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Accurate tracking of harmful gas concentrations is essential to swiftly and effectively execute measures 
that mitigate the risks linked to air pollution, specifically in reducing its impact on living conditions, 
the environment, and the economy. One such prevalent pollutant in urban settings is nitrogen dioxide 
(NO2), generated from the combustion of fossil fuels in car engines, commercial manufacturing, 
and food processing. Its elevated levels have adverse effects on the human respiratory system, 
exacerbating asthma and potentially causing various lung diseases. However, precise monitoring of 
NO2 requires intricate and costly equipment, prompting the need for more affordable yet dependable 
alternatives. This paper introduces a new method for reliably calibrating cost-effective NO2 sensors by 
integrating machine learning with neural network surrogates, global data scaling, and an expanded 
set of correction model inputs. These inputs encompass differentials of environmental parameters 
(such as temperature, humidity, atmospheric pressure), as well as readings from both primary and 
supplementary low-cost NO2 detectors. The methodology was showcased using a purpose-built 
platform housing NO2 and environmental sensors, electronic control units, drivers, and a wireless 
communication module for data transmission. Comparative experiments utilized NO2 data acquired 
during a five-month measurement campaign in Gdansk, Poland, from three independent high-precision 
reference stations, and low-cost sensor data gathered by the portable measurement platforms at the 
same locations. The numerical experiments have been carried out using several calibration scenarios 
using various sets of calibration input, as well as enabling/disabling the use of differentials, global data 
scaling, and NO2 readings from the primary sensor. The results validate the remarkable correction 
quality, exhibiting a correlation coefficient exceeding 0.9 concerning reference data, with a root 
mean squared error below 3.2 µg/m3. This level of performance positions the calibrated sensor as a 
dependable and cost-effective alternative to expensive stationary equipment for NO2 monitoring.

Keywords  Air pollution monitoring, Environmental monitoring, Monitoring platform, Nitrogen dioxide 
sensors, Low-cost sensors, Sensor calibration, Affine transformation

Nitrogen dioxide (NO2) stands as a prevalent atmospheric pollutant, originating from internal combustion 
engines, diverse manufacturing processes (such as nitric acid fabrication, petrol refining, or welding), and food 
processing. Elevated concentrations pose significant risks to human health, potentially leading to skin infections, 
respiratory issues, lung cancer, and exacerbation of pre-existing conditions1–6. According to standards outlined by 
the CAFE Directive7, the average annual concentration should not surpass 40 µg/m3, with hourly concentrations 
not exceeding 200 µg/m3 for more than 18 h annually. Similar yet more stringent guidelines are proposed by the 
World Health Organization (WHO)8. Nevertheless, NO2 concentrations certain areas exceed these prescribed 
limits54,55.This issue is especially prominent in densely urbanized regions, notably associated with routes of car 
transportation. The economic consequences of air pollution, including NO2, are substantial9. For instance, in 
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2016, NO2-related costs in China alone amounted to nearly 30 billion US dollars2. NOx pollution contributes to 
the creation of photochemical smog, the development of acid rain, and the eutrophication of aquatic ecosystems, 
ultimately leading to ecological deterioration in water reservoirs10. Additionally, elevated NOx concentrations 
heighten O3 levels, negatively impacting agriculture.

Traditional methods for monitoring NO2 typically rely on cumbersome and fixed equipment, demanding 
specific installation conditions and frequent upkeep. The expenses associated with their procurement 
and maintenance are usually considerable. Various measurement techniques include photofragment 
chemiluminescence (which is sensitive but necessitates regular calibration)11, long-range differential optical 
absorption spectroscopy (also sensitive but limited to spatially extended measurements)12, laser-induced 
fluorescence (highly sensitive and rapid but requires a vacuum system and a pulsed laser)13, and cavity ring 
spectroscopy (requires no calibration, facilitating portable measurements)14.

The drawbacks associated with traditional monitoring stations have spurred the development of cost-effective 
detection methods that are portable, easy to deploy, and maintain. These approaches aim to improve the spatial 
resolution of air quality monitoring, particularly crucial in urban areas characterized by diverse air pollutant 
distributions15–17. However, inexpensive sensors often face limitations in reliability18–20, attributed to factors 
like instability21, inconsistent manufacturing22,23, susceptibility to cross-sensitivity with other gases24–26, and 
sensitivity to environmental conditions such as temperature or humidity27,28. Despite these limitations, deploying 
cost-effective sensors in large numbers can complement sparsely located reference stations. Additionally, they 
offer affordable air pollutant detection options for regions with limited resources29 and serve in establishing 
sensor networks30,31 (for instance, on ground or aerial vehicles32,33), playing a key role in developing integrated 
air quality monitoring systems.

In recent years, significant research endeavours have focused on enhancing the reliability of low-cost sensors 
through appropriate calibration methods. These techniques are broadly classified into two categories: laboratory 
and field-based approaches34. While laboratory calibration is theoretically more accurate, its practical utility is 
limited as real-world conditions seldom match controlled laboratory settings18,19. Consequently, the majority of 
studies prioritize field calibration, leveraging reference data obtained from public monitoring stations. Numerical 
modelling for sensor correction encompasses various regression and machine learning methods, with the latter 
including neural networks. For instance, in35, multivariate linear regression (MLR), support vector regression 
(SVR), and random forest regression (RFR) were utilized to calibrate electrochemical NO and NO2 sensors 
using temperature and humidity data. In another study36, ridge regression, a linear statistical learning algorithm, 
RFR, Gaussian process regression (GPR), and MLR were employed to rectify readings from low-cost NO2 and 
PM10 sensors based on temperature and humidity. Successful calibration using MLR was demonstrated in37 for 
a chemiluminescence NO-NO2-NOx analyser, also utilizing temperature and humidity data. Further studies 
focusing on regression-based sensor calibration can be found in38–40.

In recent times, artificial neural networks and other machine learning techniques have proven to be reliable 
tools for correcting low-cost sensors. Calibration of CO, NO2, O3, and SO2 sensors has been achieved using single 
linear regression (SLR), multivariate linear regression (MLR), random forest regression (RFR), and long short-
term memory networks (LSTM) in29. The outcomes highlighted the superior performance of LSTM over all 
regression-based algorithms. Another study15 employed convolutional neural networks (CNNs) and recurrent 
neural networks (RNNs) to calibrate sensors based on historical time series data. Calibration of commercial CO 
and O3 sensors, utilizing temperature and humidity data, supported the advantages of CNN/RNN over various 
regression methods like linear regression (LR), support vector regression (SVR), or LSTM combined with CNN. 
Other types of artificial neural network (ANN) models used for calibration purposes include Bayesian neural 
networks41, shallow neural networks42, and dynamic neural networks43,44.

This article aims to introduce an innovative method for precisely calibrating cost-effective NO2 sensors. 
Our approach integrates machine learning, specifically neural network surrogates, global data scaling, and 
an expanded range of correction model inputs. These inputs encompass environmental parameters (like 
temperature, humidity, atmospheric pressure), their differentials, along with readings from both primary and 
supplementary low-cost NO2 sensors. The neural network model is trained to accurately represent additive and 
multiplicative correction coefficients based on the aforementioned environmental and auxiliary variables. Global 
scaling is then applied to enhance the correlation between reference and calibrated sensor data by employing 
appropriate affine transformations established using the complete set of training samples. The utilization of 
differentials has demonstrated improved reliability in sensor calibration by linking correction coefficients to 
temporal changes in parameters such as temperature, humidity, or NO2 readings from the sensor in question. 
To verify our methodology, it was applied to a custom-built autonomous monitoring platform incorporating 
nitrogen dioxide and environmental detectors, as well as electronic circuitry controlling system operations 
and implementing measurement and data transfer protocols. Reference data was collected over five months 
from public high-precision stations in Gdansk, Poland. The results affirm exceptional calibration efficiency, 
showcasing a correlation coefficient exceeding 0.9 with reference data, and a measurement accuracy quantified 
by RMSE below 3.2 µg/m3. Additionally, all developed algorithmic tools have demonstrated their effectiveness 
in enhancing the quality of the calibration process. The achieved performance of the corrected sensor validates 
its suitability for cost-efficient and reliable NO2 monitoring.

Autonomous NO2 monitoring platform: reference data acquisition
The calibration methodology we propose has been implemented on a specially designed autonomous monitoring 
platform, detailed in this section. Here, we provide a brief overview of the hardware and sensors integrated 
into this system. The specific machine-learning-based calibration process for the NO2 sensor will be extensively 
discussed in section “Machine learning and global data scaling for reliable sensor calibration”.
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Autonomous monitoring platform
The air pollution data is collected using a tailored microprocessor-based hardware platform. This system 
integrates multiple sensors for monitoring environmental parameters such as temperature, humidity, and 
atmospheric pressure, along with three nitrogen dioxide sensors (one primary and two auxiliary). Additionally, 
it includes a global system for mobile communication (GSM) modem for wireless transmission of measurement 
results to the cloud. The automated data acquisition protocols utilize off-the-shelf components managed by 
the microprocessor system BeagleBone® Blue45. This Linux-based computer board features a 1  GHz ARM® 
Cortex-A8 processor, 512  MB DDR3 RAM, 4  GB eMMC memory, and a data storage unit. A rechargeable 
7.4 V/4400 mA battery ensures system operation for a minimum of twenty hours without external power. The 
BeagleBone board integrates serial input/output ports used for connecting various modules, such as the cellular 
connectivity module and multiple low-cost gas and environmental sensors. The platform incorporates three 
NO2 sensors alongside temperature, humidity, and pressure detectors. Figure 1 illustrates the platform’s block 
diagram and the pertinent sensor information. Software drivers for the hardware modules are developed in 
Python3. Measurement results, transmitted via the GSM modem to the cloud, are accessible online.

The entire system has been mounted on a custom base plate crafted from polyethylene terephthalate, as 
depicted in Fig.  2. The gas sensors (SGX, ST, MICS) are positioned in close proximity to each other (refer 
to Fig.  2a), alongside the environmental detectors that assess their operational surroundings. An auxiliary 
environmental parameter sensor was situated at the device’s edge to measure external temperature and humidity. 
There is a distinction between internal and external temperature/humidity due to the heat generated by the 
processor board.

Additionally, the system includes an Intel USB Stick module, capable of supporting computations for 
implementing calibration algorithms. The entire platform is enclosed within a polyethylene terephthalate 
weatherproof housing, as shown in Fig. 2c. The measurements were taken in the period March to August 2023 
with the data recorded hourly. The total number of readings exceeds 10,000.

Reference data
To calibrate the low-cost sensor mentioned in section “Autonomous monitoring platform”, we gathered high-
quality reference data from a network of public monitoring stations situated in Gdansk, Poland. These stations, 
established and maintained by the ARMAG Foundation50, are equipped with air-conditioned containers and 
high-performance measuring devices. They undergo regular supervision and calibration. Figure 3a illustrates 
the spatial distribution of the reference stations, while Fig. 3b showcases a photograph of one such station. The 
equipment utilized for NO-NO2-NOx monitoring is itemized in Fig. 3c.

The air quality data generated by ARMAG is available to the public free of charge via the foundation’s website 
(https://armaag.gda.pl/en/). These measurements are conducted hourly, and the results are showcased on the 
website for a duration of three days. To collect data over more extended periods, a custom script has been 
developed. This script automatically downloads the information into a text file stored on a dedicated server.

Data acquisition
Validation of the presented calibration procedure involves data obtained from both the reference stations (as 
detailed in section “Reference data”) and the monitoring platforms outlined in section “Autonomous monitoring 
platform”. This data spans from March to August 2023 and is recorded hourly, totalling over 10,000 samples. 
Approximately ninety percent of this dataset was utilized to establish the calibration models (neural network, 

Fig. 1.  Autonomous air monitoring platform: (a) block diagram, (b) included sensors.
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global data scaling). The remaining data, specifically Nt = 3 × 336 = 1008 samples, were reserved for testing 
purposes. These test samples correspond to three distinct two-week periods at three different sensor locations 
(Station 1, April 1–15; Station 2, July 15–29; Station 3; July 1–14).

Machine learning and global data scaling for reliable sensor calibration
This section presents the proposed methodology for calibrating the low-cost NO2 sensor. The key components 
of this approach encompass a combined additive and multiplicative correction for NO2 readings, the utilization 
of a neural network (NN) surrogate for predicting correction coefficients based on detected environmental 
parameters and their differentials, and global affine scaling to improve the correlation between reference and 
calibrated sensor data. The content is structured as follows. Section “Sensor calibration: problem formulation” 
formulates the calibration problem and discusses the NO2 and environmental variables involved in the process. 
Section “Affine response correction of low-cost sensor” defines a combined additive and multiplicative correction 

Fig. 3.  Reference monitoring stations of the ARMAG foundation used to acquire reference data: (a) station 
locations in the city of Gdansk (map data from OpenStreetMap57), (b) photograph of the selected station with 
the proposed low-cost platform mounted in the vicinity, (c) NOx sensors installed on the stations.

 

Fig. 2.  Autonomous monitoring platform: (a) internals (top view), (b) internals (bottom view), (c) mounted at 
the reference station.
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scheme. Section “Sensor calibration by machine learning: neural network surrogate” elaborates on the surrogate 
modelling technique employed in the calibration procedure. The use of differentials as auxiliary correction 
variables is detailed in section “Environmental parameter differential as additional calibration inputs”. Section 
“Global data correlation enhancement” outlines the process of global data scaling. Finally, section “Nitrogen 
dioxide detection using calibrated sensor: complete operating flow” summarizes the complete operational flow 
of NO2 monitoring using the calibrated sensor.

Sensor calibration: problem formulation
Calibrating the low-cost sensor involves utilizing data acquired from the reference stations mentioned in section 
“Reference data”. As previously indicated, measurements are taken hourly. The data collected from the autonomous 
platforms in section “Autonomous NO2 monitoring platform: reference data acquisition” corresponds to the 
same time intervals and includes NO2 readings from the primary and auxiliary sensors, alongside environmental 
variables like temperature, humidity, and atmospheric pressure. Figure 4 presents a visualization of pertinent 
outputs from both the reference stations and the low-cost sensors, along with the corresponding notation used 
throughout (refer to Fig. 4c). Notably, differences exist between internal and external temperature and humidity 
due to the electronic circuitry’s heat within the platform, causing the operating conditions of the NO2 sensors 
to vary from those outside the unit. Considering both external and internal parameters can enhance calibration 
reliability. While the auxiliary NO2 sensors have limited reliability, incorporating their readings as inputs in the 
calibration models provides indirect yet valuable insights into the factors affecting the primary sensor, such as 
cross-sensitivity to other gases.

The overall data is divided into the training set (N0 samples), and the testing set (Nt samples); Nt is set to 
approximately ten percent of the total number of samples N. The reference training and testing data will be 
denoted as {yr0

(j)}, j = 1, …, N0, and {yrt
(j)}, j = 1, …, Nt, respectively. The low-cost sensor data is split the same 

way. We have {ys0
(j)}, j = 1, …, N0–sensor’s NO2 measurements (training data), and {yst

(j)}, j = 1, …, Nt–sensor’s 
NO2 measurements (testing data). The auxiliary data (the inputs of the calibration models) is {zs0

(j)}, j = 1, …, N0, 
where zs0 = [To0

(j)Ti0
(j)Ho0

(j)Hi0
(j)P0

(j)S10
(j)S20

(j)]T, and {zst
(j)}, j = 1, …, Nt, zst = [Tot

(j)Tit
(j)Hot

(j)Hit
(j)Pt

(j)S1t
(j)S2t

(j)]T.
Low-cost sensor calibration is performed using the training datasets {yr0

(j)}, {ys0
(j)}, and {zs0

(j)}, j = 1, …, N0. 
The correction coefficients are denoted as C(ys,zs;p), cf. Figure 5, where p stands for an aggregated vector of 
calibration model hyper-parameters. The calibrated sensor output will be denoted as yc = FCAL(ys,C(ys,zs;p)). 
Having established the notation, the calibration task can be formulated as

	
p∗ = argmin

p

√√√√
N0∑
j=1

(
y
(j)
r0 − FCAL

(
C(y

(j)
s0 , z

(j)
s0 ,p)

))2
� (1)

Put simply, the objective is to optimize the calibration model’s hyper-parameters in a manner that aligns the NO2 
readings from the reference and corrected low-cost sensors as closely as feasible in the least-square sense across 
the training set. The quality of the calibrated sensor will be evaluated using the correlation coefficient r, and the 
root mean squared error (RMSE), both defined in Fig. 6.

Fig. 4.  NO2 measurement: (a) using the reference station (yr); (b) using the low-cost sensor under calibration 
(ys). The sensor also produces auxiliary outputs: auxiliary NO2 readings (S1 and S2), outside and inside 
temperature (To and Ti, respectively), outside and inside humidity (Ho and Hi, respectively), and atmospheric 
pressure (P); (c) symbols of data produced by the reference station and low-cost sensor.
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Affine response correction of low-cost sensor
Conventional correction methods typically involve modelling the disparities between the reference and low-
cost sensor readings. In contrast, our approach employs affine scaling, which integrates both additive and 
multiplicative correction. The inclusion of a multiplicative scaling factor larger than unity is motivated by the 
observation that typical variations in the reference data surpass those in the sensor measurements, as depicted 
in Fig. 7. Consequently, this scaling method contributes to enhancing the reliability of the calibration process.

Figure 8 outlines the specifics of this correction scheme. To ensure A(j) > 1, the hyper-parameter α (refer 
to Eqs.  (9) and (10)) must be strictly less than unity. For our purposes, α is adjusted concurrently with the 
neural network calibration model identification (refer to section “Sensor calibration by machine learning: neural 
network surrogate”). Based on preliminary experiments, a suitable value for α is found to be 0.8, which is utilized 
in the experiments detailed in section “Results and discussion”.

Sensor calibration by machine learning: neural network surrogate
In this study, the main calibration model adopted is a neural network (NN), specifically a multi-layer perceptron 
(MLP)51,52. The MLP comprises three fully-connected hidden layers, each containing twenty neurons and 
employing a sigmoid activation function. Training of the model is carried out with a backpropagation Levenberg–
Marquardt routine53 (setup: maximum of 1000 epochs, performance evaluation via mean-square error (MSE), 
and a random division of training/testing data). The architecture of the model is depicted in Fig. 9. The complete 
calibration procedure, including the MLP model, has been implemented in Matlab using the functionalities of 
the Statistics and Machine Learning Toolbox56.

Fig. 7.  Selected sub-sets of the reference and low-cost sensor training data. As the typical amplitude of sensor 
data variations is lower than for the reference, multiplicative scaling with coefficient A > 1 may be beneficial in 
improving the calibration process quality.

 

Fig. 6.  Definitions of correlation coefficient r and RMSE.

 

Fig. 5.  Calibration of the low-cost sensor. Auxiliary data and sensor output ys are used to obtain the correction 
coefficients C(ys,zs,p), which are then used to compute the corrected sensor output yc, see sections “Affine 
response correction of low-cost sensor” through ”Nitrogen dioxide detection using calibrated sensor: complete 
operating flow” for details.
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The deliberate simplicity in the NN setup serves several purposes. Firstly, it expedites the identification 
of the network’s hyper-parameters, enabling exploration of various MLP variations efficiently. Secondly, 
with a substantial number of training samples, the neural network effectively operates as a regression model. 
Consequently, its sensitivity to the number of layers and neurons remains constrained. Lastly, the straightforward 
structure of the network facilitates noise smoothing, a beneficial aspect for handling inherent noise present in 
both the reference and sensor readings. Remember that the surrogate model inputs encompass environmental 
parameters and supplementary NO2 readings, represented as vector zs, along with the primary NO2 measurements 
ys. Meanwhile, the model outputs consist of the affine scaling coefficients A and D. In section “Results and 
discussion”, we will explore restricted inputs—different subsets of zs—to assess how the input configuration 
affects the reliability of the calibration process.

Environmental parameter differential as additional calibration inputs
Environmental parameters (inside/outside temperature, humidity, atmospheric pressure) as well as supplementary 
NO2 readings provide reasonably comprehensive data to conduct the calibration process. Nonetheless, in this 
study, we also explore additional information which can be extracted from local variations of the mentioned 
parameters. In particular, we will consider differentials

Fig. 9.  Neural network surrogate used as the primary calibration model. Here, a multi-layer perceptron (MLP) 
is employed with three fully-connected hidden layers.

 

Fig. 8.  Affine correction of low-cost sensor.
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∆y(j)s =

y
(j)
s − y

(j−1)
s

∆t
� (11)

where Δt is the time between subsequent measurements (here, one hour), whereas ys
(j–1) is assumed to be the 

measurement taken Δt before ys
(j–1) (normally, both training and testing data comes as time series with readings 

spaced Δt in terms of time). Differentials for environmental parameters are defined the same way, e.g.,

	
∆T (j)

o =
T

(j)
o − T

(j−1)
o

∆t
� (12)

	
∆H(j)

o =
H

(j)
o −H

(j−1)
o

∆t
� (13)

	
∆P (j) =

P (j) − P (j−1)

∆t
� (14)

Similar definitions hold for inside temperature and humidity, Ti and Hi, respectively.
Computing the differential only require storing one set of measurements (from the previous reading instance). 

At the same time, the differentials, especially Δys
(j), account for the dynamics of NO2 concentration, and are 

indicative of upcoming changes, including quantification of measurement level variability. Similarly, differentials 
of environmental variables may carry useful information concerning the dynamics of explicit or implicit factors 
(e.g., cross-sensitivity to other gases). Information carried therein can be embedded into the neural network 
surrogate (when treating the differentials as additional inputs) and used to improve the calibration quality.

For illustration purposes, Fig. 10 shows a selected sequence of the training data (raw sensor’s NO2 readings) 
along with its differentials. Figure 11 shows the effects of incorporating the differentials as additional surrogate 
model inputs in the calibration process. The modified calibration procedure incorporating differentials, 
collectively denoted as Δzs, has been shown in Fig. 12.

Global data correlation enhancement
To complement the machine learning (ML)-based calibration method detailed in sections “Sensor calibration: 
problem formulation” to “Environmental parameter differential as additional calibration inputs”, this section 
introduces an additional global data scaling process. The aim is to mitigate a systematic offset that might 
arise during the calibration conducted in the least-square sense (cf. (1)). This offset typically correlates with 
the measured NO2 level, as depicted in Fig. 13a and b for a specific subset of the training data. Although the 
ML-based calibration appears to align the reference and low-cost sensor readings acceptably (cf. Fig. 13a), re-
examining the data after arranging the reference NO2 levels exposes these existing offsets. This discrepancy also 
influences the scatter plot (bottom panel of Fig. 11b), which shows a slight skewness.

Red uction of the offset can be achieved through affine transformation of the smoothened sensor readings. Let 
us denote as yr the ordered reference data vector (a red line in Fig. 13b), and by yc the corresponding calibrated 
low-cost sensor data (a blue line in Fig. 13b). Also, let Sm(yc) be the smoothened yc. Aggressive smoothing Sm 
would produce a monotonically increasing curve which represents (local) mean values for yc. Global data scaling 
is then conducted by means of a transformation similar to (2), i.e., we have

	 y
(j)
c.G = AG(y

(j)
c +DG)� (15)

for j = 1, …, N0, where AG and DG are found as

	
[AG DG] = arg min

[A D]
∥yr − A (Sm(yc) +D)∥� (16)

Note that AG and DG are determined based on complete training data vectors and do not rely on any environmental 
or auxiliary parameters. Figure 13c illustrates the impact of the global data scaling. Notably, there is a significant 

Fig. 10.  Exemplary training data sequence (NO2 readings from the low-cost sensor) and its corresponding 
differentials (11). Differentials are indicative of temporal variability of the sensor readings and may improve 
calibration quality upon being embedded into the NN calibration surrogate.
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reduction in the offset along with improved symmetry in the scatter plot. In the specific example considered, this 
correction enhances the correlation coefficient from 0.93 to 0.95 and decreases the RMSE from 2.1 to 1.8 µg/m3. 
While the advantages might be somewhat less favourable for testing data, they remain valuable, as detailed in 
section “Results and discussion”.

Nitrogen dioxide detection using calibrated sensor: complete operating flow
The comprehensive calibration process for the low-cost sensor involves the methodologies outlined in sections 
“Affine response correction of low-cost sensor” through “Global data correlation enhancement”. The initial phase 
predicts the (local) correction coefficients using the neural network, considering the auxiliary vector zs, the 
actual NO2 reading ys from the low-cost sensor, and their differentials. This results in the intermediate outcome 
yc, achieved by applying the affine correction (4), (5). Subsequently, the final corrected NO2 reading is derived 
by implementing the global data correlation scheme (14), (15). The flow diagram illustrating this process is 
presented in Fig. 14.

Fig. 12.  Calibration of the low-cost sensor with differentials used as additional calibration model inputs. 
Auxiliary data and sensor output ys are used to obtain the correction coefficients C(ys,zs,Δys,Δzs,p), used to 
compute the corrected sensor output yc.

 

Fig. 11.  The effects of incorporating differentials as input variables in the calibration process, shown for two 
selected sequences of testing data: (a) sequence 1, (b) sequence 2. As it can be observed including differentials 
(here, of all environmental variables and the primary NO2 readings from the low-cost sensor) noticeably 
improves data alignment.
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Results and discussion
In this section, we explore the results obtained from the calibration methodology introduced in section “Machine 
learning and global data scaling for reliable sensor calibration”, applied to the low-cost NO2 sensor described 
in section “Autonomous NO2 monitoring platform: reference data acquisition”. We provide an overview of 
the dataset used for verification experiments, summarize the results across different calibration procedure 
configurations, and present observations and findings.

Reference and raw sensor datasets
The composition of the datasets has been already discussed in section “Data acquisition”. For additional 
illustration, Fig. 15 showcases selected subsets of the reference and raw (uncorrected) low-cost sensor training 
data. It is important to note the considerable disparities between the reference and the sensor NO2 readings, 

Fig. 13.  Global data scaling: (a) selected training data subset; (b) same data but ordered w.r.t. increasing NO2 
reference readings (top) and corresponding scatter plot (bottom); despite good alignment as shown in Fig. 11a, 
a systematic level-dependent offset is observed; (c) same data but plotted after applying global data scaling; 
a significant reduction of the systematic offset can be observed along with improved symmetry of the scatter 
plot. In this case, the correction leads to improving the correlation coefficient from 0.93 to 0.95 and reduction 
of RMSE from 2.1 to 1.8 μg/m3.
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making the calibration process a challenging task. In particular, the RMSE for the raw low-cost data (w.r.t. the 
reference) is as high as 8.9 μg/m3, whereas the correlation coefficient is only 0.064.

Results
The low-cost NO2 sensor, integrated into the autonomous monitoring platform outlined in section “Autonomous 
NO2 monitoring platform: reference data acquisition”, underwent calibration using the methodology detailed 
in section “Machine learning and global data scaling for reliable sensor calibration”, utilizing data described in 
section “Reference and raw sensor datasets”. To explore the significance of specific algorithmic elements within 
the correction scheme, various calibration scenarios were examined, as listed in Table 1. These configurations 
represent different combinations of surrogate model inputs (restricted or full auxiliary sensor parameters, 
utilization of NO2 readings ys from the primary sensor, utilization of differentials) and the inclusion of global 

Fig. 15.  Selected subsets of NO2 readings from the reference stations and the respective low-cost sensors: (a) 
training data, (b) testing data.

 

Fig. 14.  Operating flow of the proposed low-cost sensor calibration procedure. (Local) calibration coefficients 
are generated using the NN surrogates based on the auxiliary vector zs, the actual NO2 reading ys from the low-
cost sensor, as well as their differentials The affine correction is then applied to the sensor reading to produce 
the outcome yc. Subsequently, global data scaling is superimposed to produce the final corrected reading yc.G.
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data scaling. For each setup, the NN surrogate underwent ten training cycles, and the best-performing version 
(evaluated based on the mean-square error, MSE loss function on the training data) was chosen as the definitive 
model. Simultaneously, the affine scaling factor α (cf. section “Affine response correction of low-cost sensor”) was 
adjusted, and a value of α = 0.8 was determined as the most advantageous, ensuring the optimal approximation 
and generalization ability of the calibration models.

The findings from all scenarios are detailed in Table 2, showcasing the correlation coefficient and modeling 
error (RMSE) for both training and testing data (cf. Fig. 6 for relevant definitions). To maintain succinctness, 
only two scenarios are graphically represented. Figure 16 illustrates the reference and calibrated low-cost sensor 
NO2 readings for the selected training and all testing data subsets for Scenario 2, along with scatter plots for 
both training and testing data. Similarly, Fig. 17 displays the same data for Scenario 8, representing our finalized 
calibration setup. Additionally, Fig. 18 provides a supplementary visualization for Scenarios 2 and 8, illustrating 
the combined training and testing outputs organized by ascending reference NO2 readings, inclusive of reference 
NO2 levels and corresponding raw and calibrated sensor readings.

Discussion and calibration procedure performance summary
The assessment in section “Results” is aimed at highlighting the effectiveness of the calibration process and 
gauging the performance of the rectified low-cost sensor, especially its reliability in nitrogen dioxide monitoring. 
Notably, sensor calibration is challenging due to significant differences between reference and sensor readings, 
along with a broad measurement dynamic range (ranging from nearly zero to approximately sixty µg/m3), as 
depicted in Fig. 13. Furthermore, NO2 levels often experience considerable fluctuations within short timeframes.

Despite the difficulties, the proposed calibration methodology demonstrates remarkable results, as evidenced 
by the correlation coefficients and RMSE provided in Table 2. Our optimal calibration setup, Scenario 8, 
incorporates a comprehensive range of input variables (all environmental parameters, NO2 readings from both 
primary and supplementary sensors, and their respective differentials), along with global data scaling. This 
configuration achieves a correlation coefficient surpassing 0.9, with an impressively low RMSE of 3.17 µg/m3 
for the testing data. Considering the wide range of nitrogen dioxide levels recorded (from almost zero to about 
sixty µg/m3), this error rate is noteworthy. The high accuracy of the corrected sensor is visually apparent in the 
alignment between its readings and the reference data, as depicted in Fig. 17.

It is important to highlight that each algorithmic component integrated into the calibration process significantly 
contributes to the overall accuracy of the corrected sensor. For instance, there is a marked improvement in the 
correlation coefficient and reduction in RMSE when the number of surrogate model inputs is increased (e.g., 
Scenario 7 versus 5 and 2). Likewise, incorporating the primary NO2 sensor reading as a surrogate model input 
(Scenario 4 versus 2) enhances the correlation coefficient by approximately 0.05 and reduces RMSE by about 
0.4 µg/m3. Similarly, incorporating differentials (Scenario 7 versus 5) boosts the correlation coefficient by around 

Calibration scenario

Training data Testing data

Correlation coefficient r RMSE (μg/m3) Correlation coefficient r RMSE (μg/m3)

Absolute error

Mean (μg/m3) Interquarti e range (μg/m3)

1 0.82 4.0 0.70 5.6 − 1.7 7.5

2 0.89 3.0 0.81 4.3 − 1.4 6.1

3 0.91 2.8 0.84 4.0 − 1.0 5.6

4 0.93 2.5 0.86 3.9 − 0.9 5.4

5 0.94 2.4 0.878 3.6 − 0.5 4.8

6 0.93 2.6 0.886 3.4 − 0.3 4.4

7 0.93 2.4 0.896 3.3 − 0.3 4.1

8 0.94 2.3 0.903 3.17 − 0.1 4.0

Table 2.  Sensor calibration performance: correlation coefficients and RMSE.

 

Calibration scenario

Calibration input variables

Global data correlation enhancementAuxiliary data NO2 reading from primary sensor (ys) Differentials Δzs Differentials Δys

1 Restricted (only To, Ti, Ho, and Hi) NO NO NO NO

2 Restricted (zs without pressure P) NO NO NO NO

3 Restricted (zs without pressure P) YES NO NO NO

4 Complete zs YES NO NO NO

5 Complete zs YES NO NO YES

6 Complete zs YES NO YES YES

7 Complete zs YES YES YES NO

8 Complete zs YES YES YES YES

Table 1.  Calibration scenarios considered in validation studies.
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0.02 and reduces RMSE by 0.3 to 0.4 µg/m3. Lastly, global data scaling contributes to enhancing the correlation 
coefficient by nearly 0.02 and reducing RMSE by about 0.2 µg/m3 (Scenario 5 versus 4, or 8 versus 7). These 
collective enhancements result in improved visual alignment between the reference and the calibrated low-cost 
sensor NO2 readings. This improvement is evident in the scatter plots, notably more concentrated around the 
identity function for Scenario 8 (Fig. 17) compared to Scenario 2 (Fig. 16).

Furthermore, as it can be observed in Table 2, the mean value of the error for the testing data is relatively 
large for the simplest calibration setups, and it is gradually reduced to almost zero for the best configurations. 
The same can be said about the interquartile range, which quantifies the spread of the data. The employment of 
all proposed correction mechanisms reduced the range to about half of its initial value. On the other hand, the 
interquartile range is generally low, which means that the data dispersion is limited, and the majority of samples 
are associated with small values of the measurement error.

Figure  18 visually demonstrates the reliability enhancements achieved through the proposed calibration 
scheme by organizing the combined training and testing data based on increasing reference NO2 readings. 
Notably, the corrected low-cost sensor readings are noticeably closer to their respective reference data compared 
to the raw sensor. A clear distinction is visible between Scenario 8 (Fig. 18b) and Scenario 2 (Fig. 18a), favouring 

Fig. 16.  Sensor calibration performance for Scenario 2 (cf. Table 1): (a) selected subsets of the training data; 
(b) collected testing data (reference—black, uncorrected sensor—green, corrected sensor—blue); scatter plots 
for the training data (left: uncorrected—gray, corrected—black) and the testing data (right).

 

Scientific Reports |        (2024) 14:26120 13| https://doi.org/10.1038/s41598-024-77214-y

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


the former. In Scenario 8, a substantial reduction in offset is evident, along with smaller disparities between the 
reference and the calibrated sensor readings, particularly noticeable at lower NO2 levels. This results in smaller 
relative errors, averaging below fifteen percent for Scenario 8, in contrast to over twenty percent for Scenario 2.

Figure  19 displays the histograms representing the absolute errors (i.e., the discrepancies between the 
reference and the calibrated sensor NO2 readings, yr–yc, across the entire testing dataset) for Scenarios 2 and 
8. As anticipated, the error distribution approximates a normal curve. However, in Scenario 2, the mean error 
is negative (− 1.4 µg/m3), attributed to a certain asymmetry in the NO2 reading distribution concerning the 
reference. This asymmetry is evident in the slightly skewed scatter plot (Fig. 16) and also visible in Fig. 18a 
regarding the offset. Contrastingly, in Scenario 8, due to the improved alignment with the reference and 
notably the global data scaling, the mean error converges near zero, resulting in a more symmetrical scatter plot 
accordingly.

The standard deviations for Scenarios 2 and 8 are 4.2 µg/m3 and 3.1 µg/m3, respectively. This substantial 
reduction demonstrates that refining the calibration method significantly enhances the reliability of the low-
cost sensor. Analysing the data show that the calibrated sensor’s absolute error to fall within 3 µg/m3 with the 

Fig. 17.  Sensor calibration performance for Scenario 8 (cf. Table 1): (a) selected subsets of the training data; 
(b) collected testing data (reference—black, uncorrected sensor—green, corrected sensor—blue); scatter plots 
for the training data (left: uncorrected—gray, corrected—black) and the testing data (right).
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likelihood of about 68%. Moreover, there is a higher probability of approximately 95% for the error to be within 
the range of ± 6 µg/m3.

As corroborated by the discussed results, the calibrated low-cost sensor demonstrates exceptional reliability, 
especially when employing the most advanced correction scheme, Scenario 8, selected as the ultimate method. 
Practically, the calibration can be performed offline, applied to the NO2 readings stored in the cloud after 
acquisition from the measurement platform. Alternatively, it can be integrated into the platform itself, utilizing 
the on-board computational facilities detailed in section “Autonomous NO2 monitoring platform: reference data 
acquisition”.

Conclusion
This article introduced a novel methodology for accurately calibrating low-cost nitrogen dioxide sensors. Our 
technique combines additive and multiplicative adjustments of the low-cost sensor readings with machine 
learning tools, particularly artificial neural networks (NNs). The NN surrogate is established to predict correction 
coefficients based on available auxiliary data, which includes environmental variables like temperature, humidity, 
atmospheric pressure, alongside NO2 measurements from supplementary sensors, and their differentials. 
Surrogate-assisted calibration scheme is complemented by global data scaling procedure operating upon the 
complete training datasets. The proposed methodology has been applied to a custom-designed autonomous 

Fig. 19.  Histograms of the absolute error yr–yc (reference versus calibrated sensor) for concatenated testing 
samples (values in μg/m3): (top) Scenario 2 (mean: − 1.4, standard deviation: 4.2), (bottom) Scenario 8 (mean: 
− 0.1, standard deviation: 3.1). Solid vertical lines mark the distribution means, whereas dashed lines denote 
standard deviations (w.r.t. the means).

 

Fig. 18.  Performance of sensor calibration for: (a) Scenario 2, (b) Scenario 8 (ultimate calibration scheme). 
The visualizations showcase the complete training dataset (top) and testing dataset (bottom), organized in 
ascending order based on NO2 reference readings. These visuals underscore the significant improvement 
brought about by calibration, notably positioning the calibrated sensor readings much closer to their respective 
reference measurements compared to the raw data.
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monitoring platform equipped with primary and secondary NO2 detectors, multiple environmental sensors, and 
dedicated electronic circuits for managing measurement protocols and wireless data transmission.

The calibration process utilized data from reference and low-cost sensors collected over five months in 
various locations across Gdansk, Poland. These monitoring platforms provided hourly output data for analysis, 
enabling extensive validation experiments. The calibration methodology showcased impressive reliability in 
NO2 monitoring, boasting a correlation coefficient exceeding 0.9 w.r.t. the reference data, while maintaining 
a measurement error (RMSE) below 3.2  µg/m3. This high level of accuracy solidifies the practicality and 
dependability of low-cost NO2 detection. Comparative experiments, focusing on restricted calibration scenarios, 
underscored the significance of the incorporated correction mechanisms. Notably, augmenting the number of 
input variables, encompassing differentials, and implementing global data scaling synergistically enhanced the 
accuracy of low-cost sensor measurements.

In future endeavors, improving the reliability of NO2 monitoring remains a primary goal. This includes 
integrating more gas detectors, such as SO2, CO, and O3, into the measurement platform. Their readings will 
serve as supplementary inputs for refining the calibration model, exploring cross-sensitivity, and enhancing 
overall accuracy. Moreover, the focus will shift toward advanced machine learning methods, especially deep 
learning models. Integrating these with regression strategies aims to further fine-tune and improve the 
calibration process.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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