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Abstract

We shall be concerned with the existence of heteroclinic orbits for the second order Hamiltonian system
q̈ + Vq(t, q) = 0, where q ∈ R

n and V ∈ C1(R × R
n,R), V � 0. We will assume that V and a certain

subset M ⊂ R
n satisfy the following conditions. M is a set of isolated points and #M � 2. For every

sufficiently small ε > 0 there exists δ > 0 such that for all (t, z) ∈ R×R
n, if d(z,M) � ε then −V (t, z) � δ.

The integrals
∫ ∞
−∞ −V (t, z) dt , z ∈ M, are equi-bounded and −V (t, z) → ∞, as |t | → ∞, uniformly on

compact subsets of R
n \ M. Our result states that each point in M is joined to another point in M by a

solution of our system.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this work, we shall study the existence of heteroclinic orbits for the second order Hamil-
tonian system:

q̈ + Vq(t, q) = 0, (1)
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where t ∈ R, q ∈ R
n. We will suppose that V : R × R

n → R and M ⊂ R
n satisfy the following

assumptions:

(A1) V ∈ C1(R × R
n,R), V � 0,

(A2) #M � 2 and γ := 1
3 inf{|x − y|: x, y ∈ M, x �= y} > 0,

(A3) for every 0 < ε � γ there is δ > 0 such that for all (t, z) ∈ R × R
n, if d(z,M) � ε then

−V (t, z) � δ,
(A4) −V (t, z) → ∞, if |t | → ∞, uniformly on every compact subset of R

n \M,
(A5) for every x ∈M,

∞∫
−∞

−V (t, x) dt < γ
√

2α,

where α := inf{−V (t, z): t ∈ R, d(z,M) � γ }.

Here and subsequently, d : Rn × R
n → R is the Euclidean metric and | · | : Rn → R is the corres-

ponding norm.
We will say that a solution q : R → R

n of (1) is a heteroclinic solution (heteroclinic orbit) if
there exist x, y ∈ R

n, x �= y, such that q joins x to y, i.e.

q(−∞) := lim
t→−∞q(t) = x

and

q(∞) := lim
t→∞q(t) = y.

Theorem 1.1. Under assumptions (A1)–(A5), for every x ∈ M there exists at least one hetero-
clinic solution of (1) such that q(−∞) = x and q(∞) ∈ M \ {x}, i.e. q emanates from x and
terminates at a certain y ∈ M \ {x}.

In the last years several authors studied connecting (i.e. homoclinic and heteroclinic) orbits
for Hamiltonian systems by the use of variational methods and critical points theory. In the
survey [9], P. Rabinowitz, who has given fundamental contributions to this field, presents the
main results obtained in the last twenty years, describes some methods and lists some open
problems. Among the previous studies of heteroclinic orbits are those of [2–4,6,8,10,12,13].
Homoclinic solutions are considered for example in [1,5,7,11,13].

We are motivated by [6] written by P. Rabinowitz. He considered the autonomous second
order Hamiltonian system:

q̈ + V ′(q) = 0, (2)

where q = (q1, . . . , qn) ∈ R
n and a function V : Rn → R satisfies:

(R1) V ∈ C1(Rn,R),
(R2) V is periodic in qi with a period Ti , 1 � i � n.

http://mostwiedzy.pl


M. Izydorek, J. Janczewska / J. Differential Equations 238 (2007) 381–393 383

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

Conditions (R1)–(R2) imply that V possesses a global maximum on R
n. Without loss of gener-

ality we may assume that the global maximum of V is 0. Let M = {y ∈ R
n: V (y) = 0}. The

condition on M is the following:

(R3) M consists only of isolated points.

Theorem 1.2. (See P.H. Rabinowitz [6].) Under assumptions (R1)–(R3), for every x ∈ M, there
exist at least two heteroclinic orbits of (2) joining x to M \ {x}. At least one of these orbits
emanates from x and at least one terminates at x.

Theorem 1.1 is an analogue of Rabinowitz’s theorem in a nonautonomous case. There is a
class of natural examples to apply this theorem. Consider for instance a potential V : R×R → R

given by

V (t, q) = (
1 + t2)(−1 + cosq)

and M = {2kπ : k ∈ Z}. It is easy to check that the map V and the set M satisfy assumptions
(A1)–(A5). Clearly, V̂ (q) = −1 + cosq and M satisfy assumptions (R1)–(R3). In general, if
V : R × R

n → R is of the form

V (t, q) = f (t)V̂ (q),

where V̂ satisfies (R1)–(R3), f > 0 and f (t) → ∞, as |t | → ∞, then (A1)–(A5) are fulfilled.
Let us observe that if q is a heteroclinic solution of (2) such that q emanates from x and

terminates at y, then q(−t) is a solution emanating from y and terminating at x. This fact was
used by Rabinowitz to show the multiplicity result. Unfortunately, the same argument does not
work for the time dependent Hamiltonian system (1).

The main idea of the proof is the same as in Rabinowitz [6].
Let E = {q ∈ W

1,2
loc (R,R

n):
∫ ∞
−∞ |q̇(t)|2 dt < ∞}. The space E under the norm

‖q‖2 =
∞∫

−∞

∣∣q̇(t)
∣∣2

dt + ∣∣q(0)
∣∣2

(3)

is a Hilbert space. If q ∈ E then for all t, t0 ∈ R, q(t) = ∫ t

t0
q̇(s) ds + q(t0). In consequence, q is

continuous.
Fix x ∈M. For y ∈ M \ {x} and ε > 0, we will denote by Γε(y) the set of all functions q ∈ E

that satisfy the following conditions:

(i) q(−∞) = x,
(ii) q(∞) = y,

(iii) q(t) /∈ Bε(M \ {x, y}).

Here and subsequently, Bε(A) denotes an open ε-neighbourhood of a set A ⊂ R
n, and Bε(z)

stands for an open ball of radius ε, centered at a point z ∈ R
n.

http://mostwiedzy.pl
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Let us remark that if 0 < ε � γ then Γε(y) is nonempty for all y ∈ M \ {x}. If q(t) = x for
t � 0, q is piecewise linear for t ∈ [0,1], q(t) /∈ Bε(M \ {x, y}), and q(t) = y for t � 1, then
q ∈ Γε(y). Let I :E → R ∪ {∞} be given by

I (q) =
∞∫

−∞

[
1

2

∣∣q̇(t)
∣∣2 − V

(
t, q(t)

)]
dt. (4)

(A1) implies that I � 0. Set

cε(y) = inf
q∈Γε(y)

I (q). (5)

From (A5) it follows that if 0 < ε � γ then I (q) < ∞ for q ∈ Γε(y) piecewise linear, and hence
cε(y) < ∞.

We will show that for ε small enough there exists y ∈ M \ {x} such that cε(y) = I (qε,y) for
a certain qε,y ∈ Γε(y) which is a desired heteroclinic solution.

In the proof of Theorem 1.2, Rabinowitz several times, in an essential way, applied the fact
that (2) is autonomous. Part of the difficulty in treating (1) is caused by the fact that it is nonau-
tonomous.

2. Proof of Theorem 1.1

Our proof is divided into a sequence of lemmas. Set

αε := inf
{−V (t, z): t ∈ R, z /∈ Bε(M)

}
. (6)

By (A3) it follows that αε > 0. In particular, if ε = γ then αε = α (see (A5)).

Lemma 2.1. Let 0 < ε � γ . Suppose that w ∈ E and w(t) /∈ Bε(M) for each t ∈ ⋃k
i=1[ri , si],

where [ri , si] ∩ [rj , sj ] = ∅ for i �= j . Then

I (w) �
√

2αε

k∑
i=1

∣∣w(si) − w(ri)
∣∣. (7)

Lemma 2.1 was proved by Rabinowitz in [6]. It was also applied by him and Tanaka in [10].
Since this lemma is important for our further considerations, we enclose its proof below.

Proof of Lemma 2.1. Let l = ∑k
i=1 |w(si) − w(ri)| and τ = ∑k

i=1(si − ri). Then

l =
k∑

i=1

∣∣∣∣∣
si∫

ri

ẇ(t) dt

∣∣∣∣∣ �
k∑

i=1

si∫
ri

∣∣ẇ(t)
∣∣dt =

∫
⋃k

i=1[ri ,si ]

∣∣ẇ(t)
∣∣dt

�
√

τ

( ∫
⋃k [r ,s ]

∣∣ẇ(t)
∣∣2

dt

) 1
2

.

i=1 i i

http://mostwiedzy.pl
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In consequence,

I (w) � 1

2

∫
⋃k

i=1[ri ,si ]

∣∣ẇ(t)
∣∣2

dt +
∫

⋃k
i=1[ri ,si ]

(−V
(
t,w(t)

))
dt

� l2

2τ
+ αετ.

Since a function (0,∞) � t → l2

2t
+ αεt achieves at the point ( l2

2αε
)1/2 its minimum, we have

I (w) �
√

2αε l,

which completes the proof. �
Here is a consequence of Lemma 2.1.

Corollary 2.2. If w ∈ E and I (w) < ∞ then w ∈ L∞(R,R
n).

Proof. Assume that w /∈ L∞(R,R
n). Then for every n ∈ N there exists tn ∈ R such that

|w(tn)| > n. (There is no loss of generality in assuming that tn → ∞, as n → ∞.) Let us consider
two cases.

Case 1. Suppose that #M < ∞.
There is R > 0 such that Bγ (M) ⊂ BR(0). Assume that {t ∈ R: w(t) ∈ ∂BR(0)} �= ∅. If

N ∈ N is large enough then for each n � N there is rn < tn such that if t ∈ [rn, tn] then w(t) /∈
BR(0). It is sufficient to take rn = max{t < tn: w(t) ∈ ∂BR(0)}. From Lemma 2.1,

I (w) �
√

2α
∣∣w(tn) − w(rn)

∣∣ �
√

2α(n − R).

Letting n → ∞, we have I (w) = ∞, a contradiction.
If {t ∈ R: w(t) ∈ ∂BR(0)} = ∅, then by (7) we get

I (w) �
√

2α
∣∣w(tn) − w(t1)

∣∣ �
√

2α
(∣∣w(tn)

∣∣ − ∣∣w(t1)
∣∣)

�
√

2α
(
n − ∣∣w(t1)

∣∣)
for n ∈ N, contrary to I (w) < ∞.

Case 2. Suppose that #M = ∞.
Since w is continuous, for every k ∈ N there exist ri < si , i = 1,2, . . . , k, such that w(t) /∈

Bγ (M) for every t ∈ [ri , si], |w(si) − w(ri)| � γ and [ri , si] ∩ [rj , sj ] = ∅ for i �= j . By
Lemma 2.1,

I (w) � γ k
√

2α.

From this, I (w) = ∞, a contradiction. �

http://mostwiedzy.pl
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Lemma 2.3. If w ∈ E then for every r, s ∈ R

2I (w)|s − r| � ∣∣w(s) − w(r)
∣∣2

. (8)

The proof is similar to the proof of Lemma 2.1. We leave it to the reader.

Lemma 2.4. If w ∈ E and I (w) < ∞ then there are y1, y2 ∈ M such that w joins y1 to y2.

Lemma 2.4 is analogous to Proposition 3.11 of [6]. In spite of different assumptions on V ,
the claims are identical.

Proof of Lemma 2.4. Let A(w) denote the set of limit points of w(t), as t → −∞. From Corol-
lary 2.2 we conclude that A(w) �= ∅. Assume that there are ε > 0 and 
 ∈ R such that if t < 


then w(t) /∈ Bε(M). By (A3), we obtain

I (w) �

∫

−∞
−V

(
t,w(t)

)
dt = ∞,

a contradiction. Thus A(w) ∩M �= ∅. It is sufficient to notice that A(w) consists of a point, say
y1 ∈ R

n. If not, there is ε > 0 such that w(t) intersects ∂Bε
2
(y1) and ∂Bε(y1) infinitely many

times. Applying Lemma 2.1, we obtain I (w) � ε
2n

√
2αε

2
for each n ∈ N, and hence I (w) = ∞,

a contradiction.
In the same manner we can see that there is y2 ∈ M such that w(∞) = y2. �
From now on we assume that 0 < ε � γ .

Lemma 2.5. Fix y ∈ M \ {x}. If {qm}∞m=1 is a minimizing sequence for (5) such that qm → q in
L∞

loc(R,R
n), q ∈ E and I (q) < ∞, then q ∈ Γε(y).

Proof. By Lemma 2.4, there are y1, y2 ∈ M such that q(−∞) = y1 and q(∞) = y2. Since
qm → q in L∞

loc(R,R
n) and qm ∈ Γε(y), we have q(t) /∈ Bε(M \ {x, y}) for all t ∈ R and

q(±∞) ∈ {x, y}. Moreover, for every t ∈ R there is m(t) ∈ N such that if m � m(t) then
|qm(t) − q(t)| < ε

2 .
Suppose, contrary to our claim, that q(∞) = x. Then there exists T ∈ R such that for all t � T ,

|q(t) − x| < ε
2 . In consequence, for every t � T and for every m � m(t) we have |qm(t) − x| �

|qm(t) − q(t)| + |q(t) − x| < ε.
Let rm = max{s ∈ R: qm(s) ∈ ∂Bε(x)} and sm = min{s > rm: qm(s) ∈ ∂Bε+γ (x)}. Since

{qm}∞m=1 is a minimizing sequence for (5), there is M > 0 such that I (qm) � M for all m ∈ N.
From Lemma 2.3,

sm − rm � |qm(sm) − qm(rm)|2 � γ 2

=: a > 0.

2M 2M

http://mostwiedzy.pl
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Fix t � T and consider qm(t). Then

I (qm(t)) �
rm(t)+a∫
rm(t)

−V
(
s, qm(t)(s)

)
ds = −V

(
τm(t), qm(t)(τm(t))

)
a (9)

for a certain τm(t) ∈ (rm(t), rm(t) + a), and ε < |qm(t)(τm(t)) − x| < ε + γ . From the above it
follows that t < τm(t). Applying (A4) and letting t → ∞ in (9), we receive I (qm(t)) → ∞, a con-
tradiction. Consequently, q(∞) = y.

Similarly, we can prove that q(−∞) = x. �
Lemma 2.6. For every y ∈M \ {x} there exists qε,y ∈ Γε(y) such that

I (qε,y) = cε(y).

Proof. Let {qm}∞m=1 be a minimizing sequence for (5). Then there is M > 0 such that I (qm) � M

for all m ∈ N, and hence
∫ ∞
−∞ |q̇m(t)|2 dt � 2M for all m ∈ N.

Assume that {qm(0)}∞m=1 is an unbounded sequence in R
n. Then for each k ∈ N there is

mk ∈ N such that |qmk
(0)| � k. Thus limk→∞ |qmk

(0)| = ∞, and, in consequence, there is
k0 ∈ N such that if k > k0 then qmk

(0) /∈ Bε(M). Set tk = min{t > 0: qmk
(t) ∈ ∂Bε(y)}. From

Lemma 2.1 it follows that

I (qm(k)) �
√

2αε

∣∣qm(k)(0) − qm(k)(tk)
∣∣

for k > k0. Letting k → ∞, I (qm(k)) → ∞, a contradiction. Therefore {qm(0)}∞m=1 is a bounded
sequence in R

n, which gives that {qm}∞m=1 is bounded in E. Since E is a Hilbert space, going to
a subsequence if necessary, there is qε,y ∈ E such that qm ⇀ qε,y in E, and hence qm → qε,y in
L∞

loc(R,R
n).

We show now that I (qε,y) < ∞. Fix −∞ < r < s < ∞. Let us define Ir,s :E → R as follows

Ir,s(w) =
s∫

r

[
1

2

∣∣ẇ(t)
∣∣2 − V

(
t,w(t)

)]
dt. (10)

Ir,s is easily checked to be weakly lower semicontinuous. For every m ∈ N

Ir,s(qm) � I (qm) � M.

Letting to the limit inferior, we receive

Ir,s(qε,y) � lim inf
m→∞ Ir,s(qm) � cε(y) = lim

m→∞ I (qm) � M.

Since qε,y ∈ E and r, s are arbitrary, V (·, qε,y(·)) ∈ L1(R,R
n) and I (qε,y) � cε(y). Moreover,

by Lemma 2.5, it follows that qε,y ∈ Γε(y), and consequently, I (qε,y) = cε(y). �
Lemma 2.6 is an analogue of Proposition 3.12 of [6]. The idea to introduce the family of

functionals Ir,s is adapted from Rabinowitz. However, the second part of our proof involves
Lemma 2.5 since the methods from [6] are not applicable.

http://mostwiedzy.pl
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For y ∈M \ {x} and 0 < ε � γ , let F(ε, y) = {σ ∈ R: qε,y(σ ) ∈ ∂Bε(M \ {x, y})}.

Lemma 2.7. For every y ∈ M \ {x}, qε,y is a classical solution of the system (1) on R \F(ε, y).

The proof of Lemma 2.7 is based on the concept of Rabinowitz (see Proposition 3.18 of [6]).

Proof. Fix σ ∈ R \F(ε, y). Let Θ ⊂ R \F(ε, y) be the maximal open interval such that σ ∈ Θ .
Assume that ϕ ∈ C∞

0 (R,R
n) and suppϕ ⊂ Θ . If δ ∈ R is sufficiently small then qε,y + δϕ ∈

Γε(y), and so I (qε,y) � I (qε,y + δϕ). Consequently,

I ′(qε,y)ϕ := lim
δ→0

I (qε,y + δϕ) − I (qε,y)

δ

=
∞∫

−∞

[(
q̇ε,y(t), ϕ̇(t)

) − (
Vq

(
t, qε,y(t)

)
, ϕ(t)

)]
dt = 0.

Let r, s ∈ Θ and r < s. From the above it follows that for every ϕ ∈ W
1,2
0 ([r, s],R

n)

∞∫
−∞

[(
q̇ε,y(t), ϕ̇(t)

) − (
Vq

(
t, qε,y(t)

)
, ϕ(t)

)]
dt = 0, (11)

and hence qε,y |[r,s] is a weak solution of the problem{
ẅ(t) + Vq(t, qε,y(t)) = 0, r < t < s,

w(r) = qε,y(r), w(s) = qε,y(s).
(12)

This linear system has a unique C2-solution u : [r, s] → R
n. By (12), we obtain

s∫
r

[(
u̇(t), ϕ̇(t)

) − (
Vq

(
t, qε,y(t)

)
, ϕ(t)

)]
dt = 0 (13)

for all ϕ ∈ W
1,2
0 ([r, s],R

n). Combining (11) with (13) we receive

s∫
r

(
u̇(t) − q̇ε,y(t), ϕ̇(t)

)
dt = 0

for all ϕ ∈ W
1,2
0 ([r, s],R

n). Since u − qε,y ∈ W
1,2
0 ([r, s],R

n),

s∫
r

∣∣u̇(t) − q̇ε,y(t)
∣∣2

dt = 0,

and hence u ≡ qε,y on [r, s]. Therefore qε,y ∈ C2([r, s],R
n). Summarizing, since r and s are

arbitrary points in Θ , qε,y ∈ C2(R \F(ε, y),R
n) and it satisfies (1) on R \F(ε, y). �

http://mostwiedzy.pl
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Lemma 2.8. Let M be a positive constant and y be a point in M \ {x}. Then for each q ∈ E

joining x to y and satisfying I (q) � M and for every t ∈ R such that q(t) /∈ Bγ (M) the following
inequality holds

∣∣q(t) − x
∣∣ � 3M√

2α
− γ. (14)

Proof. Take q ∈ E and t ∈ R satisfying the assumptions of our lemma. Set

t0 = max
{
s ∈ R: q(s) ∈ ∂Bγ (x) ∧ q

(
(−∞, s]) ∩ Bγ

(
M \ {x}) = ∅}

.

Assume that t0 < t . Since q is continuous, the set q([t0, t]) is compact in R
n, and hence there are

finitely many points in R:

t0 < s1 � t1 < s2 � t2 < · · · < sk−1 � tk−1 < sk = t

such that for each i = 1,2, . . . , k − 1:

• q(si), q(ti) ∈ ∂Bγ (ξ) for some ξ ∈M,
• if q(ti−1) ∈ ∂Bγ (ξ) and q(si) ∈ ∂Bγ (η) then ξ �= η,
• q([ti−1, si]) ∩ Bγ (M) = ∅

and q([tk−1, sk]) ∩ Bγ (M) = ∅. We have

∣∣q(t) − x
∣∣ �

k∑
i=1

∣∣q(si) − q(ti−1)
∣∣ + (2k − 1)γ. (15)

From Lemma 2.1 it follows that

I (q) �
√

2α

k∑
i=1

∣∣q(si) − q(ti−1)
∣∣ � kγ

√
2α.

Hence

k∑
i=1

∣∣q(si) − q(ti−1)
∣∣ � M√

2α
(16)

and

k � M

γ
√

2α
. (17)

Combining (16) and (17) with (15), we receive (14).
If t < t0 then (14) is an immediate consequence of the inequality M � γ

√
2α, which is clear

from Lemma 2.1. �
Here is an immediate consequence of Lemma 2.8.
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Corollary 2.9. Let M be a positive constant and y be a point in M \ {x}. Then for each q ∈ E

joining x to y and satisfying I (q) � M and for every t ∈ R the following inequality holds

∣∣q(t) − x
∣∣ � 3M√

2α
+ γ. (18)

For every 0 < ε � γ , set

cε = inf
{
cε(y): y ∈ M \ {x}}. (19)

By Lemma 2.1, for each y ∈M \ {x}, cε(y) > 0. Moreover, if |y| → ∞ then cε(y) → ∞. Hence
there are 0 < Rε < ∞ and yε ∈ BRε(x) such that cε = cε(yε).

Let us consider a sequence {cεj
}∞j=1 such that εj ↘ 0, as j → ∞. Assume that ε1 � γ . It

is easily seen that cεj
� cεj+1 for every j ∈ N. Choose yεj

∈ M \ {x} and qεj ,yεj
∈ Γεj

(yεj
)

such that cεj
= cεj

(yεj
) = I (qεj ,yεj

). It follows from (18) that the sequence {yεj
}∞j=1 is bounded.

Consequently, {yεj
}∞j=1 possesses a constant subsequence. Without loss of generality, we can

assume that {yεj
}∞j=1 is constant, and so there is y ∈M \ {x} such that yεj

= y for all j ∈ N, and
so qεj ,yεj

= qεj ,y . From the above, we have

cεj
= I (qεj ,y). (20)

Lemma 2.10. Let qj := qεj ,y . For j ∈ N large enough, qj is a heteroclinic solution of (1) joining
x to y.

Proof. From what has already been proved, we see that it is sufficient to show that for j ∈ N

large enough, qj (t) /∈ ∂Bεj
(M \ {x, y}) for all t ∈ R.

On the contrary, suppose that there are a sequence jm → ∞, as m → ∞, {tjm}∞m=1 ⊂ R and
{ηjm}∞m=1 ⊂ M\ {x, y} such that qjm(tjm) ∈ ∂Bεjm

(ηjm) and for all t < tjm , qjm(t) /∈ ∂Bεjm
(ηjm).

By Lemma 2.1, we conclude that the set of values of {ηjm}∞m=1 is finite. Therefore, going if
necessary to a subsequence, we can assume that ηjm = η. Two cases are possible.

Case 1. There exists a subsequence of {jm}∞m=1, for simplicity of notation it is also denoted by
{jm}∞m=1, such that qjm(t) /∈ Bεjm

(y) for all t < tjm .
Let us consider

Qjm(t) =
⎧⎨
⎩

qjm(t) if t � tjm,

qjm(tjm) + (t − tjm)ε−1
jm

(η − qjm(tjm)) if tjm < t � tjm + εjm,

η if t > tjm + εjm.

One can see that Qjm ∈ Γεjm
(η). An easy computation shows that

I (qjm) − I (Qjm) =
∞∫

tjm

[
1

2

∣∣q̇jm(t)
∣∣2 − V

(
t, qjm(t)

)]
dt

− 1

2
εjm −

tjm+εjm∫
t

−V
(
t,Qjm(t)

)
dt −

∞∫
t +ε

−V (t, η) dt.
jm jm jm
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By Lemma 2.1, we conclude

I (qjm) − I (Qjm) � γ
√

2α − 1

2
εjm −

tjm+εjm∫
tjm

−V
(
t,Qjm(t)

)
dt −

∞∫
−∞

−V (t, η) dt. (21)

We will show that {tjm}∞m=1 is bounded. To obtain a contradiction, suppose that {tjm}∞m=1 is
unbounded. Assume that {tjm}∞m=1 is unbounded from above. Let rjm = max{t ∈ R: qjm(t) ∈
∂Bγ (η)} and sjm = min{t > rjm : qjm(t) ∈ ∂Bγ (y)}. From Lemma 2.3

sjm − rjm � γ 2

2cεjm

� γ 2

2cε1

> 0.

We have

cεjm
= I (qjm) �

sjm∫
rjm

−V
(
t, qjm(t)

)
dt.

Applying the mean value theorem, there is t̂jm ∈ (rjm, sjm) such that

sjm∫
rjm

−V
(
t, qjm(t)

)
dt = (sjm − rjm)

(−V
(
t̂jm, qjm(t̂jm)

))
,

and hence

cεjm
� γ 2

2cε1

(−V
(
t̂jm, qjm(t̂jm)

))
.

By Corollary 2.9, we conclude that {qjm(t̂jm)}∞m=1 is a bounded sequence. Since t̂jm → ∞, as
m → ∞, from the above inequality and (A4) it follows that cεjm

→ ∞, as m → ∞, a contradic-
tion. In consequence, {tjm}∞m=1 is bounded from above.

In the same manner we can see that {tjm}∞m=1 is bounded from below. It is sufficient to consider
ŝjm = max{t ∈ R: qjm(t) ∈ ∂Bγ (x)} and r̂jm = min{t > ŝjm : qjm(t) ∈ ∂Bγ (η)}.

For m sufficiently large,

0 <
1

2
εjm +

tjm+εjm∫
tjm

−V
(
t,Qjm(t)

)
dt

<
1

2

(
γ
√

2α −
∞∫

−V (t, η) dt

)
.

−∞
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Hence

I (qjm) − I (Qjm) >
1

2

(
γ
√

2α −
∞∫

−∞
−V (t, η) dt

)

and

I (qjm) > I (Qjm),

by (21) and (A5). A contradiction with (20).

Case 2. For every m ∈ N there is τjm < tjm such that qjm(τjm) ∈ ∂Bεjm
(y).

Let us consider now

Q̂jm(t) =
⎧⎨
⎩

qjm(t) if t � τjm,

qjm(τjm) + (t − τjm)ε−1
jm

(y − qjm(τjm)) if τjm < t � τjm + εjm,

y if t > τjm + εjm.

In this case,

I (qjm) − I (Q̂jm) � γ
√

2α − 1

2
εjm −

τjm+εjm∫
τjm

−V
(
t, Q̂jm(t)

)
dt −

∞∫
−∞

−V (t, y) dt. (22)

Using the analogical arguments as in the first case, we have I (qjm) > I (Q̂jm), a contradiction
with (20). �
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