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Abstract: We study the existence of homoclinic solutions for a class of Lagrangian systems % (V(D(u(t))) +
VuV(t, u(t)) = 0, where t € R, @: R?> — [0, o0) is a G-function in the sense of Trudinger, V: R x (Rz \ {.{}) —
R is a C'-smooth potential with a single well of infinite depth at a point & € R? \ {0} and a unique strict
global maximum O at the origin. Under a strong force condition around the singular point ¢, via minimization
of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions
ut: R — R%\ {&).

Keywords: homoclinic solution, homotopy class, Lagrangian system, strong force, rotation number (winding
number)
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1 Introduction
In this work we will be concerned with the problem of existence of solutions for a class of Lagrangian systems

4 (TOG()) + VuV(t, u(b) =0,

LS
lim u(t) = lim u(t) =0, €9
t—too t—>+o0

where t € R, @: R" — [0, o0) is a G-function in the sense of Trudinger, and V: R x (]R" \ {f}) — RisaC!-
smooth potential possessing a single well of infinite depth at a point £ € R™\{0} and a strict global maximum
0 at the origin.

We begin with the notion of G-function. Let a C!-function @: R" — R satisfy the following conditions:

(G1) @(0) =0,

(G2) @ is coercive, i.e. lim
R

(G3)  @isconvex,ie. @(ax + (1 - a)y) < a®x) + (1 - a)®@(y) foreach a € [0, 1] and all x, y € R",

(G4) @ is symmetric, i.e. @(x) = @(-x) for all x € R",

(G5) V@ e CHR"\ {0}, R").

In particular, @ is a G-function in the sense of Trudinger (compare [1]). Let us recall that the Fenchel
transform @” of a G-function @ is the function @": R" — R defined by
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@'(y) = sup ((x,y) - D(x)),
xeR"

where (-, ): R"xR" — R is the standard inner product in R" (c.f. [2, 3]). It is well known that @" is continuous
and satisfies (G1) — (G4) (c.f. [4]). Furthermore, @ = @ (c.f. [5]).
Troughout the paper we will assume that @ and @" are globally A,-regular [6], i.e. there is a constant
L > 0 such that for each x € R",
D2 < LOWX) < %@(Lx). 4,)

Given a function @ we define ¢: R — R by

¢(r) = min{D(x) ; |x| =r}
and ¢(-r) = ¢(r). Here | - |: R® — [0, oo) is the standard norm. Let us recall that the epigraph of a function
f: R" — Ris the set
epi f={(x,t) e R"xR; f(x) < t}

(c.f. [2]). We define the supporting function ¢ : R — R for @ by the formula:

@ = conv ¢,

which means that epi ¢ = conv (epi ¢). Obviously,

@(x) = p(|x|) for x € R". )
One can easily check that

. ¢ is continuous and satisfies (G1) — (G4), i.e. ¢ is a G-function;
. ¢ satisfies the (4,)-condition, i.e. ¢ and (p* are globally A,-regular.

Our intention is to generalize the following result by Paul H. Rabinowitz from [7] to the Lagrangian sys-
tems (LS).
Theorem 1.1. Assume that
(V1) V:Rx(R?\{&}) — R, where ¢ ¢ R?\ {0}, is a C'-smooth potential, 1-periodicin t € R and
lim V(¢t, x) = —o0
x—¢
uniformly in the time variable t,

(V)  forallt € R,x € R?\ {0}, V(t,x) <0and V(t,x) = 0iffx = 0,
(V3) there is a negative constant V¢ such that for all t € R,

limsup V(¢, x) < Vo,

x| =0

(V4) there are a neighbourhood N C R? of the singular point ¢ and a function U € C*(N \ {¢}, R) such that
|U(x)| = ccasx — &, and forallx e N\ {£}and t € R,

|VU()()\2 < =-V(t, x).
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Then the problem

() + vy V(t, u(t)) = 0,

HS
lim u(t) = lim u(¢) =0 (HS)
t—+oo t—>+o0

has at least two solutions u* : R — R? \ {¢}, which wind around ¢ in opposite directions.

The proof of Theorem 1.1 in [7] is of variational nature. The basic idea is to take the Lagrangian action cor-
responding to the problem (HS), defined on the subset of all the functions of the Sobolev space W ?(R, R")
omitting the singularity at a finite time and to minimize this functional both over the subset of functions with
a positive winding number around ¢ and the subset of functions possessing a negative rotation.

We are thus led to the following strengthening of Theorem 1.1.

Theorem 1.2. Let @: R?> — [0, o) satisfy (G1) — (G5) and (A,). Assume also that the potential V: R x (R? \
{&}) — R satisfies (V1) — (V3), and moreover,

(V) there are a neighbourhood N C R? of the point ¢ and a function U € C*(N'\ {¢}, R) such that |U(x)| —
cocasx — & andforallx e N\ {&}andt e R,

@ (IVUX))) < -V(t, x).

Then there exist at least two classical solutions u*: R — R? \ {£} of the problem (LS) winding around ¢ in
opposite directions.

Let us remark that if we substitute @(x) = %|x|2, x € R?, into (LS) then we obtain (HS). What is more, for
D(x) = %|x|p, x € R?, p > 1, we have

L (voun) = & (1uwr2io),
i.e. the p-Laplacian, and for @(x) = x(|x|), where y: R — R is a so-called N-function (a G-function of one
variable with extra growth conditions, c.f. [8]) we obtain a y-Laplacian. Let us note that (p* in the condition
(V) is the Fenchel transform of the supporting function ¢ for @. Thus ¢" depends on @. Let us briefly discuss
now our assumptions in Theorem 1.2.

Condition (V,) was introduced by W.B. Gordon in [9] and in the literature it is known as the strong force
condition or Gordon’s condition. It governs the rate at which V(x) — - as x — ¢ and holds, for example,
ifa = 2 for V(x) = —|x — &|™* nearby &. Gordon’s condition excludes the gravitational case and leads to
the disclosure between the behaviour of strong force systems and gravitational ones. Condition (V}) is an
extension of (V,) to the Lagrangian system (LS). Following Gordon, if V: R x (R? \ {£}) — R satisfies (V)
then V,V: R x (R? \ {£}) — R? will be called a strong force. Moreover, (LS) is said to be a strong force
Lagrangian system. (V) implies that the system (LS) does not possess solutions in the Orlicz-Sobolev space
associated with ¢, entering the singular point ¢ in a finite time. Condition (V3) can be replaced by a somewhat
weaker assumption, namely,

(V%) lim [x|2V(x) = —oo.
|x]—oo

During the past thirty years, there has been made a great deal of progress in the use of variational methods
to investigate homoclinic solutions for Lagrangian systems. Some basic material on variational methods can
be found in [2, 10-13]. Since homoclinics are global in time, it is natural to use global methods to study their
existence. Both minimization and minimax arguments have been employed to obtain homoclinic solutions
(see [7, 14-18]). The variational formulation for Lagrangian systems leads to action functionals. Although
there may be a natural class of curves or functions to work with, there is not always an easy choice of an
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associated norm or metric. Choosing a good setting in which to formulate the variational problem is often a
great difficulty.

To study homoclinic solutions of the problem (LS), in Section 2 a technical framework will be introduced
to treat a corresponding action functional in an appropriate Sobolev-Orlicz space. Section 3 contains the proof
of our main result. The basic idea of the proof of Theorem 1.2 is to find two minimizers of the action functional
winding around the singularity in opposite directions.

2 Preliminaries

From now on, we assume that @: R" — [0, oo) satisfy (G1) - (G5) and (4,).
Let Q C R be a domain. Following Trudinger [1] we define the space

Lo(Q)={u: Q - R" : uisLebesgue measurable and / O(u)dt < oo
Q

This space equipped with the Luxemburg norm

: u
ull =infJv>0: /CD(;> dt<1 Q)
o

is a Banach space. Since @ is A,-regular, L (Q) is also a separable space (c.f. Rem. 8.22 in [8]). Furthermore,
Lo (Q) is reflexive if and only if (4,) is satisfied (c.f. Thm. 8.20 in [8]).

Sety = po|-|,i.e.Pp(x) = p(|x|) for each x € R". As a consequence of (1), the space Ly(Q) is continuously
imbedded in L (Q2) (c.f. Thm. 8.12in [8]),

Lo(@) € Ly(Q).

Note that [ully = [[[ullle.

For simplicity of notation, we write Ly instead of Lg(R). Although the norm formula (2) depends on the
domain Q, we use the same notation || - || for different subsets of R. It will be clear from the context what Q
is.

Let AC,(R, R™) be the space of locally absolutely continuous functions on R with values in R". Finally,
let E denote the Orlicz-Sobolev space

E={u e AC,(R,R"): & € Lo(R,R")}

with the norm

[l = [l + [u(0)].

We note for later reference that E is a separable reflexive Banach space (see [19]).
For every T > 0 we define the Banach space E7 consisting of restrictions of u € E to the interval [0, T]
with the induced norm,

Jull, = [u(O)] +[li]|

Let C([0, T], R™) denote the space of continuous functions from [0, T] into R" with the standard norm.

Proposition 2.1. The inclusion map Er — C([0, T], R") is continuous, i.e. there is Cy > 0 such that for each
u € E7 one has

max |u(t)| < Crl|ullg,-
te(0,T]
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Proof. One has

t t
[u(®)| = |u(0) + [ u(s)ds| < |u(0)| + [ |u(s)|ds
/ /
T
< [u(0)| +/\l'1(5)|ds < u(0)] + 21|+ [[12]llo
0

< (1+2]11p) (u(O)] + il )
< Cr (JuO)| + [lillo) = Crllullg,-

O

Proposition 2.2. If a sequence {uy}rcy C E converges weakly to uy € Eg then it converges uniformly to ug
in C([0, T], R™).

Proof. Since {uy }rcn converges to up weakly in Et then, by Proposition 2.1, it also converges to ug weakly in
C([0, T], R™). Furthermore, ||uy||g, < M for some M > 0 and every k € N.
LetO<s<t=<T.Then

t

t
() - u(s)] = /uk(r)dr s/\uk(r)\dr

S

< 2[4l [Iiticllle = 2[1 1l Ul

e 1\
(00 (7)) -

Thus {uy}xen is a sequence of equicontinuous functions. By the Arzela-Ascoli Theorem, every sequence
{uy, }ien contains a subsequence converging to a certain i in C([0, T], R"). By the uniqueness of the weak
limit, @i = ug, which completes the proof. O

In what follows, @: R* — Rand V: R x (R? \ {¢}) — R satisfy the assumptions of Theorem 1.2.
For each u € E, we define a functional I by setting

S

I(u) = / (@) - V(t, u(®)) dt. 3)

Let
ae = inf{-V(t, x): x ¢ B(0)}, (4)

where0 < ¢ < %\{ | and B¢(0) denotes the ball of radius € centered at the origin. By (V) — (V3) we have a, > O.

Lemma 2.3. Suppose that u € E and u(t) ¢ B¢(0) foreach t € [a, b). Then, there is C > 0 such that
(I(w) + 1)* = C - length (1), 57) = Clu(b) - u(a)|. (5)

Proof. One has
b

b
u(b) - u(@)| - /u(t)dt s/\il(t)|dts2|H1‘1||\(p||1||¢*.

a

The last estimation follows from Hélder’s inequality in Orlicz spaces (c.f. [5], Par. 8.11). Directly from the
definition, one has
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wal 1\
||1||<p* = [(‘P ) (m)] .

Set § = length (u|[a,b]) and 7 = b - a. Then

o> o1t = L5 (o1 (1
lidlo = 381105 - 38-6" (1)

Consequently,
b b )
I(u)z/(CD(u(t))—V(t, u(t))) dt=/®(u(t))dt+/_v(t, u(e)dt
y | | (6)
> [ oUiode+act = il -1+ ot
1 *y 1
23060 (1) -1+a
Hence

1 . 1 1 *y
I(u)+1z§5-((p)1<;)+a5125%-(<p)1(k)+ag‘r,

where the natural number k satisfies Tk = 1 and the last inequality follows from the fact that ((p*)_l is concave.
We choose the smallest k with the property 7k = 1. In particular, we set k = 1 if 7 = 1. Now, if T > 1 then

6

@ =32 @) )+ et

achieves its minimum at the point

1
o (5'(<,0 )1(1))2
min — zas 9
which is equal to fnin = (26ae(¢") 1(1))2. If T < 1 then

16

-1 >1 (o)t >1 (0!
f?k'(w) (k)+agr_z6 () (k)+agr_46 () ().

Finally, set
C = min {Zag((p*)'l(l), %(qf)‘l(l)} )

Remark 2.4. In the above lemma the interval [a, b] can be replaced by a finite sum of disjoint intervals.

We will denote by L*°(R, R?) the space of Lebesgue measurable essentially bounded functions from R into
R? with the norm

lu|jes = ess sup |u(t)].
Corollary 2.5. Ifu € E and I(u) < oo thenu € L=(R, R?).

Proof. Assume that u ¢ L>(R, R?). Then for every n € N there exists t, € R such that |u(¢n)| > n. Conse-
quently, by Lemma 2.3 we get
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(I(w) + 1)% > Clu(tn) - u(t1)] = C(utn)| - |ut,)]) = C(n - [u(t1)))

for n € N, contrary to I(u) < oo. O

Lemma 2.6. Ifu € E and I(u) < oo then tlim u(t) = 0.
—>too

Lemma 2.6 is analogous to Proposition 3.11 of [20] and Lemma 2.4 of [21]. In spite of different assumptions
on the potential V, the claims are similar.

Proof. Let A(u) denote the set of limit points of u(t), as t — —oo. From Corollary 2.5 we conclude that A(u) # 0.
Assume that there are € > 0 and p € R such that if t < p then u(t) ¢ B¢(0). By (4) we obtain,

p

) = / _V(t, u(®)dt = oo,

—o0

a contradiction. Thus A(u) contains 0. It is sufficient to note that A(u) consists of a point. If not, thereis & > 0
such that u(t) intersects aBg (0) and 0B¢(0) infinitely many times. Let 7o > O be the smallest number such
that

le¢ w1 [ 1
I(u)+1z§§-(<p) (T—O)Hx%m.
Since limr— o (¢”)1(1) = oo, one has 7o > 0. By Remark 2.4, we obtain

Iw)+1=> na: o

for each n € N, and hence I(u) = oo, a contradiction.
In the same manner we can see that tlim u(t) = 0. O
—r00

Lemma 2.7. If[a, b] is an interval such that u([a, b]) C N\ {&} then it holds
|Uu(b))| - |Uu(a))| < 2(I(u) + 1)°. @)

Proof. We first note that

b
Uu(b))| < |Uu(a))| + / %U(u(t))dt

b

< |U@@)| + / (VU)), u(6) dt

a

b
< |U@@)] + / VU@©)li(O)dt

< [U(@)] + 2[[[VU@)I[ly- [l

Since

b b
19Uy =1+ [ @' (VU@ =1+ [ ~Vee,upde

and
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b
lfiflp < 1+ / (O] dt

we obtain

|Uu(D))| < |U(u(@))| +2(I(u) + 1)°.
O
As an immediate consequence of (7) one has that u(t) # ¢ for t € R provided that I(u) < oo (c.f. [7], Eq. (2.21)).

In fact, we obtain the following

Corollary 2.8. (c.f. [17]) If the action functional I is bounded on some set W C E, say (W) c [0, B] then there
is p > 0 depending on 8 such that for every u € W and t € R one has |u(t) - &| = p.

Set
A= {u €E: lim u(f)=0, u(R) c R\ {5}}.

If I(u) < oo then u € A. Consequently, u describes a closed curve in R? \ {¢} that starts and ends at 0.
Hence its homotopy class [u] represents an element of the fundamental group 71 (R? \ {£}).
Let us remind that two functions ug, u; € A are homotopic if and only if there exists a continuous map
h: [0,1] — A such that h(0) = uo and h(1) = u;. The rotation number (or winding number) rot,(u) of u
around ¢ is constant on every connected component of A and induces an isomorphism rot«: m; (R2 \{¢}) — Z,
rot«([u]) = rotg(u).
Equivalently, A is a sum of its path connected components labeled by the integers.

Similarily to [17] one can prove the following result.

Proposition 2.9. Let W C A be a set such that the functional I restricted to W is bounded. Then there exists
D c N such that \rot{(u)\ <Dforalluc W.

Let

A* ={u e A: trotg(u) >0},

and
A* = inf I(u). 8
ucA*
Our main result is an immediate consequence of the following.

+

Theorem 2.10. If the assumptions of Theorem 1.2 are satisfied then there exists u* € A* such that I(u*) = A* >
0. Moreover, u* is a classical homoclinic solution of (LS).

3 Proof of Theorem 2.10

The proof will be carried out for the "+" case. The proof for the "-" case is similar. We set A = A*. Let {un}y2
be a minimizing sequence for (8). With no loss of generality we assume that for every n € N,
A<I(un) < A+1,

and by Proposition 2.9, for some d € N,
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rotg(un) = d.
Since d > 0, there are v, and 6y, > 1 such that un(vn) = 0y - €. In particular, by Corollary 2.8

[unlles > 1]

Furthermore, there are oy, pn and T, € [0n, Un] such that:

a. un([Un, }ln]) C R? \Bu(O),
¢l

b. |un(0n)| = [un(un)| = 1

C. |un(tn)| = ||lun|le

Hence, by Lemma 2.3,

(A+2)? > (I(un) + 1)* = C - length (Un| (g, )
> C(2||unlles = |&]) > Cl[un]|oo,

and thus the sequence {||un||os }nen is bounded. Furthermore, since by (6)

A+2=2I(un)+ 12 %5,(4)*)_1 <%) F T

with § = |&], thereare M > m > O such that m < t < M. In particular, yun—0n > mforeach n € N. Consequently,
A =inf{I(un); n € N} = agm > 0. From (G3) we obtain

/ A - w(E)dt < A / O(w(O)dt
R R
for0<A<landw € Lp. Ifwelet A = (A+1)7! then
/ O+ 1) Yitg(0)dt < A+ 1)1 / Dlin(0)dt < A+ 1) (up) < 1,
R R

which implies that ||itn || < A + 1. In consequence, {un},-; is bounded in E.

Now, let C5(R, R?) denote the space of smooth functions from R into R? with compact supports.

We say that a set Z C A has the perturbation property and write Z € P if for each u € Z and for each
v € C3(R, R?) there exists § > 0 such that if s € (-6, §) then u + sv € Z.

Let us remark that if u is a minimizer of I on a set Z € P then

2510 sV = 0= [ (VOG(0), 1) - (FV(E, u(e), Vo)),

and consequently, u is a weak solution of (LS). A similar argument as in the proof of Proposition 3.18 in [20]
shows that u is a classical solution of (LS). Finally, using (LS), (V1) and (V) as in [18] gives ti(zoc) = O.

Of course A* € P. We expect that minimizing I over A* and A~ gives two solutions.

Let Lj5. (R, R?) be the space of Lebesgue measurable functions from R into R? that are essentially
bounded on each compact subset of R.

Since E is reflexive, the sequence {un};-; converges along a subsequence to Q € E weakly in E and, by
Proposition 2.2, strongly in L3° (R, R?). It follows from Fatou’s Lemma that I(Q) < A. Thus Q € A. Finally, we

loc
apply the following version of the shadowing chain lemma

Lemma3.1. Let Z € P be an arbitrary set all of whose elements have the same rotation number d € 7. Set

z =inf{l(q): q € Z}.
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Under the conditions of Thm.1.2, there are a finite number of homoclinic solutions: Q1, Q,, ..., Q; € A of (LS)
such that

z=1(Q1) +I(Q) +... + I(Q)

and

d=rotg(Q1) + rot{(Qz) +... +rotg(Q).

The proof is analogous to that of Lemma 3.2 in [17].
Since d > 0 there is at least one Q; with rot;(Q;) > 0. In fact, this nontrivial solution is unique. If Q; is
another nontrivial solution then I(Q;) > 0. Thus I(Q;) < A, which is a contradiction.

Acknowledgement: The first two authors are supported by Grant BEETHOVEN?2 of the National Science Cen-
tre, Poland, no. 2016/23/G/ST1/04081.
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