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Abstract

In this work results of numerical simulations and experimental measurements related to the high frequency
dynamics of an aluminium Timoshenko periodic beam are presented. It was assumed by the authors that the
source of beam structural periodicity comes from periodical alterations to its geometry due to the presence of
appropriately arranged drill-holes. As a consequence of these alterations dynamic characteristics of the beam
are changed revealing a set of frequency band gaps. The presence of the frequency band gaps can help in
the design process of effective sound filters or sound barriers that can selectively attenuate propagating wave
signals of certain frequency contents. In order to achieve this a combination of three numerical techniques
were employed by the authors. They comprise the application of the Time-domain Spectral Finite Element
Method in the case of analysis of finite and semi-infinite computational domains, damage modelling in the
case of analysis of drill-hole influence, as well as the Bloch reduction in the case of analysis of periodic
computational domains. As an experimental technique the Scanning Laser Doppler Vibrometry was chosen.
A combined application of all these numerical and experimental techniques appears as new for this purpose
and not reported in the literature available.

Keywords: structural periodicity, Bloch reduction, spectral finite element method, natural frequencies,
frequency band gaps, wave propagation

1. Introduction

Despite their finite dimensions structural elements of periodically changing or varying geometry and/or
material properties may be considered as being periodic structures. In a similar manner to idealised periodic
structures that can be characterised by periodic boundary conditions or infinite dimensions, real periodic
structures exhibit the same type of behaviour as predicted theoretically, which manifests itself in the most
profound manner in the presence of so-called frequency band gaps in their frequency spectra.

Periodic structures belong to a class of structures the properties of which allow them to be classified as
metamaterial structures due to their unusual and engineered properties. Nowadays metamaterials include
such materials as: negative refracting index materials, electromagnetic band gap metamaterials, acoustic
metamaterials, electrical metamaterials, elastic and structural metamaterials and many more. Thanks to
their uncommon physical properties that can be fully controlled during their design and manufacture process,
structural elements or whole structures made out of metamaterials may find many interesting potential
applications that include cloaking and light filtering in optics [1–3], sound filtering and sound barriers in
acoustics [4–7], superconducting in electronics [8–10] or negative Poisson’s ratio and Young’s modulus in
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mechanics [11–13]. For all these reasons metamaterials, and among them periodic structures, stay nowadays
at the very centre of interest of many scientists and researchers around the world [14–21].

As already mentioned a special class of metamaterials are acoustic metamaterials that can be charac-
terised by periodical variations of their acoustic properties or geometry resulting in the presence of frequency
band gaps. Their unusual behaviour has its source in a coupled interaction between incident, reflected and
transmitted acoustic waves. This phenomenon remains well investigated and a great number of research
papers on this subject is available in the literature [22].

These research papers can be divided into three general groups, as summarised in Tab. 1, as papers
related to analytical, numerical and experimental investigations of periodic structures. Results of analytical
investigations can be found in [23–27]. Beside them, those which are related to the application of the Bloch
theorem – also known as the Bloch-Floquet theory – can be placed [28–32], together with the results obtained
by the use of the Plane Wave Expansion Method (PWEM) [33–37]. However, a great proportion of research
papers on periodic structures present results of numerical investigations. These include the application of the
Transfer Matrix Method (TMM) [38–42], the Finite Difference Method (FDM) [43–47], the Finite Element
Method (FEM) [48–52] or the Frequency-domain Spectral Finite Element Method (FD-SFEM) [53–57]. On
the other side the results of experimental investigations on periodic structures can be located, which are
reported in [58–62], but it should be emphasised that only few papers can be found on the application of
the Scanning Laser Doppler Vibrometry (SLDV) for that purpose [63–67].

Table 1: Synthetic summary of the research papers cited by the authors and related to the investigation of periodic structures.

Type of research Main research technique employed References
analytical mixed [23–27]
analytical Bloch theorem [28–32]
analytical Plane Wave Expansion Method (PWEM) [33–37]

numerical Transfer Matrix Method (TMM) [38–42]
numerical Finite Difference Method (FDM) [43–47]
numerical Finite Element Method (FEM) [48–52]
numerical Frequency-domain Spectral Finite Element Method (FD-SFEM) [53–57]

experimental mixed [58–62]
experimental Scanning Laser Doppler Vibrometry (SLDV) [63–67]

At this point it should be noted that the application of the Time-domain Spectral Finite Element Method
(TD-SFEM) to investigate high frequency dynamics or wave propagation phenomena in periodic structures
has not been widely reported in the available literature. As a computational technique TD-SFEM is far
superior not only to classical FEM, in the regime of high frequency dynamic responses [68], but also to
the remaining and above mentioned numerical techniques, i.e. TMM, FDM or FD-SFEM. This makes
TD-SFEM especially well suited for the analysis of high frequency dynamics, including wave propagation
patterns, of various structural elements [69]. On the other side the application of SLDV serves as a perfect
complementary experimental technique, especially well fitted to visualise wave propagation patterns, and as
a consequence of that, used to verify results of numerical simulations obtained by the use of TD-SFEM.

The authors of the current work aim to present results of numerical simulations obtained just by the use
of TD-SFEM and experimental measurements by SLDV that are related to high frequency dynamics as well
as wave propagation in an aluminium Timoshenko periodic beam. The source of the beam periodicity is
assumed as coming from repeated alterations to its geometry due to the presence of a number of appropriately
arranged drill-holes. The authors also take into account the periodic properties of the numerical model itself.
These periodic properties come from stress/strain field discontinuities between spectral finite elements and
are the source of additional discrete model periodicity [68]. The repeated alterations to the beam geometry
lead to the emergence of a set of frequency band gaps in the natural frequency spectrum of the beam. As
already mentioned their presence is helpful in the design process of sound filters or barriers. However, the
effectiveness of sound filtering or blocking is strongly dependent not only on the number of the frequency
band gaps present, but also on their width and location in the frequency spectrum. The authors want to
demonstrate that the number of the frequency band gaps as well as their location and width can be controlled
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by the number of drill-holes and their diameters, thus influencing wave propagation and sound filtering or
blocking. All these aspects were carefully investigated by the authors numerically by a combination of
three numerical techniques comprising the application of TD-SFEM in the case of analysis of finite and
infinite computational domains, damage modelling in the case of analysis of drill-hole influence, as well as
the Bloch reduction in the case of analysis of periodic computational domains. Finally, in order to back
up the results of numerical simulations experimental measurements were carried out by the authors on
appropriately prepared beam samples by the use of SLDV. A combined application of these numerical and
experimental techniques appears to be new for that purpose and not reported in the literature available.

In that context the main objective of the paper is the demonstration of the effectiveness and accuracy of
TD-SFEM as a robust and precise numerical tool for investigation of high frequency dynamic behaviour of
periodic structures on the example of an isotropic Timoshenko periodic beam with drill-holes. In addition
to this a parallel objective is formulated, which states that periodic structures can be successfully employed
as efficient sound barriers or sound filters in the regime of high frequencies. These should be successfully
confirmed experimentally by SLDV.

It should be emphasised here that numerous similarities between TD-SFEM and classical FEM result in
the same modelling capabilities, which are useful in modelling structural elements of complex geometries.
This also includes special elements dedicated to modelling periodic features of various types, such as drill-
holes. Additionally TD-SFEM is very efficient in solving dynamic problems characterised by high frequency
responses, especially wave propagation problems. This is due to its higher accuracy, when compared with
classical FEM [68], resulting from the orthogonality of much higher degree approximation polynomials.
Moreover, the results of numerical simulations obtained and presented in this work are backed up and
verified by experimental measurements by SLDV, which additionally confirms the suitability of the approach
proposed by the authors in respect of the two previously mentioned objectives of this paper.

2. Timoshenko beam spectral finite element

2.1. Element definition

All results of numerical simulations presented in this work were obtained by the use of TD-SFEM and
thanks to the application of a Timoshenko beam spectral finite element with a central drill-hole, as shown
in Fig. 1. The beam spectral finite element under consideration has the following dimensions: length le,
width b and thickness h. It was also assumed that a drill-hole of diameter d was located at the centre of the
element.

In the current formulation of the element the coordinates of its nodes were defined in the local coordinate
system ξ as the roots of the following polynomial expression:

T c
p (ξ) ≡ (1− ξ2)Up−2(ξ) = 0, |ξ| ≤ 1 (1)

where Up−2(ξ) is a Chebyshev polynomial of the second kind and degree p − 2, while T c
p (ξ) is a complete

Chebyshev polynomial of degree p. In this case the coordinates of the element nodes ξi may be calculated
from the relation:

ξj = − cos

[
π(j − 1)

p

]
j = 1, . . . , p+ 1 (2)

On the specified set of nodes ξj the element shape functions can be built in the local coordinate system ξ.
An interpolation function f(ξ), supported on the element nodes ξj , can be defined in the following way:

f(x) =

p+1∑
j=1

Nj(ξ)fj , |x| ≤ le
2
, ξ =

2x

le
(3)

where Nj(ξ) denotes one-dimensional shape functions of the element, fj are unknown nodal values, while le
is the element length.
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Figure 1: An isotropic Timoshenko beam spectral finite element with a central drill-hole, in the global coordinate system xyz,
defined based on the fifth degree complete Chebyshev polynomials (left), the local normalised coordinate system ξ (right).

Assuming small displacements and strains within the element the displacement and strain fields of the
isotropic Timoshenko beam spectral finite element under consideration can be expressed by very well–known
formulae [69–71] as:

u(x) = zφ(x)

w(x) = w0(x)
,


εx =

∂u(x)

∂x
= z

dφ(x)

dx

γxz =
∂w(x)

∂x
+

∂u(x)

∂z
=

dw0(x)

dx
+ φ(x)

(4)

where u(x) and w(x) denote the longitudinal and transverse element displacement components, in the global
coordinate system xyz, while the independent rotation φ(x) around the y-axis as well as the transverse
displacement w0(x) are nodal displacement components, defined in the element neutral axis.

Next the elemental characteristic matrices, i.e. the inertia matrix M and the stiffness matrix K can be
evaluated based on the well-known and standard FEM procedures [70]:

M = ρ

∫∫∫
V

Nt ·N dV, K =

∫∫∫
V

Bt ·D ·B dV (5)

where ρ is the material density, D is a matrix of elastic coefficients, while N and B denote the shape function
and strain-displacement matrices, respectively.

2.2. Element characteristics

At this point is should be noted that numerical investigations of high frequency dynamic responses,
especially including wave propagation problems, by the use of the current Timoshenko beam spectral finite
element, require certain knowledge about the element performance under a very wide range of frequencies f .
First of all the agreement between the applied Timoshenko beam theory and the analytical Lamb solution
was tested, as presented in Fig. 2 for the ratio of the group velocity cg to phase velocity cp, respectively,
for a non-periodic case. It was assumed that the beam under investigation was made out of aluminium of
the following material properties: Young’s modulus E = 67.5 GPa, Poisson’s ratio ν = 0.33 and material
density ρ = 2700 kg/m3 and geometrical dimensions: length l = 1000 mm, width b = 10 mm, and thickness
h = 25 mm.

As can be seen from Fig. 2 the current Timoshenko beam theory stays in a very good agreement with
the analytical solution based on the Lamb theory in the whole range of frequencies considered, i.e. for 0 Hz
up to 100 kHz. It can also be seen that wave propagation signals travel within the beam as a combination of
two independent wave propagation modes, known in the literature as A0 and A1 [71]. However, the second
wave propagation mode A1 contributes to the beam wave motion only above a certain frequency, indicated
by the point A, known in the literature as a cut-off frequency, and which is equal to 61.5 kHz in the case
of the analytical Lamb solution, and 62.5 kHz in the case of the current Timoshenko beam theory based
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Figure 2: The ratio of the group velocity cg to phase velocity cp as a function of the frequency f , calculated for an aluminium
beam according to the current Timoshenko beam theory and the analytical Lamb solution.

solution. Below this frequency the wave propagation mode A1 is characterised by imaginary values of the
wave number k2. As a consequence of that it represents evanescent waves, contrary to the harmonic waves
associated with the wave propagation mode A0 and characterised by real values of the wave number k1, as
shown in Fig. 3.

-2

-1

0

1

2

3

4

k
h
(–
)

0 10 20 30 40 50 60 70 80 90 100

f (kHz)

k1h
k2h

real

imaginary

A

Figure 3: Non-dimensional wave number kh as a function of the frequency f , calculated for an aluminium beam according to
the current Timoshenko beam theory.

The application of TD-SFEM requires the beam under investigation to be divided into a certain number n
of Timoshenko beam spectral finite elements characterised by a chosen degree of approximation polynomials
p. This discretisation process has a great and profound influence on calculated dynamic responses, as
presented in Fig. 4 in the case of natural frequencies fj of the beam and periodic boundary conditions. It
always leads to certain discretisation errors εj resulting from the discontinuities in the stress/strain fields
between spectral finite elements [68].

On the other hand it can also be considered as a source of unwanted periodicity of a beam discrete model.
Its influence should be always minimalised, for example, by an increase in the degree of approximation
polynomials p, as shown in Fig. 5, where vertical lines indicate multiples of the element number n. For
better illustration this is also presented in Tab. 2 for the mean of the discretisation error ε̄j and its maximum
value max εj , both calculated for the lower half of the frequency spectrum, i.e. for j = 1, . . . , 315.

It can be easily noticed that the maximum values of the discretisation error max εj are located near to,
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or at the end of, the lower half of the frequency spectrum. For example, in the case of the approximation
polynomial degree p being equal to 5 the mean value of the discretisation error ε̄j is 0.55% and its maximum
value max εj is 4.52%. This is associated with the natural frequency number j being equal to 298 and the
natural frequency value fj of 282.7 kHz.

Table 2: Natural frequency relative errors εj as a function of the approximation polynomial degree p, calculated based on the
current formulation of a Timoshenko beam spectral finite element.

p ε̄j max εj
1 4.43% 12.1% (j = 315, fj = 297.3 kHz)
3 0.95% 4.05% (j = 312, fj = 295.8 kHz)
5 0.55% 4.52% (j = 298, fj = 282.7 kHz)
7 0.34% 3.16% (j = 315, fj = 297.3 kHz)

0

500

1000

1500

2000

f j
(k
H
z)

0 100 200 300 400 500 600 700
j

numerical
analytical

A

(a)

0

500

1000

1500

2000

f j
(k
H
z)

0 100 200 300 400 500 600 700
j

numerical
analytical

A

(b)

0

500

1000

1500

2000

f j
(k
H
z)

0 100 200 300 400 500 600 700
j

numerical
analytical

A

(c)

0

500

1000

1500

2000

f j
(k
H
z)

0 100 200 300 400 500 600 700
j

numerical
analytical

A

(d)

Figure 4: Frequency spectra of an aluminium beam with free ends for various degrees of approximation polynomials p and
divisions into spectral finite elements n equal respectively to: p = 1, n = 315 (a); p = 3, n = 105 (b); p = 5, n = 63 (c) and
p = 7, n = 45 (d). A numerical model of 632 DOFs according to the Timoshenko theory of beams [71], based on Chebyshev
node distribution used for calculations by the TD-SFEM.

As shown the reduction of the discretisation error can be achieved by an appropriate selection of the
approximation polynomial degree p, which in the case of TD-SFEM is usually assumed as p = 5. This
guarantees a very high precision of the results of numerical calculations in the lower half of the frequency
spectrum, which stays practically unaffected by the model periodicity due to discretisation into spectral
finite elements, as seen in Fig. 5. At the same time the cost of necessary computations can be kept at
an acceptable level, as the size of the elemental matrices M and K is proportional to the square of the
approximation polynomial degree p. It can be clearly seen from Fig. 4 and Fig. 5 that the frequency spectra
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exhibit certain points of strong discontinuities, known in the literature as frequency band gaps, which in the
current case are entirely due to model discretisation.
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Figure 5: Relative errors of frequency spectra of an aluminium beam with free ends for various degrees of approximation
polynomials p and various division into spectral finite elements n equal respectively to: p = 1, n = 315 (a); p = 3, n = 105 (b);
p = 5, n = 63 (c) and p = 7, n = 45 (d). A numerical model of 632 DOFs according to the Timoshenko theory of beams [71],
based on Chebyshev node distribution used for calculations by the TD-SFEM.

It should be emphasised that in the current formulation of the isotropic Timoshenko beam spectral finite
element with a drill-hole, as shown in Fig. 1, the integration domain V = V0 − Vd in Eq.(5) excludes the
volume of the drill hole Vd = πd2/4, where V0 = bhle is the volume of the element without the drill-hole.
The value of the Timoshenko shear coefficient κ = 10(1 + ν)/(12 + 11ν) has been calculated based on the
formula given in [72].

Moreover, in order to take into account local stress concentrations due to the presence of the drill-hole a
numerical technique based on [73–75] was employed and the matrix of elastic coefficients D was appropriately
modified:

D = f(ξ)D0, f(ξ) =
√

1− (α ξ)2, ξ =
d

h
(6)

so the results of numerical simulations, obtained by the current formulation of the Timoshenko beam spectral
finite element, conform well to the results of numerical calculations obtained based on a two-dimensional
classical FEM model, as presented in Table. 3. The matrix of elastic coefficients that is unaffected by the
presence of a drill-hole is denoted by symbol D0, while the value of the coefficient α in Eq. (6) was estimated
numerically as equal to 1.3166.

The relative errors between the results obtained by TD-SFEM and classical FEM were calculated ac-
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cording to the following simple metric that is based on the distance between these two sets of results:

εj =

∣∣fj − f∗j ∣∣
f∗j

× 100%, j = 1, . . . , 10 (7)

where fj(j = 1, . . . , 10) are the natural frequencies of the beam calculated according to the current formula-
tion of the isotropic Timoshenko beam spectral finite element with a drill-hole, while f∗j (j = 1, . . . , 10) are
the natural frequencies calculated by the use of the two-dimensional classical FEM model of the beam under
investigation. At this point it is worth mentioning that the use of the simple metric applied by the authors
should be restricted to the sets of results that are not very distinctive. In the case of very distinctive sets of
results other types of metrics may be considered, as discussed in [76].

Table 3: Natural frequency relative errors εj(j = 1, . . . , 10) as a function of the drill-hole diameter d, calculated based on the
current formulation of a Timoshenko beam spectral element with a drill-hole and a two-dimensional classical FEM model.

d/h 0.00 0.08 0.16 0.24 0.32 0.40 0.48
ε1 0.06% 0.13% 0.28% 0.51% 0.82% 1.25% 1.83%
ε2 0.07% 0.13% 0.27% 0.49% 0.77% 1.17% 1.70%
ε3 0.08% 0.13% 0.26% 0.45% 0.70% 1.04% 1.49%
ε4 0.08% 0.14% 0.25% 0.40% 0.60% 0.86% 1.19%
ε5 0.09% 0.14% 0.22% 0.35% 0.48% 0.65% 0.83%
ε6 0.11% 0.15% 0.20% 0.28% 0.34% 0.38% 0.41%
ε7 0.13% 0.15% 0.18% 0.21% 0.18% 0.09% 0.07%
ε8 0.15% 0.16% 0.16% 0.12% 0.01% 0.22% 0.60%
ε9 0.17% 0.17% 0.13% 0.03% 0.18% 0.56% 1.16%
ε10 0.19% 0.18% 0.10% 0.05% 0.37% 0.92% 1.76%

(a)

(b)

Figure 6: Distribution of bending stresses within a cantilever aluminium beam in the case of the fifth bending mode of
natural vibrations. Results of numerical simulation by a two-dimensional classical FEM analysis: a beam with no drill-holes,
f5 = 1133.25 Hz (a); a beam with 20 evenly spaced 12 mm drill-holes along its length, f5 = 1153.67 Hz (b).

The results presented in Tab. 3 refer to the case of a cantilever aluminium beam with 20 evenly spaced
drill-holes along its length. The total number of degrees of freedom of the two-dimensional classical FEM
model varied from 10,000 to 20,000 depending on the drill-hole diameter d, whereas the total number of
degrees of freedom of the TD-SFEM model used by the authors was 600 and was independent of the drill-hole
diameter d. Sample results showing the influence of the drill-holes on the distribution of bending stresses
within the beam are well illustrated by Fig. 6 in the case of the fifth bending mode of natural vibrations. It
can be noted that the presence of the drill-holes have relatively small impact on the distribution of bending
stresses within the beam under investigation as well as the beam vibration (relative frequency shift of 1.75%)
in the range of the drill-hole diameters considered.

A very good agreement can be seen between the numerical results obtained in the analysed range of
natural frequencies up to 4 kHz, despite the fact that the size of the TD-SFEM numerical model used was
from 16 to 32 times smaller than the reference two-dimensional FEM model. The average error is 0.43%,
while its maximum value is 1.83% for the first natural frequency and the diameter of the drill-hole equal to
12 mm.
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3. Timoshenko periodic beam

An isotropic Timoshenko periodic beam is presented in Fig. 7. It was assumed that the beam under
investigation was made out of aluminium of the same material properties as specified above. It was also
assumed that the source of beam structural periodicity is N evenly distributed drill-holes of diameter d
placed along the beam length.

Figure 7: Geometry of a Timoshenko periodic beam with drill-holes.

3.1. Bloch theorem

The Bloch theorem is a very powerful analytical tool that enables one to study properties of various
periodic structures [77, 78] in nano-, micro- as well as in macro-scales. Most commonly the Bloch theorem
is used to investigate the behaviour of electrons in various crystals. However, its application is much more
general. It can be successfully used to study wave-related phenomena in periodic media or structures. For
example, the application of the Bloch theorem to electromagnetic waves propagating in periodic dielectric
materials leads to photonic crystals, while in the case of acoustic waves in periodic media its application
leads to phononic crystals [79].

The Bloch theorem states that a solution to the wave equation in a three-dimensional periodic structure
ψ(r), also known as a Bloch wave, can be represented by a combination of a plane wave eik·r and a periodic
function u(r):

ψ(r) = eik·ru(r) (8)

where k is the wave vector, r is the position vector within the structure, while u(r) denotes a periodic
function of the same periodicity as the periodicity of the structure.

Taking advantage of the theorem in one-dimensional case, which is the case of the Timoshenko periodic
beam under consideration, it can be written that:

ψ(x) = eikxu(x) (9)

It can be easily found that the Bloch wave ψ(x) has the following property:

ψ(x+ a) = eik(x+a)u(x+ a) = eikaeikxu(x+ a) = eikaeikxu(x) = eikaψ(x) (10)

where now k is the one-dimensional wave number, a the distance between two neighbouring cells in a one-
dimensional periodic structure, which in the current case is equal to the length of a single Timoshenko beam
spectral finite element le presented in Fig. 1.

It should be noted that Eq. (10) means that the state of motion (i.e. solution to the wave equation)
within a single cell of the structure, described the Bloch wave φ(x), can be employed to describe the state
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of motion in neighbouring cells, described by the same Bloch wave ψ(x+ a) with a shifted argument. This
property of the Bloch wave can help to find the state of motion in each cell of the periodic structure under
investigation by propagating solutions onto neighbouring cells of the structure. However, it should also
be noted that the value of the upper frequency of any spectrum analysis by the application of the Bloch
theorem is limited by the cell size a through its relation with the wave propagation phase velocity cp and
the maximum wave lengths k of propagating waves, i.e. ω = cpk.

Moreover, if the structure under investigation can be characterised by a certain number of cells N that
are periodically placed over a distance l, so that l = Na, it can be written:

ψ(x+Na) = ψ(x) = eikNaψ(x) (11)

which requires that eikNa ≡ 1, so it can be found that:

k =
2πn

Na
, n = 0, . . . , N (12)

This enables one to write Eq. (9) as:

ψ(x+ a) = ei
2πn
N ψ(x) (13)

which is essential for the application of the Bloch reduction technique that can be employed to study by the
use of TD-SFEM the natural frequency spectrum of the entire beam with N evenly distributed drill-holes
of diameter d placed along the beam length, as presented in Fig 7. In general, the applicability of the Bloch
theorem and the Bloch reduction technique can be expanded by the superelement technique onto arbitrary
shapes of three-dimensional unit cells, which is not always possible in the case of analytical investigations.

3.2. Bloch reduction

The analysis of natural vibrations of the entire beam under consideration by the use of TD-SFEM
and Bloch reduction requires solution of a well-known eigenvalue problem, which can be described by the
following equation:

(K− ω2M) · q = 0 (14)

but which is formulated at the level of a single Timoshenko beam spectral finite element with a central
drill-hole. As before the symbols M and K are used to denote the elemental inertia and stiffness matrices,
while q is a vector of nodal displacements and 0 is a corresponding null vector.

The nodal displacements of the Timoshenko beam spectral element under investigation, shown in Fig.
1, can be divided into two groups, i.e. internal nodal displacements qi(i = 2, . . . , 5) and nodal displacements
associated with element boundaries qi(i = 1, 6):

q = {q1, q2, q3, q4, q5, q6}, qj = (wj , φj), j = 1, . . . , 6 (15)

where wj and φj represent two nodal degrees of freedom of the element.
Thanks to the application of the Bloch theorem the size of the eigenvalue problem associated with the

analysis of natural vibrations of the entire Timoshenko periodic beam can be reduced to repeated solution
of the eigenvalue problem defined at the level of a single Timoshenko spectral finite element by the use of
the following relation for boundary nodal displacements q1 and q6:

q6 = q1ei
2πn
N , n = 0, . . . , N (16)

In this manner the size of the original eigenvalue problem (14) can be reduced to:

[Kr(n)− ω2Mr(n)] · qr(n) = 0, n = 0, . . . , N (17)

where now:
Kr(n) = At(n) ·K ·A(n)

Mr(n) = At(n) ·M ·A(n)
(18)
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are reduced elemental stiffness and inertia characteristic matrices, respectively.
The non-zero elements of the rectangular matrix A(n) of size 12 × 10 can be defined in the following

manner:
Aj,j = 1, j = 1, . . . , 10

Aj,1 = ei
2πn
N , j = 11, 12

(19)

4. Results of numerical simulations

4.1. Natural frequency spectrum

Firstly the influence of the drill-hole diameter d on the natural frequencies fj of the beam under con-
sideration was investigated, where as before j is the natural frequency number. In this study the first 120
natural frequencies of the beam were analysed for 4 different numbers of the drill-holes N , these being: 50,
40, 30 and 20. It was assumed that the beam was modelled by Timoshenko beam spectral finite elements
based on the fifth degree complete Chebyshev polynomials. The total number of degrees of freedom of the
numerical model was constant and equal to 10. The periodic boundary conditions were used in this case.

In Fig. 8 results of numerical simulations are presented calculated for the relative drill-hole diameter
d/h = 0.5 and the number of drill-holes N = 50. They were obtained based on the Bloch reduction
technique and the use of a single isotropic Timoshenko beam spectral finite element with a central drill-hole,
as previously discussed.

It should be remembered that the properties of the numerical model itself, resulting from the assumed
discretisation technique by TD-SFEM, are an additional source of frequency band gaps that dominate in
the upper half of the calculated frequency spectrum [68]. These frequency band gaps can effectively mask
the influence of the drill-holes being the primary and assumed source of beam periodicity, as shown in Fig.
4. For that reason only the lower half of the calculated frequency spectrum is considered as consisting of
valuable information about the influence of the periodicity from the presence of drill-holes in the range of
the relative drill-hole diameters d/h from 0 to 0.5.
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Figure 8: Natural frequency spectrum of an aluminium Timoshenko periodic beam as a function of: relative wave number
ka/2π (a), natural frequency number j (b). Results obtained based on the Bloch reduction technique and the application of an
isotropic Timoshenko beam spectral finite element with a central drill-hole for the relative drill-hole diameter d/h = 0.5 and
the number of drill-holes N = 50.

It can be seen from Fig. 8 that the appearance of the drill-holes results in the presence of frequency
band gaps in the lower half of the frequency spectrum. Moreover, as before the frequency band gaps present
appear in the calculated frequency spectrum of the beam at frequency numbers j being multiples of the
number of drill-holes N . This is clearly visible in Fig. 8, when the spectrum is presented just as a function
of the natural frequency number j.
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Figure 9: The influence of the relative drill-hole diameter d/h on natural frequencies fj of an aluminium Timoshenko periodic
beam for various numbers of drill-holes N equal respectively to: N = 20 (a), N = 30 (b), N = 40 (c) and N = 50 (d). Results
of numerical calculations based on the Bloch reduction technique and the use of a single isotropic Timoshenko beam spectral
finite element with a central drill-hole.

The influence of the relative drill-hole diameter d/h and the number of drill-holes N is presented in Fig.
9. Similarly, the results of numerical simulations were calculated based on the Bloch reduction technique
and the use of a single isotropic Timoshenko beam spectral finite element with a central drill-hole.

It can be seen from Fig. 9 that an increase in the relative drill-hole diameter d/h results in an increase in
the widths of the frequency band gaps observed ∆fm(m = 1, . . . , 9). For small relative drill-hole diameters
d/h < 0.25 the widths of the frequency band gaps ∆fm stay comparable to the distance between two
neighbouring natural frequencies of the beam. On the other hand for higher beam periodicities N/l , i.e. for
greater number of drill-holes N , the widths of frequency band gaps ∆fm increase in comparison to smaller
numbers of drill-holes N . However, they also move towards higher natural frequencies fj and/or higher
frequency numbers j in close correlation with the number of drill-holes N .

4.2. Propagation of elastic waves

Next the wave propagation phenomena in the beam under consideration was investigated. The main
purpose of this investigation was to demonstrate the usefulness of periodic structures as sound filters or sound
barriers as well as the effectiveness of the application of TD-SFEM. In order to do that it was assumed that
a transverse displacement time signal w(t), due to a unit force excitation applied at point A in the form of

12

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Table 4: Frequency band gaps ∆fm in the natural frequency spectrum of an aluminium Timoshenko periodic beam. Results
obtained based on the Bloch reduction technique and the application of an isotropic Timoshenko beam spectral finite element
with a central drill-hole for the relative drill-hole diameter d/h = 0.5 and the number of drill-holes N = 50.

m ∆fm = fNm+1 − fNm fNm fNm+1

1 0.1 kHz 55.0 kHz 55.1 kHz
2 16.8 kHz 89.1 kHz 105.9 kHz
3 0.8 kHz 141.9 kHz 142.7 kHz
4 4.0 kHz 187.9 kHz 191.9 kHz
5 4.0 kHz 241.0 kHz 245.0 kHz
6 4.4 kHz 302.3 kHz 306.7 kHz
7 21.6 kHz 388.8 kHz 410.4 kHz
8 21.9 kHz 505.9 kHz 527.8 kHz
9 148.9 kHz 634.5 kHz 783.4 kHz

20 sine pulses of carrier frequency fc, modulated by the Hann window, propagates within the beam from
point A(x = 0) to point B(x = l), as shown in Fig. 7. Time histories w(t) and amplitude spectra a(ω) of
those signals, based on the results of numerical simulations by TD-SFEM, were calculated at point B for
the relative diameter of drill-holes d/h = 0.5.
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Figure 10: Time history (a) and amplitude spectrum (b) of propagating elastic waves in an aluminium Timoshenko non-periodic
beam for the excitation signal carrier frequency fc = 100 kHz. Results obtained based on TD-SFEM and the application of an
isotropic Timoshenko beam spectral finite element with a central drill-hole for the relative drill-hole diameter d/h = 0.0.

In order to remove any artefacts from back-reflected signals at point B that could influence the results of
numerical calculations due to the finite simulation time T as well as no material damping in the numerical
model, it was additionally assumed that the length l represents a section of an infinite periodic beam of the
same periodicity N/l and intensity d/h.

According to [80] the remaining infinite part of the beam was modelled by a so-called through-off struc-
tural element [81] defined in the time domain, for which length la and wave attenuation properties s and p
had to be adjusted to the length of the longest waves propagating within the beam. Based on the results
presented in [80] the following values of the adjustable parameters were used: length la = 1000 mm, s = 7
and p = 3. As a consequence of that the whole numerical model consisted of 100 isotropic Timoshenko
beam spectral finite elements with central drill-holes, which resulted in 1000 degrees of freedom in total.
For solving the equation of motion in time the Newmark method was employed with no artificial numerical
damping (α = 0.25, δ = 0.5), while the simulation time T = 2 ms was divided into 212 time steps. The
free type of boundary conditions was used now. For calculation of signal amplitude spectra the discrete fast
Fourier transform (DFFT) was employed.

The results obtained are presented in Figs. 10–13 as normalised signal time histories as well as normalised
amplitude signal spectra. In each case the normalisation of the signal under consideration, i.e. time history
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w(t) or amplitude spectrum a(ω), was performed based on the maximum value of an appropriate reference
signal w0(t) and a0(ω) obtained in the case of the non-periodic beam, i.e. when the relative diameter of
drill-holes d/h = 0.
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Figure 11: Time history (a) and amplitude spectrum (b) of propagating elastic waves in an aluminium Timoshenko periodic
beam for the excitation signal carrier frequency fc = 100 kHz. Results obtained based on TD-SFEM and the application of an
isotropic Timoshenko beam spectral finite element with a central drill-hole for the relative drill-hole diameter d/h = 0.5 and
the number of drill-holes N = 50.
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Figure 12: Time history (a) and amplitude spectrum (b) of propagating elastic waves in an aluminium Timoshenko non-periodic
beam for the excitation signal carrier frequency fc = 50 kHz. Results obtained based on TD-SFEM and the application of an
isotropic Timoshenko beam spectral finite element with a central drill-hole for the relative drill-hole diameter d/h = 0.0.

It is evident from the results presented in Figs. 10–13 that attenuation properties of the beam under
consideration have their source in the presence of frequency band gaps ∆fm(m = 1, . . . , 9) in its spectrum.
In a non-periodic case, regardless of the carrier frequency fc of the excitation, signals propagate within the
beam freely as two modes, as seen in Fig. 10, or a single mode, as seen in Fig. 12. The only changes observed
in the form of these signals are due to the dispersive nature of propagating elastic waves [71]. However, in a
periodic case, for signals for which a significant part of their frequency content falls within frequency band
gaps, a considerable decrease in the time signal amplitude is observed, as seen in Fig. 11, both in the time
and frequency domains. In the time domain the signal is attenuated to 3.1% of its initial maximum value,
while in the frequency domain the signal is attenuated to 13% of its initial maximum value.

Contrary to that, for signals for which their frequency content falls outside frequency band gaps, signal
strengthening can be noticed. This manifests in a considerable increase in the time signal amplitude, as seen
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in Fig. 13. In the time domain the signal is amplified to 117% of its initial maximum value, while in the
frequency domain the signal is amplified to 149% of its initial maximum value. The signal strengthening,
i.e. signal amplification, is a direct consequence of a decrease in the structural stiffness K of the beam due
to the presence of the drill-holes. This effect can be effectively compensated for, only for the signals for
which a significant part of their frequency content falls within frequency band gaps, present in the frequency
spectrum of the beam.
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Figure 13: Time history (a) and amplitude spectrum (b) of propagating elastic waves in an aluminium Timoshenko periodic
beam for the excitation signal carrier frequency fc = 50 kHz. Results obtained based on TD-SFEM and the application of an
isotropic Timoshenko beam spectral finite element with a central drill-hole for the relative drill-hole diameter d/h = 0.5 and
the number of drill-holes N = 50.

5. Experimental measurements

High frequency dynamic responses of aluminium periodic beams with drill-holes were investigated by the
authors experimentally by the use of the Scanning Laser Doppler Vibrometry (SLDV). The main element of
the test rig used for that purpose was a one-dimensional Doppler laser scanning vibrometer, Polytec model
PSV-400, as well as an anti-vibration table. The rig was additionally equipped with a linear amplifier,
American Piezo, Inc.model EPA-140 (±200 Vpp). In the experiments American Piezo, Inc. PZT-850 disc
(10 mm ×10 mm) transducers were used to excite the beams in a wide range of frequencies. Experimental
measurements were carried out on nine aluminium beams of the following dimensions: length L = 1.2 m,
height a = 25 mm and width b = 10 mm.

(a) (b)

Figure 14: A view of the 1-D Doppler scanning laser vibrometer unit (a) and a tested beam sample (b).
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In order to conform to the results of numerical calculations by TD-SFEM, in the case of eight beams the
source of their periodicity was assumed to be N = 20 cylindrical drill-holes. The diameter of drill-holes d
varied from 5 mm up to 12 mm, while the drill-holes were equally spaced along the length L = 1000 mm with
a 200 mm margin on one side. As previously the influence of the relative diameter d/h of drill-holes on beam
dynamics was taken into consideration. Both their natural frequency spectra as well as the propagation of
guided elastic waves were carefully investigated by the authors.
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Figure 15: Amplitudes of natural frequencies of an aluminium cantilever Timoshenko beam: non-periodic (a), periodic (b), for
chirp excitation obtained experimentally by the use of 1-D SLDV. In the case of the periodic beam results obtained for the
relative drill-hole diameter d/h = 0.5 and the number of drill-holes N = 20.

Initially amplitudes of natural frequencies of the beams were tested. The chirp type of excitation was
used for that purpose within the frequency range from 1 kHz up to 200 kHz, covering 200 equally spaced
frequency points. In this case the cantilever type of boundary conditions was assumed and therefore the
effective length of the beams was reduced to l = 1000 mm due to 200 mm of clamping. Dynamic displacement
responses were measured consecutively in 211 points, equally spaced along the beam lengths, i.e. on top or
bottom/side, as shown in Fig. 7, and which next were averaged for each frequency point. For every beam
a single measurement for each frequency point was T = 12.8 ms, while the total measurement time was
211 × 12.8 ms = 26.2 s. Sample results of experimental measurements obtained in this way are presented in
Fig. 15.
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Figure 16: Comparison of experimentally measured and numerically calculated frequency band gaps within the natural fre-
quency spectrum of an aluminium cantilever Timoshenko periodic beam as a function of the relative drill-hole diameter d/h.
Results obtained for the number of drill-holes N = 20.

Thanks to the programme of experimental measurements carried out it was possible to identify the widths
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of frequency band gaps resulting from the presence of the drill-holes. In the case of the beams tested there
were two frequency band gaps that could be easily observed within the investigated range of frequencies,
as shown in Fig. 15. Based on the measurements carried out on all aluminium beams the influence of the
relative drill-hole diameter d/h on the widths of frequency band gaps in the natural frequency spectrum of
the beams could be investigated.

The result of this investigation is presented in Fig. 16 as a comparison of numerical and experimental
analyses. It can be seen from Fig. 16 that the results of experimental measurements by one-dimensional
SLDV correspond well to the results of numerical simulations by TD-SFEM in terms of the position of the
middle of frequency band gaps within the frequency spectrum of the beam. However, the widths of the
frequency band gaps are underestimated in the case of TD-SFEM. This can result from underestimation
of the correction function f(ξ) in Eq. (6) that possibly should be based on higher natural frequencies,
rather than first ten natural frequencies, in order to take into account a very localised influence of stress
concentration effects for higher modes of natural vibrations. An alternative can be a correction function
f(ξ) entirely based on the results of experimental measurements.

Next, propagation of guided elastic waves was investigated, based on the results obtained from previous
measurements related to the natural frequency spectra. Two carrier frequencies fc = 44 kHz and fc = 22
kHz were chosen for that purpose in order to demonstrate the effectiveness of signal filtering capabilities of
the periodic beam under investigation.

In both cases the signals had the same form of 10 sine pulses modulated by the Hann window. The
duration of excitation was T = 12.8 ms, while that time was uniformly sampled in 215 points. As easily seen
from Fig. 16 the higher carrier frequency fc = 44 kHz falls in the middle of the upper frequency band gap
∆f2, while the lower carrier frequency fc = 22 kHz stays slightly above the lower frequency band gap ∆f2.
Therefore strong signal attenuation is expected to be observed in the case of the higher carrier frequency
of 44 kHz rather than in the case of the lower carrier frequency of 22 kHz. All experimental measurements
were carried out for the free type of boundary conditions. As a consequence the effective length of the beam
was equal to l = 1200 mm. In this case the non-periodic part of each beam of 200 mm was used as an
auxiliary zone providing enough space for full signal development.

The result of this investigation is presented in Fig. 17. As expected for the higher carrier frequency of 44
kHz falling in the middle of the upper frequency band gap ∆f2, strong signal attenuation is observed with
its average value of 91.5% in the initial 1.55 ms. This behaviour is not present for the lower carrier frequency
of 22 kHz, which stays above the neighbouring frequency band gap ∆f1, where no apparent attenuation of
the propagating signal is visible.

6. Conclusions

The results of numerical calculations by TD-SFEM, as well as experimental measurements by one-
dimensional SLDV presented in this work and related with the high frequency dynamics of an aluminium
Timoshenko periodic beam, allow the authors to formulate the following general conclusions:

1. The structural periodicity of the Timoshenko beam under investigation is a direct consequence of the
presence of evenly distributed drill-holes along its length.

2. The structural periodicity, expressed by the number of drill-holes per unit length, has a profound
influence on the beam dynamic behaviour, which manifests itself in the presence of frequency band
gaps in the beam natural frequency spectrum.

3. The intensity of the periodicity, expressed by the relative diameter of drill-holes, can be easily tuned
by increasing the diameter of the drill-holes, while the periodicity itself can be modified by increasing
the number of the drill holes.

4. For the same intensities of periodicity, as well as for higher periodicities, the number of frequency band
gaps is smaller, but their widths in the frequency domain increase.

5. For the same periodicities and for their higher intensities the widths of frequency band gaps also
increase.
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Figure 17: Time histories of propagating elastic waves in an aluminium Timoshenko periodic beam for the excitation signal
carrier frequencies fc = 22 kHz (left) and fc = 44 kHz (right) at time instances: t = 0.20 ms (a–b), t = 0.65 ms (c–d), t = 1.10
ms (e–f) and t = 1.65 ms (g–h). Results obtained based experimentally by the use of 1D-SLDV for the relative drill-hole
diameter d/h = 0.5 and the number of drill-holes N = 20.
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6. Low values of the structural periodicity define the boundary between periodic and non-periodic struc-
tures.

7. For the Timoshenko beam under investigation this boundary was 20 drill-holes along the beam length.
In such cases the differences between subsequent natural frequencies of the beam are of similar mag-
nitudes as expected frequency band gaps.

8. For higher values of the structural periodicity the influence of non-periodic boundary conditions be-
comes smaller with the increase in the structural periodicity. In such cases the results of numerical
calculations by TD-SFEM, for a full numerical model, tend to the results of numerical calculations
obtained for a single unit cell and periodic type of boundary conditions.

9. The structural periodicity can be employed as an effective means to attenuate or filter out signals
propagating within an isotropic Timoshenko beam.

10. The effectiveness of this process depends on the correlation between the signal frequency content and
the beam periodic properties, expressed by periodicity and the intensity of periodicity, thus influencing
its dynamic properties.

11. TD-SFEM is an extremely effective numerical tool that can be used to study wave propagation phe-
nomena in periodic structures numerically, while as its experimental counterpart 1D-SLDV can be
used.

12. The effectiveness of numerical investigations by TD-SFEM can be additionally increased by the appli-
cation of the Bloch theorem and the Bloch reduction technique, which greatly helps to reduce the size
of numerical models as well as the time of necessary computations limiting these models to numerical
models of a single unit cell.

13. The applicability of the Bloch theorem and the Bloch reduction technique can be additionally enhanced
by TD-SFEM and the superelement technique onto arbitrary shapes of three-dimensional unit cells,
which is not possible in the case of analytical investigations.

14. The application of TD-SFEM in the case of problems involving high frequency dynamic responses must
always be preceded by careful investigation of periodic properties of the numerical model used. This
helps to minimise the negative influence of numerical model periodic properties that can effectively
mask or distort results of numerical calculations.

15. In general, only the lower half of the frequency spectra remains unaffected by periodic properties of the
numerical model used. For this reason only this part of the frequency spectra should be considered as
providing valuable information about the dynamic responses of periodic structures under investigation.
The upper half of the frequency spectra can be disregarded, as a strong influence of periodic properties
of the numerical models reveals there and dominates calculated dynamic responses.

16. Alternatively, in the case of problems involving high frequency dynamic responses periodic properties
of numerical models can be restrained by enforcing the continuity of the displacement fields as well
as its derivatives between neighbouring finite elements. For example, this is possible through the
application of quintic Hermite splines instead of Chebyshev polynomials as elemental approximation
polynomials.
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