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A B S T R A C T

The paper presents the results of numerical analysis performed on historical, traditional carpentry corner log
joints of two basic topologies: the short-corner dovetail connection and the saddle notch connection. These types
of carpentry joints are commonly used in currently preserved objects of wooden architecture. All connections
have been modelled in pinewood, which has been defined in the Finite Element software MSC.Marc/Mentat as
an orthotropic material. The numerical calculations have been carried out for two types of connections with two
different boundary conditions and load types. The contact phenomenon between the individual elements of the
connections has been taken into account. The main purpose of the research is to select the most damage-resistant
type of connection and to determine the stress distributions on the contact surfaces, which demines the damage
areas. However, a lot of uncertainties appear in the studied models, e.g. due to the natural variability of the
material properties of wood and the uncertainty of friction coefficient. Therefore the uncertainty quantification
and global sensitivity analysis has been performed in order to include these uncertainties and study their effect
on variation of the mechanical response of the connections. A regression-based non-intrusive polynomial chaos
expansion method has been employed to complete the task.

The state-of-the-art knowledge about the damage-prone zones in the considered connections is immensely
important since many wooden buildings, mostly historical, require maintenance, renovation and the re-
inforcement of existing, especially historical elements. On the contrary, there are not many results of related
research published yet.

1. Introduction

Formerly, wood was extensively used in the structural engineering
due to good strength parameters and a wide accessibility of the mate-
rial. In civil engineering, concrete and steel are still more widespread
structural materials than wood, which is more complicated in analysis
and design due to its heterogeneity and the lack of isotropy. Wood
defects such as knots, slope of grain, shake decay, burls, defects caused
by fungi, stains and rots, and defects due to insects are often additional
reasons for this heterogeneity [1]. As a natural material, wood is highly
sensitive to moisture and damage by biological agents [2,3], its limits in
terms of strength and elasticity depend primarily on humidity, tem-
perature, density and aging [4]. All these impacts result in high
variability of material properties of wood. In recent years a general
awareness has grown with regard to the necessity of rehabilitating
historic buildings especially of a heritage value. Due to economic and
cultural factors nowadays, more attention is focused on the re-
habilitation and restoration of old structures and on decreasing the

level of waste [5]. A reliable structural analysis leads to an efficient
repair or supports solutions necessary to ensure the safety of the
structure, thus it must be based on relevant modelling of the material,
the joints and the entire structure.

Many types of carpentry joints can be distinguished with respect to
their form and expected function [6]. A number of research works fo-
cusing on carpentry joints have been published recently, especially on
joints in pieces at an angle, such as the birdsmouth joint in rafter to tie
beam joints, the mortise and tenon joint, scarf joint, dovetail joint, as
well as joints where the members are connected by their ends to
achieve greater lengths (e.g., [7,8]). But the vast majority of research
on carpentry connections concern analysis of typical joinery in the
historic roof structures using monotonic tests [9], photo-elasticity tests
and numerical analysis (see e.g., [10,11]). An approach taking into
account the effect of temperature and humidity on the strength of wood
is presented in [12–14]. Also a stress distributions and failure analysis
of timber structures [15,16] as well as some experimental [17,18] and
numerical [19–21] research are reported in the literature.
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The study is based on a probabilistic approach, which although
having been used in the analysis of timber structures, is not yet used in
simulations of corner log connection. One of the issues in numerical
modelling of timber structures are uncertainties e.g. due to the natural
variability of wood properties. The uncertainties of different sources
can be included in models and design by means of random approach. It
has been completed for design and robustness analysis of timber
structures [22] and reliability analysis of old timber truss [23]. Non-
intrusive probabilistic methods are based on a number of deterministic
computations, to be employed in the “black-box” models created in
commercial FE software. The Monte Carlo (MC) simulation method is a
widely implemented non-intrusive method of uncertainty propagation
in timber structures too [24]. Nevertheless, the method is computa-
tionally expensive since it requires a large number of simulations. In the
case of complex FE models, triggering expenses to a single simulation
the MC can be intractable. Some methods to reduce the computational
cost of uncertainty propagation have been developed as presented in
[25]. Kandler and Füssl [26] compared perturbation method and
polynomial chaos expansion method with the MC and experimental
results on the example of glue laminated timber. In order to investigate
the effect of variation of each random variable on global uncertainty of
the model response, sensitivity analysis methods can be employed.
Sobol’ indices [27] are widely-used global sensitivity measures. They
have been used to study the importance of micromechanical parameters
of wood on its macroscopic properties [28].

However, while applied mostly during past centuries in historical
buildings, one can hardly find studies on carpentry joints related to
corner joints of the solid walls in log-system buildings, where the joists
are laid horizontally (see e.g., [29] or the Authors preliminary work
[30]). Few, but interesting studies refer to the walls behaviour under
seismic load and to the material modelling and experimentation
[31,32]. The knowledge of the corner carpentry connections is en-
ormously useful due to the necessary maintenance, renovation and the
reinforcement of existing elements in many historical timber structures
[33].

The development of carpentry, dated to the period from the 13th to
17th century, contributed to significant improvements in craft and
techniques for making joints that allowed the use of a number of newly
invented types of carpentry joints, and which modified those already
known [34]. The modifications of the connections mainly consist of
geometry variation and the introduction of locks inside the joint. The
log buildings had hardly been the work of professional carpenters; they
were rather constructed by the owners’ families with the help of
neighbours, there was an oral building tradition passing from one
generation to another [29]. To this day, one wonders about the reason
for constructing very complex connections, including hidden locks
discovered during renovation and restoration [35].

The corner joints are essential parts of the structural system of the
building, ensuring proper force transmission from external loads, as
well as providing the spatial stiffness of the object. While conducting a
3D analysis of a corner joint, the distribution of internal forces is
variable at the height of the wall, which is due to the dead load of the
wall. In addition, the configuration of forces in the corner also depends
on the architectural form of the building, including the roof systems,

the thickness and slenderness of the walls and the technical state of the
building.

The numerical modelling of the corner wall connection is a complex
issue. The study presents models of historic carpentry corner log joints
of two basic topologies (see e.g., [32]): the short-corner dovetail joint
and the saddle notch joint, using different boundary conditions and
different load systems to perform the finite element analysis. The main
goal of the study is to find the stress distribution in the loaded wall with
traditional corner carpentry joints constructed from logs in different
ways, to learn about their static behaviour, and thus provide the basis
for their reliable rehabilitation. Moreover, due to the modelling un-
certainties, a probabilistic approach has been employed. The poly-
nomial chaos expansion (PC) method in a non-intrusive regression
variant [36] has been employed to propagate the uncertainties. The
Sobol’ indices have been computed in order to study the influence of the
input uncertainties on the variation of the response of the modelled
joint. The sensitivity of mean and extreme values of principal stress has
been studied in a chosen location in the corner carpentry joints on
variations of the Young’s modulus of wood and of its friction coefficient.

2. Material and methods

2.1. Geometry of carpentry joints and material parameters

The entirety of surviving connections in the authentic historical
buildings shows the cases of various geometries of a given connection.
They are usually affected by location and time of a structure erection. In
the study, the geometry of the connections described by [37] has been
assumed with dimensions scaled into 1:2. The scale 1:2 has been se-
lected due to preparation for laboratory tests. Each analysed carpentry
joint taken for the analysis consists of five logs. The cross-sectional
dimensions of a single log are 75×135mm. The length of each
wooden beam is 1000mm for the short-corner dovetail connection and
1075mm for the carpentry joint with protrusions, the saddle notch
joint. The geometry of each carpentry joint scheme is presented in
Fig. 1.

It is assumed that all carpentry joints are made of pinewood, be-
cause this is one of the most widely-used kinds of wood in traditional
timber houses in southern Poland and western Ukraine. Their material
properties vary with the direction of fibres thus they are considered
orthotropic. The anatomical directions in the wood can be distinguished
according to the following three directions: R—radial direction,
T—tangential direction and L—longitudinal direction to the surface of
each layer of the fibres [38,30]. The Young’s modulus along the fibres
EL has been determined on the basis of the 4-point bending tests. The
scheme of the laboratory stand is presented in Fig. 2. Eight bending
tests with the test velocity 0.05mm/s has been performed. The values
of the Young’s modulus EL, obtained from the tests are presented in
Table 1.

Other moduli E E G G G, , , ,T R RT TL LR are related to the Young’s
modulus EL (see Table 2). In turn the Poisson’s ratios ν ν ν, ,RT TL LR are
taken from the literature [1].

Fig. 1. Structure of corner log joints: (a) short-corner dovetail connection (Type 1), (b) saddle notch (Type 2).
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2.2. Finite element analysis

The numerical nonlinear static analysis with contact has been car-
ried out using MSC.Marc Mentat software. The finite element method
has been applied in modelling and in the analysis. The numerical model
of each connection was defined using approximately 61,000 in case of
dovetail and 101,000 in case of saddle notch three-dimensional tetra-
hedral solid elements. The discretisation of each connection model is
more dense in the region of the analysed joint than in the rest of the log.
The numerical calculation to determine the stress distributions have
been performed for the mean value of Young’s modulus EL along a log
presented in Table 1. Other moduli have been calculated in the relation
to EL on the basis of Table 2. The tangential direction modulus has been
assumed to be parallel to Z global axis. The contact phenomenon has
been defined between particular logs of the connections, assuming
friction coefficient equal to 0.25. The numerical calculations have been
performed with different boundary conditions of the carpentry joints in
order to select the most resistant type of connection and to determine
the stress distributions in the connection corners. For all carpentry
joints, two variants A and B of boundary conditions and load cases have
been carried out. The boundary conditions and load schemes applied in
the Type 1 have been presented in two variants A and B (see Figs. 3 and
4, respectively). In both variants, the external surfaces of most bottoms
of logs have been fixed in the direction Z. In turn, the Z translation of
the top surfaces for most top logs has been fixed in the variant A, loaded
with the pressure 10316.7 N/m2 in the variant B. The pressure value
has been assumed the wall dead load. It is made of nineteen logs lying
above and distributed on the external surface of logs. The height of
nineteen logs corresponds to the 2.5 m height of a structure wall. The

excessive deformations of wooden beams in the carpentry connections
are very dangerous. The significant deformations of the logs cause high
stresses on some contact surfaces. On the other hand, large displace-
ments of logs expose the inside surfaces of the logs to environmental
and biological degradation. The convergence analysis were conducted
to assess the obtained FEM results. The h-type of the convergence was
checked by refining the mesh twice. The mesh in the stress con-
centration area was refined at the stage of the model definition.

2.3. Random variables and quantities of interest in uncertainty propagation

The uncertainties of material properties of wood resulting from
natural variability are high when compared to artificial construction
materials like steel. Therefore, EL expressed in [Pa] is assumed to be a
log-normally distributed random variable ∼E (23.18, 0.23)L LN , fol-
lowing the recommendation in [39] with parameters adjusted to ex-
perimental results presented in Table 1. Other moduli vary together
with EL according to Table 2.

The wood-wood friction coefficient values, reported in literature
vary significantly [40]. The friction coefficient between timber ele-
ments depends on moisture content, age, temperature, roughness and
wood grain [41–43]. In the corner log joints the contribution of friction
in its mechanical behaviour also depends on the initial gaps between
logs (mounting tolerance), as shown in [32] where the Authors iden-
tified the friction coefficient in this type of corner joints and presented
the interaction of friction and the interlock between logs. It certainly
also depends on the surface of the contact area, so that on the joint
geometry. But this aspect is not considered in our model. Due to lack of
literature recommendation on the distribution of the friction coefficient
and lack of own experimental studies, expert judgement approach is
applied to choose uniform distribution in the reasonable approach. The
friction coefficient μ is assumed here to be a uniformly distributed
random variable ∼μ ([0.1, 0.7])U . Necessity of proper identification of
distributions will be shown by global sensitivity outcome.

The study is focused on the value of principal stress. Therefore, the
mean of principal stress in chosen elements is the quantity of interest in
uncertainty quantification and sensitivity analysis framework:

∑=
=

σ
n

σ1 ,max
max i

n
i

1
max

max

(1)

∑=
=

σ
n

σ1 ,min
min i

n
i

1
min

min

(2)

where σ σ,i i
max min are the maximum and minimum principal stress value

at the integration point of i-th element from investigated set Imax and

Fig. 2. Laboratory stand and its scheme.

Table 1
Data from 4-point bending strength tests.

Specimen no. Moisture content [%] Cross-section [mm] Length of specimen [mm] Weight [g] Density [kg/m3] EL [Pa]

1 7 39.7×19.8 400 168 534.3 1.44E+10
2 6.2 39.4×19.8 400 148 474.3 1.02E+10
3 7.2 39.3×19.9 400 167 533.8 1.19E+10
4 7.7 39.1×20.0 400 139 444.4 7.30E+09
5 8.7 39.5×19.7 400 185 594.4 1.46E+10
6 11.6 40.4×20.3 401 185 562.5 1.29E+10
7 12.6 39.9×20.0 402 171 533 1.36E+10
8 13.9 39.3×20.0 401 147 466.4 1.07E+10

Mean 1.20E+10

Table 2
Material parameters of pinewood [1].

E E/T L E E/R L G E/RT L G E/TL L G E/LR L νRT νTL νLR

0.068 0.102 0.005 0.046 0.049 0.469 0.024 0.316
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Imin of nmax and nmin elements (Fig. 5), respectively. The chosen ele-
ments are located at the areas of high principal stress, which are subject
of the research. The two types of joints have different geometry and
work in a different way, so these areas are not exactly the same.
Therefore, location and number of elements is also a bit different.
However, the elements in case of both types are chosen following the
same rule to find areas of high principal stresses. The additional
quantity of interest is also the extremal principal stress in the chosen
sets of elements:

=
∈

σ σmax maxmax
i I

max
i

max (3)

=
∈

σ σmin minmin
i I

min
i

min (4)

The uncertainty quantification and global sensitivity analysis is
performed only for variant A of boundary conditions. Variant A is
chosen because the global sensitivity analysis is conducted here in order
to draw conclusions relevant from the point of view of future experi-
ment on carpentry joints, in which only forced displacement will be
available to apply.

2.4. Polynomial chaos expansion method

The polynomial chaos expansion method (PC) is one of the sto-
chastic spectral methods to reduce the number of simulations required
for the uncertainty propagation. The method is based on the approx-
imation of the model response by a series of multivariate polynomials.
The following description of the PC method is based on [36,44].

LetM be a computational model, in the considered case one of the
carpentry joint models. The inherent uncertainties lead to the in-
troduction of the input random vector ωX( ) of a joint probability
density function (PDF) fx with the number of variables ∈M ω, Ω ,
where Ω is the sample space consisting of elementary events ω. The
random variables are assumed to be independent. In our case

= ⊤E μX [ , ]L . The output Y, a scalar, one of the defined quantities of
interest (1)–(4) is consequently a random variable

=Y ω ωX( ) ( ( ))M (5)

In the following text ω is skipped for simplicity. In the PC method Y
is expanded as follows:

∑=
∈

ξY a Ψ ( ),
α

α α
M� (6)

where aα are coefficients and ξ are reduced variables after the

Fig. 3. Boundary conditions applied in variant A.

Fig. 4. Boundary conditions applied in variant B.
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isoprobabilistic transformation = ξX ( )T . A normal variable is trans-
formed into the standard normal variable (0, 1)N , the uniformly dis-
tributed variable is transformed into uniform −([ 1, 1])U . Lognormal
variable ∼X λ ζ( , )i LN can be transformed to standard normal vari-
able ∼ξ (0, 1)i N

= +X e ,i
λ ζξi (7)

where λ and ζ are the mean and standard deviation of the variable’s
natural logarithm, respectively.

Ψα is a multivariate polynomial basis, a multiplication of univariate
polynomials = ∏ = ψ ξ αΨ ( ),α i

M
α

i
i i1

( )
i

is the order of polynomial and
= …α α α[ , , ]i M is a multi-index of orders of each univariate polynomials

forming a multivariate polynomial.
The polynomials are orthonormal:

∫〈 〉 = =ψ ψ ψ ξ ψ ξ f ξ dξ δ, ( ) ( ) ( ) ,i j i j ξ ij (8)

where δij is the Kronecker delta. The Hermite polynomials are ortho-
gonal with respect to Gaussian distribution measure and Legendre
polynomials with respect to the uniform one. These sorts of polynomials
are employed in the study. Infinite expansions need truncating in the
analysis. A widely used method is to take all polynomials of the degree
equal or smaller than a chosen degree p. In this case a truncation set is

= ∈ ∑ ⩽=α α p{ : }M
i
M

i1A � and the final form of the PC approximation
is:

∑≈ =
∈

ξY Y a Ψ ( ).
α

α α
PC

A (9)

A non-intrusive method to find the polynomial coefficients is the
least-squares regression. The modelM is applied on N regression points

Fig. 5. Investigated elements in uncertainty quantification framework: (a) Imin for dovetail joint, (b) Imax for dovetail joint, (c) Imin for saddle notch joint, (b) Imax for
saddle notch joint.
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= …ξ ξΞ [ , , ]N(1) ( ) and vector of exact solutions
= … ⊤ξ ξY [ ( ), , ( )]ex

N(1) ( )M M is created. The coefficients are arranged
into a vector = … ⊤

−[ ]a aa , ,α αP0 1 , where P is the cardinality of trunca-
tion set A . The values of polynomials at the regression points are
collected in a matrix = ξA Ψ ( )αij

i( )
j , where = …i N1, , and = …j P1, , .

The solution of the least square problem leads to

= ⊤ − ⊤Ya A A A( ) .ex
1 (10)

The matrix ⊤A A may be called an information matrix. The accuracy
of the non-intrusive PC depends on the number and the choice of re-
gression points. One of the approaches to choose points is to take the D-
optimal points [45], which leads to the maximization of information
matrix determinant. In the study, the D-optimal solution has been found
from randomly chosen the candidate set of points following the Au-
thor’s experience in regression points choice described in [46].

2.5. Global sensitivity analysis

The global sensitivity analysis allows to quantify the effect of un-
certain inputs in the domain of their probability density function on the
model output. The Sobol’ indices [27] (following description based also
on [44,47]) are based on the ANOVA (ANalysis Of VAriance) decom-
position of the model response (5) as follows:

∑ ∑= + + + ⋯+
= ⩽ < ⩽

…X X XX X( ) ( ) ( , ) ( ),
i

M

i i
i j M

ij i j M0
1 1

1,2M M M M M

(11)

and

∫ … =

⩽ < ⋯ < ⩽ = …

… X X f X dX

i i M k i i

( , , ) ( ) 0

for 1 , , ,

i i i i X k k

s s1 1

s s k1 1M
HXk

(12)

∫= …f dX dXX X( ) ( ) ,i MX0
X

M M
H (13)

where XH is the support of X. XlH is the support and fXk is the PDF of
the variable Xk, respectively. The Sobol’ sensitivity index is defined as
the ratio of variances:

=…
…S

D
D

. ,i i
i i

, ,
, ,

s
s

1
1

(14)

where …Di i, , s1 is a partial variance

∫= … …… …
… …

D X X f dX dX( , , ) ,i i i i i i X i i
2

s
Xi Xis

s s i is s1
1, , 1 1 1, , 1M

H (15)

and D a total variance

∫= … −D f dX dXX( ) .MX
2

1 0
2

X
M M

H (16)

The total sensitivity index is defined as a sum of indices including
the mixed terms

∑=
⊂ …

…S S .i
Tot

i i i
i i

{ , , }
, ,

s
s

1
1

(17)

The computation of sensitivity indices can be provided analytically
or by means of the MC. However, the MC variant is computationally
expensive. Sudret [47] and Crestaux et al. [48] showed that due to the
orthonormality of the PC basis the Sobol’ indices can be computed using
the PC coefficients without an additional computational cost. The
Sobol’ index can be calculated using the coefficients corresponding to
multivariate polynomials containing given variables only:

∑=…
∈ …

S
D

a1 ,
α

αi i
PC

PC, ,
2

s
i is

1

1, ,A (18)

where = ∈ = ⇔ ∉ …… α α k i i{ : 0 { , , }}i i k s, , 1s1A A and DPC is the var-
iance approximated by PC:

∑≈ =
∈ ⧹

D D a .
α

α
PC

0{ }

2

A (19)

The total Sobol’ index can be obtained incorporating coefficients
corresponding to polynomials containing given variables including
mixed terms with other variables too:

∑=
∈

S
D

a1 ,
α

αi
Tot PC

PC
, 2

TotAi (20)

where = ∈ >α α{ : 0}i
Tot

iA A .

3. Results

3.1. Results of deterministic analysis

The result comparison has been carried out for two carpentry con-
nections taking into account different variants of boundary conditions
presented in Figs. 3 and 4. The first insight into the analyzed connec-
tions shows there are slight differences between distributions of the
minimum principal stress in variants A and B for the saddle notch joint.
The specific stress distribution occurs in the short-corner dovetail
connection. In the dovetail joint (Type 1), the highest stress values are
concentrated only along the internal edges of the logs. For the saddle
notch connection (Type 2) the high stress areas are larger than in the
dovetail case (Figs. 6 and 7).

The short-corner dovetail connection shows an anti-symmetric dis-
tribution of the maximum and minimum principal stresses for the
variant B in contrast to the symmetric stress distribution in the saddle
notch joint of an identical boundary condition type (Figs. 6b–9b). The
variant A shows that both connections exhibit symmetric stress dis-
tributions (Figs. 6a–9a). The high areas of the maximum principal stress
are greater for the saddle notch than in the case of the dovetail con-
nection. The maximum principal stress distributions in the corner of the
saddle notch joint are almost identical for the variants A and B (Fig. 9).
In turn, in the corner of the short-corner dovetail joint stress distribu-
tion are different, in the variant A the high stress areas are definitely
greater than in the same connection for the variant B (Fig. 8).

3.2. Results of uncertainty quantification and global sensitivity analysis

Uncertainties are propagated by the PC method (3 order, 20 re-
gression points) in the models of the variant A of loading. The obtained
histograms of the quantities of interest σmax and σmin for both types of
connections are shown in Figs. 10 and 11. The statistics are presented in
Table 3. The coefficients of variation are close for the investigated
quantities of interest: 24% for σmax and σmin of the dovetail connection
and 23% for σmax and σmin of saddle notch joint. The distribution of σmin

is similar for both connections. More significant differences between
connections can be noted for σmax, of which the mean and 95th per-
centile is higher in case of saddle notch than in the short-corner
dovetail.

Table 4 presents the total sensitivity indices obtained by the third
order PC. Although the assumed coefficient of variation of μ is higher
than of EL, sensitivity indices of EL (S tot

1 ) are for all quantities of interest
much higher than of μ (S tot

2 ). The sensitivity indices obtained for two
connections mostly differ in the case of the quantities of interest related
to the maximum principal stress. The value of σmax is more sensitive on
the variation of μ for the short-corner dovetail connection than for the
saddle notch. However this sensitivity is still low. The value of S tot

2 is
relatively high when compared to the other quantities of interest, only
in the case of σmax max in the model of the short dovetail connection. In
the majority of cases the uncertainty of μ shows a negligible effect on
the variation of investigated quantities of interest. According to
[32,42,49] the friction coefficient plays the leading role in the me-
chanical behaviour of some carpentry joints. But in the case of con-
sidered joints and quantities of interest, the mean principal stress in
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Fig. 6. Distribution of minimum principal stress [Pa] in the corner of short-corner dovetail connection for: (a) variant A, (b) variant B.

Fig. 7. Distribution of minimum principal stress [Pa] in the corner of saddle notch for: (a) variant A, (b) variant B.

Fig. 8. Distribution of maximum principal stress [Pa] in the corner of short-corner dovetail connection for: (a) variant A, (b) variant B.
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chosen elements in the high stress zone, the effect of μ uncertainty is
negligible when compared to the influence of the uncertainty of EL.
Therefore, the identification of the friction coefficient distribution in a
given system is not a priority in the case of investigated connections and
considered quantities. Thus the attention should be focused on the
identification of the material properties.

4. Conclusions

Two types of carpentry joints commonly used in the currently pre-
served structures of wooden architecture have been analysed with the
two variants of boundary conditions and load schemes.

The highest stress areas have been detected on the basis of the nu-
merical analysis since the analysed carpentry joints are prone to be
damaged in obtained places with the greatest stress areas. Comparing
the stress value and distribution in saddle notch joint and the dovetail
connection one could say that the first one is more susceptible to da-
mage but, on the other hand, owing to its geometry is more hermetic, so
less sensitive to moisture penetration. Dovetail joint is less hermetic, so
that more disposed to biological corrosion but it supports higher force
so it is more damage resistant. Only local damage (potential plastic
deformation) can be observed in the highest stress zones. During
loading of the dovetail connection the logs are disassembling, so po-
tentially can be assembled again.

Fig. 9. Distribution of maximum principal stress [Pa] in the corner of saddle notch for: (a) variant A, (b) variant B.

Fig. 10. Normalized histograms of σmax [Pa] obtained for both connection types.
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In the case of the saddle notch joint the stress distribution in the
connection corner for the variants A and B is almost identical. Thus, the
stress distribution is not strongly related to the boundary conditions.
This is effected by the shape of the carpentry joint or the inability to
deform significantly like in the case of the dovetail connections. In turn,
differences are observed in the dovetail connection between the stress
distribution in the variants A and B. The obtained results for the variant
B are more realistic due to the fact that under the influence of atmo-
spheric conditions the wood desiccates and swells, thus there is a pos-
sibility of motion in the direction Z.

The uncertainty propagation of the Young’s modulus and the fric-
tion coefficient has been introduced in the model of the connections.
The variation of the mean of the principal stress in elements located in
high stress zone is high, 23–24%. The effect of the uncertainty of the
friction coefficient is negligible, whereas the influence of uncertainty of

the Young’s modulus is dominating on the variance of the mean prin-
cipal stress. Although we considered variability of the material prop-
erties amongst only one kind of wood (pinewood), the variance of the
output due to variance of Young’s modulus is high. Therefore, it can be
seen that uncertainty quantification is needed even when the kind of
wood is known. Incorporating variability amongst different kinds of
wood would probably lead to even higher variance of output. The
conducted global sensitivity analysis may be the basis for effective
planning of further experimental research where special attention
should be paid to material testing of the wood used for construction of
joints to be compared. The presented probabilistic approach gives sig-
nificant results even in a fairly classical problem, which testifies to the
novelty of the presented research.

Some limitation of the presented study should be pointed out. First,
only elastic material model was assumed in the analysis. Second lim-
itation is the uncertainty of input distribution and assumption of full
correlation of EL with other parameters of the orthotropic material
model. Negligibly small value of total sensitivity index of friction
coefficient indicates that more detailed studies of its distributions are
not as important as studies on material parameters of wood. The model
could also be reduced where the friction coefficient would not be
treated as a random variable. More attention should be paid to the
material parameters. In the future research the material parameters will
not be fully correlated and random fields will be applied in order to
include spatial variability.

Fig. 11. Normalized histograms of σmin [Pa] in the case of both connection types.

Table 3
Statistic of the outcome [Pa].

Type of connection Short-corner dovetail Saddle notch

Quantity of interest σmax σmin σmax σmin

Mean 2.95E+07 −2.83E+08 8.12E+07 −2.52E+08
Standard deviation 7.16E+06 6.70E+07 1.90E+07 5.91E+07

5th percentile 1.93E+07 −4.05E+08 5.40E+07 −3.59E+08
95th percentile 4.25E+07 −1.88E+08 1.16E+08 −1.67E+08

Table 4
Sobol’ total indices for considered quantities of interest.

Short-corner dovetail Saddle notch

σmax σmin σmax max σmin min σmax σmin σmax max σmin min

STot
1 0.937 0.9851 0.7101 0.9931 0.9998 0.9886 0.9859 0.999

STot
2 0.0641 0.0156 0.3104 0.0075 0.0003 0.0119 0.0151 0.0011
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