tasks. Two
main scenarios were tested, namely, fine-tuning (updating all
weights during training for novel tasks) and transfer learning
(updating only final linear layers), as presented in Table 5.
Based on the findings presented earlier, for final modeling, it

was decided to use IL geometry optimized separately for each
ion and combined into one graph without fictitious linking
ionic bonds augmented with information on formal charges.
The raw data set was used, except for building a model
predicting viscosity when a clean data set was used. In all cases,

the outlier detection that performed the best for each property
was incorporated. During training, random splits and simple
GCN neural network architecture were used.
Fine-tuning and transfer learning lead to poorer results (than

training solely on viscosity and surface tension data), therefore
suggesting that structural features are not very transferable
directly without any change from one task to the other. This is
the case since, in the surface tension data set, there are ILs with
side chains much larger than present in the density data set.
Therefore, structural diversity is probably the limiting factor in
that case. Overall, models obtained using pretraining have
similar predictive performance on novel unseen compounds
when compared to models without pretraining.
For predicting density in the original studies, databases R2 =

0.99, RMSE = 27.3, and MARE = 0.015. In the case of
modeling viscosity, the best models were described by R2 =
0.84 and MARE = 0.377. The surface tension prediction model
obtained R2 = 0.99, RMSE = 4.7, and MARE = 0.085. In
comparison to those metrics, presented models seem to have
lower performance than state of the art. However, the
presented approach allows for using more experimental data
with a simpler data-cleaning stage, has a simpler model-
building procedure (due to no need to provide), and relies on
testing the model on ILs previously unused during model
training (which is not properly assured in the original studies).
A notable limitation of the study lies in the intrinsic

complexities associated with the prediction of the phys-
icochemical properties of ILs using graph neural networks.
While the primary objective of the research is to elucidate how
structural inputs should be processed to optimize neural
network performance, several challenges have been encoun-
tered. The experimental database encompasses several hundred
to approximately 2000 distinct ionic liquids, yielding up to
40,000 experimental data points. However, inherent issues
such as variations in the temperature and pressure during data
collection have presented substantial challenges. These
variations introduce significant uncertainties in the measured
properties, particularly in the case of viscosity, where

Table 4. Comparison of GNN Model Performance According to Convolutional Function Type

convolution function R2 (train set) ± standard dev.
R2 (validation set) ± standard

dev. R2 (test set) ± standard dev.
graph convolutional networks (GCNs) 0.84 ± 0.02 0.84 ± 0.01 0.79 ± 0.05
graph attention networks (GAT) 0.85 ± 0.01 0.84 ± 0.02 0.78 ± 0.07
convolutional GNNs (k-GC) 0.85 ± 0.03 0.84 ± 0.02 0.51 ± 0.21
convolutional networks learning molecular fingerprint (MFC) 0.91 ± 0.02 0.89 ± 0.02 <0

Table 5. Summary of the Obtained Models, Transfer Learning, and Fine-Tuning Evaluation

pretraining neural
network

model performance for
predicting

R2 (train/valid/test ± standard
dev.)

RMSE (train/valid/test ±
standard dev.)

MARE (train/valid/test ± standard
dev.)

� density 0.97 ± 0.01/0.97 ± 0.00/
0.97 ± 0.01

26.9 ± 0.88/28.5 ± 1.21/
30.7 ± 1.88

0.016 ± 0.001/0.017 ± 0.001/
0.019 ± 0.001

viscosity (clean) 0.75 ± 0.04/0.74 ± 0.03/
0.69 ± 0.06

15.56 ± 1.29/15.70 ± 1.02/
16.18 ± 2.20

0.387 ± 0.078/0.369 ± 0.092/
0.435 ± 0.074

surface tension 0.84 ± 0.02/0.84 ± 0.01/
0.79 ± 0.05

3.68 ± 0.16/3.75 ± 0.16/
3.19 ± 0.22

0.070 ± 0.003/0.071 ± 0.002/
0.068 ± 0.004

density (fine-tuning) viscosity (clean) 0.85 ± 0.02/0.83 ± 0.03/
0.61 ± 0.09

18.8 ± 0.54/20.1 ± 1.84/
28.6 ± 2.00

0.379 ± 0.035/0.386 ± 0.100/
0.737 ± 0.234

surface tension 0.92 ± 0.01/0.90 ± 0.02/
0.71 ± 0.09

2.65 ± 0.09/2.90 ± 0.30/
3.80 ± 0.77

0.050 ± 0.000/0.053 ± 0.002/
0.074 ± 0.012

density
(transfer learning)

viscosity (clean) 0.68 ± 0.02/0.65 ± 0.03/
0.54 ± 0.13

28.2 ± 0.38/29.0 ± 1.46/
30.7 ± 4.42

0.595 ± 0.05/0.606 ± 0.13/
1.0 ± 0.37

surface tension 0.80 ± 0.01/0.80 ± 0.02/
0.67 ± 0.10

4.12 ± 0.08/4.18 ± 0.20/
4.02 ± 0.45

0.081 ± 0.001/0.082 ± 0.002/
0.086 ± 0.008
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differences spanning several orders of magnitude can be
observed. Consequently, these uncertainties have the potential
to impact the accuracy of the predictions, especially when
attempting to capture the subtle nuances within the data.
Furthermore, the models’ interpretability is hindered by the
neural network architecture, particularly when incorporating
temperature and pressure information, making it considerably
more challenging to discern the underlying chemical insights
driving the predictions.
Another limitation of the study pertains to the general-

izability of the models to diverse ILs and physicochemical
conditions. While the performance of the GNNs is
commendable, it falls slightly short of state-of-the-art
approaches. Nevertheless, it is crucial to acknowledge that
the proposed model-building process offers distinct advan-
tages. Notably, it eliminates the need for laborious feature
engineering and preprocessing associated with traditional
group contribution features or molecular descriptors. More-
over, the model demonstrates robustness in handling
mislabeled data, particularly in the context of density and
surface tension predictions. Despite these merits, the potential
for improvement in predictive accuracy remains, and further
research is warranted to address the limitations arising from
the inherent experimental uncertainties. Additionally, the
availability of computational resources, while generally
accessible, could potentially be a constraint for researchers
with limited access to high-performance GPUs, as the
efficiency of training and evaluation can be influenced by
hardware resources. Overall, while the study represents a
significant step forward in predicting the physicochemical
properties of ionic liquids using GNNs, these limitations
underscore the necessity for ongoing research to enhance the
robustness and applicability of the proposed approach.

■ SUMMARY
GNNs were shown to perform well in predicting the
physicochemical properties of ILs.
The conducted analysis of the influence of factors

influencing the quality of models has led to several interesting
conclusions. First of all, GNNs turned out to be relatively
resistant to the presence of data of uncertain quality in the
training set. For density and surface tension, the performance
of the models obtained was better when using the raw set than
the cleaning one. Nevertheless, it should be emphasized that
the indicated GNN capabilities have limitations. In the case of
a data set with high skewness and high variability in the output,
careful analysis of the data set is advisable. Thus, the tedious
and time-consuming data-cleaning step might be reduced
substantially or, in some cases, omitted. An interesting
conclusion results from the evaluation of the charge
representation methods. For ionic compounds, i.e., ILs, we
have shown that the method of calculating the charges is not
crucial for the performance of the model. To obtain
satisfactory results, it is enough to use relatively simple
calculation methods based on the comparison of the
electronegativity differences between atoms. Important con-
clusions concern the method of transferring information about
the ion pair to the graph, both in storing information about the
cation−anion interactions and in transferring this information
to the graph. The performed calculations clearly showed that
this stage is of key importance for the quality of the models,
where the optimal solution turned out to be the creation of
one graph made of separately optimized ions connected by a

virtual ionic bond. This work also showed that GNNs show
high efficiency in the case of shifting between different
modeled parameters. GNNs trained for density were able to
model both viscosity and surface tension with great efficiency.
At the same time, it has been shown that updating all weights
during training for novel tasks (fine-tuning) provides better
results than only fine-tuning (transfer learning).
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