
Open Access. © 2019 Marek Izydorek et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution alone 4.0 License.

Adv. Nonlinear Anal. 2020; 9: 644–653

Marek Izydorek, Joanna Janczewska*, and Jean Mawhin

Homoclinics for singular strong force
Lagrangian systems
https://doi.org/10.1515/anona-2020-0018
Received October 6, 2018; accepted January 18, 2019.

Abstract: We study the existence of homoclinic solutions for a class of Lagrangian systems d
dt
(
∇Φ(u̇(t))

)
+

∇uV(t, u(t)) = 0, where t ∈ R,Φ : R2 → [0,∞) is a G-function in the sense of Trudinger, V : R×
(
R2 \ {ξ}

)
→

R is a C1-smooth potential with a single well of in�nite depth at a point ξ ∈ R2 \ {0} and a unique strict
globalmaximum0 at the origin. Under a strong force condition around the singular point ξ , viaminimization
of an action integral, we will prove the existence of at least two geometrically distinct homoclinic solutions
u± : R→ R2 \ {ξ}.

Keywords: homoclinic solution, homotopy class, Lagrangian system, strong force, rotation number (winding
number)
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1 Introduction
In this workwewill be concernedwith the problem of existence of solutions for a class of Lagrangian systems

d
dt
(
∇Φ(u̇(t))

)
+∇uV(t, u(t)) = 0,

lim
t→±∞

u(t) = lim
t→±∞

u̇(t) = 0,
(LS)

where t ∈ R, Φ : Rn → [0,∞) is a G-function in the sense of Trudinger, and V : R ×
(
Rn \ {ξ}

)
→ R is a C1-

smooth potential possessing a singlewell of in�nite depth at a point ξ ∈ Rn \{0} and a strict globalmaximum
0 at the origin.

We begin with the notion of G-function. Let a C1-function Φ : Rn → R satisfy the following conditions:

(G1) Φ(0) = 0,
(G2) Φ is coercive, i.e. lim

|x|→∞
Φ(x)
|x| = ∞,

(G3) Φ is convex, i.e. Φ(ax + (1 − a)y) ≤ aΦ(x) + (1 − a)Φ(y) for each a ∈ [0, 1] and all x, y ∈ Rn,
(G4) Φ is symmetric, i.e. Φ(x) = Φ(−x) for all x ∈ Rn,
(G5) ∇Φ ∈ C1(Rn \ {0},Rn).

In particular, Φ is a G-function in the sense of Trudinger (compare [1]). Let us recall that the Fenchel
transform Φ* of a G-function Φ is the function Φ* : Rn → R de�ned by
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Φ*(y) = sup
x∈Rn

(
(x, y) − Φ(x)

)
,

where (·, ·) : Rn×Rn → R is the standard inner product inRn (c.f. [2, 3]). It is well known thatΦ* is continuous
and satis�es (G1) − (G4) (c.f. [4]). Furthermore, Φ** = Φ (c.f. [5]).

Troughout the paper we will assume that Φ and Φ* are globally ∆2-regular [6], i.e. there is a constant
L > 0 such that for each x ∈ Rn,

Φ(2x) ≤ LΦ(x) ≤ 12Φ(Lx). (∆2)

Given a function Φ we de�ne ϕ : R→ R by

ϕ(r) = min{Φ(x) ; |x| = r}

and ϕ(−r) = ϕ(r). Here | · | : Rn → [0,∞) is the standard norm. Let us recall that the epigraph of a function
f : Rn → R is the set

epi f = {(x, t) ∈ Rn ×R ; f (x) ≤ t}

(c.f. [2]). We de�ne the supporting function φ : R→ R for Φ by the formula:

φ = conv ϕ,

which means that epi φ = conv (epi ϕ). Obviously,

Φ(x) ≥ φ(|x|) for x ∈ Rn . (1)

One can easily check that

• φ is continuous and satis�es (G1) − (G4), i.e. φ is a G-function;
• φ satis�es the (∆2)-condition, i.e. φ and φ* are globally ∆2-regular.

Our intention is to generalize the following result by Paul H. Rabinowitz from [7] to the Lagrangian sys-
tems (LS).

Theorem 1.1. Assume that

(V1) V : R × (R2 \ {ξ})→ R, where ξ ∈ R2 \ {0}, is a C1-smooth potential, 1-periodic in t ∈ R and

lim
x→ξ

V(t, x) = −∞

uniformly in the time variable t,
(V2) for all t ∈ R, x ∈ R2 \ {0}, V(t, x) ≤ 0 and V(t, x) = 0 i� x = 0,
(V3) there is a negative constant V0 such that for all t ∈ R,

lim sup
|x|→∞

V(t, x) ≤ V0,

(V4) there are a neighbourhoodN ⊂ R2 of the singular point ξ and a function U ∈ C1(N \ {ξ},R) such that
|U(x)| →∞ as x → ξ , and for all x ∈ N \ {ξ} and t ∈ R,

|∇U(x)|2 ≤ −V(t, x).
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Then the problem ü(t) +∇uV(t, u(t)) = 0,
lim
t→±∞

u(t) = lim
t→±∞

u̇(t) = 0
(HS)

has at least two solutions u± : R→ R2 \ {ξ}, which wind around ξ in opposite directions.

The proof of Theorem 1.1 in [7] is of variational nature. The basic idea is to take the Lagrangian action cor-
responding to the problem (HS), de�ned on the subset of all the functions of the Sobolev spaceW1,2(R,Rn)
omitting the singularity at a �nite time and tominimize this functional both over the subset of functions with
a positive winding number around ξ and the subset of functions possessing a negative rotation.

We are thus led to the following strengthening of Theorem 1.1.

Theorem 1.2. Let Φ : R2 → [0,∞) satisfy (G1) − (G5) and (∆2). Assume also that the potential V : R × (R2 \
{ξ})→ R satis�es (V1) − (V3), and moreover,

(V ′
4) there are a neighbourhoodN ⊂ R2 of the point ξ and a function U ∈ C1(N \{ξ},R) such that |U(x)| →

∞ as x → ξ , and for all x ∈ N \ {ξ} and t ∈ R,

φ*(|∇U(x)|) ≤ −V(t, x).

Then there exist at least two classical solutions u± : R → R2 \ {ξ} of the problem (LS) winding around ξ in
opposite directions.

Let us remark that if we substitute Φ(x) = 1
2 |x|

2, x ∈ R2, into (LS) then we obtain (HS). What is more, for
Φ(x) = 1

p |x|
p, x ∈ R2, p > 1, we have

d
dt
(
∇Φ(u̇(t))

)
= d
dt

(
|u̇(t)|p−2u̇(t)

)
,

i.e. the p-Laplacian, and for Φ(x) = χ(|x|), where χ : R → R is a so-called N-function (a G-function of one
variable with extra growth conditions, c.f. [8]) we obtain a χ-Laplacian. Let us note that φ* in the condition
(V ′

4) is the Fenchel transform of the supporting function φ forΦ. Thus φ* depends onΦ. Let us brie�y discuss
now our assumptions in Theorem 1.2.

Condition (V4) was introduced by W.B. Gordon in [9] and in the literature it is known as the strong force
condition or Gordon’s condition. It governs the rate at which V(x) → −∞ as x → ξ and holds, for example,
if α ≥ 2 for V(x) = −|x − ξ |−α nearby ξ . Gordon’s condition excludes the gravitational case and leads to
the disclosure between the behaviour of strong force systems and gravitational ones. Condition (V ′

4) is an
extension of (V4) to the Lagrangian system (LS). Following Gordon, if V : R × (R2 \ {ξ}) → R satis�es (V ′

4)
then ∇uV : R × (R2 \ {ξ}) → R2 will be called a strong force. Moreover, (LS) is said to be a strong force
Lagrangian system. (V ′

4) implies that the system (LS) does not possess solutions in the Orlicz-Sobolev space
associatedwithφ, entering the singular point ξ in a �nite time. Condition (V3) can be replaced by a somewhat
weaker assumption, namely,

(V ′
3) lim

|x|→∞
|x|2V(x) = −∞.

During thepast thirty years, therehasbeenmadeagreat deal of progress in theuse of variationalmethods
to investigate homoclinic solutions for Lagrangian systems. Some basic material on variational methods can
be found in [2, 10–13]. Since homoclinics are global in time, it is natural to use global methods to study their
existence. Both minimization and minimax arguments have been employed to obtain homoclinic solutions
(see [7, 14–18]). The variational formulation for Lagrangian systems leads to action functionals. Although
there may be a natural class of curves or functions to work with, there is not always an easy choice of an
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associated norm or metric. Choosing a good setting in which to formulate the variational problem is often a
great di�culty.

To study homoclinic solutions of the problem (LS), in Section 2 a technical framework will be introduced
to treat a corresponding action functional in an appropriate Sobolev-Orlicz space. Section 3 contains the proof
of ourmain result. The basic idea of the proof of Theorem 1.2 is to �nd twominimizers of the action functional
winding around the singularity in opposite directions.

2 Preliminaries
From now on, we assume that Φ : Rn → [0,∞) satisfy (G1) − (G5) and (∆2).

Let Ω ⊂ R be a domain. Following Trudinger [1] we de�ne the space

LΦ(Ω) =

u : Ω → Rn : u is Lebesgue measurable and
∫
Ω

Φ(u)dt < ∞

 .

This space equipped with the Luxemburg norm

‖u‖Φ = inf

ν > 0 :
∫
Ω

Φ
(u
ν

)
dt ≤ 1

 (2)

is a Banach space. Since Φ is ∆2-regular, LΦ(Ω) is also a separable space (c.f. Rem. 8.22 in [8]). Furthermore,
LΦ(Ω) is re�exive if and only if (∆2) is satis�ed (c.f. Thm. 8.20 in [8]).

Setψ = φ◦| · |, i.e. ψ(x) = φ(|x|) for each x ∈ Rn. As a consequence of (1), the space LΦ(Ω) is continuously
imbedded in Lψ(Ω) (c.f. Thm. 8.12 in [8]),

LΦ(Ω) ⊂ Lψ(Ω).

Note that ‖u‖ψ = ‖|u|‖φ.
For simplicity of notation, we write LΦ instead of LΦ(R). Although the norm formula (2) depends on the

domain Ω, we use the same notation ‖ · ‖Φ for di�erent subsets of R. It will be clear from the context what Ω
is.

Let ACloc(R,Rn) be the space of locally absolutely continuous functions on Rwith values in Rn. Finally,
let E denote the Orlicz-Sobolev space

E =
{
u ∈ ACloc(R,Rn) : u̇ ∈ LΦ(R,Rn)

}
with the norm

‖u‖ = ‖u̇‖Φ + |u(0)|.

We note for later reference that E is a separable re�exive Banach space (see [19]).
For every T > 0 we de�ne the Banach space ET consisting of restrictions of u ∈ E to the interval [0, T]

with the induced norm,

‖u‖ET = |u(0)| + ‖u̇‖Φ .

Let C([0, T],Rn) denote the space of continuous functions from [0, T] into Rn with the standard norm.

Proposition 2.1. The inclusion map ET → C([0, T],Rn) is continuous, i.e. there is CT > 0 such that for each
u ∈ ET one has

max
t∈[0,T]

|u(t)| ≤ CT‖u‖ET .
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Proof. One has

|u(t)| =

∣∣∣∣∣∣u(0) +
t∫

0

u̇(s)ds

∣∣∣∣∣∣ ≤ |u(0)| +
t∫

0

|u̇(s)|ds

≤ |u(0)| +
T∫

0

|u̇(s)|ds ≤ |u(0)| + 2‖1‖φ*‖|u̇|‖φ

≤ (1 + 2‖1‖φ* )
(
|u(0)| + ‖|u̇|‖φ

)
≤ CT

(
|u(0)| + ‖u̇‖Φ

)
= CT‖u‖ET .

Proposition 2.2. If a sequence {uk}k∈N ⊂ ET converges weakly to u0 ∈ ET then it converges uniformly to u0
in C([0, T],Rn).

Proof. Since {uk}k∈N converges to u0 weakly in ET then, by Proposition 2.1, it also converges to u0 weakly in
C([0, T],Rn). Furthermore, ‖uk‖ET ≤ M for some M > 0 and every k ∈ N.

Let 0 ≤ s ≤ t ≤ T. Then

|uk(t) − uk(s)| =

∣∣∣∣∣∣
t∫
s

u̇k(τ)dτ

∣∣∣∣∣∣ ≤
t∫
s

|u̇k(τ)|dτ

≤ 2‖1‖φ*‖|u̇k|‖φ ≤ 2‖1‖φ*‖uk‖ET

≤ 2M
(
(φ*)−1

(
1
t − s

))−1
.

Thus {uk}k∈N is a sequence of equicontinuous functions. By the Arzela-Ascoli Theorem, every sequence
{uki}i∈N contains a subsequence converging to a certain û in C([0, T],Rn). By the uniqueness of the weak
limit, û = u0, which completes the proof.

In what follows, Φ : R2 → R and V : R × (R2 \ {ξ})→ R satisfy the assumptions of Theorem 1.2.
For each u ∈ E, we de�ne a functional I by setting

I(u) =
∞∫

−∞

(
Φ(u̇(t)) − V(t, u(t))

)
dt. (3)

Let
αε = inf{−V(t, x) : x ∉ Bε(0)}, (4)

where 0 < ε ≤ 1
2 |ξ | and Bε(0) denotes the ball of radius ε centered at the origin. By (V1) − (V3) we have αε > 0.

Lemma 2.3. Suppose that u ∈ E and u(t) ∉ Bε(0) for each t ∈ [a, b]. Then, there is C > 0 such that

(I(u) + 1)2 ≥ C · length (u|[a,b]) ≥ C|u(b) − u(a)|. (5)

Proof. One has

|u(b) − u(a)| =

∣∣∣∣∣∣
b∫
a

u̇(t)dt

∣∣∣∣∣∣ ≤
b∫
a

|u̇(t)|dt ≤ 2‖|u̇|‖φ‖1‖φ* .

The last estimation follows from Hölder’s inequality in Orlicz spaces (c.f. [5], Par. 8.11). Directly from the
de�nition, one has
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‖1‖φ* =
[
(φ*)−1

(
1

b − a

)]−1
.

Set δ = length (u|[a,b]) and τ = b − a. Then

‖|u̇|‖φ ≥ 12 δ‖1‖
−1
φ* =

1
2 δ · (φ

*)−1
(
1
τ

)
.

Consequently,

I(u) ≥
b∫
a

(
Φ(u̇(t)) − V(t, u(t))

)
dt =

b∫
a

Φ(u̇(t))dt +
b∫
a

−V(t, u(t))dt

≥
b∫
a

φ(|u̇(t)|)dt + αετ ≥ ‖|u̇|‖φ − 1 + αετ

≥ 12 δ · (φ
*)−1

(
1
τ

)
− 1 + αετ.

(6)

Hence

I(u) + 1 ≥ 12 δ · (φ
*)−1

(
1
τ

)
+ αετ ≥ 12

δ
τk · (φ

*)−1(k) + αετ,

where the natural number k satis�es τk ≥ 1 and the last inequality follows from the fact that (φ*)−1 is concave.
We choose the smallest k with the property τk ≥ 1. In particular, we set k = 1 if τ ≥ 1. Now, if τ ≥ 1 then

f (τ) = 1
2
δ
τ · (φ

*)−1(1) + αετ

achieves its minimum at the point

τmin =
(
δ · (φ*)−1(1)

2αε

) 1
2

,

which is equal to fmin = (2δαε(φ*)−1(1))
1
2 . If τ < 1 then

1
2
δ
τk · (φ

*)−1(k) + αετ ≥ 14 δ · (φ
*)−1(k) + αετ ≥ 14 δ · (φ

*)−1(1).

Finally, set
C = min

{
2αε(φ*)−1(1), 1

4(φ
*)−1(1)

}
.

Remark 2.4. In the above lemma the interval [a, b] can be replaced by a �nite sum of disjoint intervals.

We will denote by L∞(R,R2) the space of Lebesgue measurable essentially bounded functions from R into
R2 with the norm

‖u‖∞ = ess sup |u(t)|.

Corollary 2.5. If u ∈ E and I(u) < ∞ then u ∈ L∞(R,R2).

Proof. Assume that u ∈ ̸ L∞(R,R2). Then for every n ∈ N there exists tn ∈ R such that |u(tn)| > n. Conse-
quently, by Lemma 2.3 we get
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(I(u) + 1)2 ≥ C|u(tn) − u(t1)| ≥ C(|u(tn)| − |u(t1)|) ≥ C(n − |u(t1)|)

for n ∈ N, contrary to I(u) < ∞.

Lemma 2.6. If u ∈ E and I(u) < ∞ then lim
t→±∞

u(t) = 0.

Lemma 2.6 is analogous to Proposition 3.11 of [20] and Lemma 2.4 of [21]. In spite of di�erent assumptions
on the potential V, the claims are similar.

Proof. Let A(u) denote the set of limit points of u(t), as t → −∞. FromCorollary 2.5we conclude that A(u) ≠ ∅.
Assume that there are ε > 0 and ρ ∈ R such that if t < ρ then u(t) ∈ ̸ Bε(0). By (4) we obtain,

I(u) ≥
ρ∫

−∞

−V(t, u(t))dt = ∞,

a contradiction. Thus A(u) contains 0. It is su�cient to note that A(u) consists of a point. If not, there is ε > 0
such that u(t) intersects ∂B ε

2
(0) and ∂Bε(0) in�nitely many times. Let τ0 ≥ 0 be the smallest number such

that

I(u) + 1 ≥ 12
ε
2 · (φ

*)−1
(
1
τ0

)
+ α ε

2
τ0.

Since limτ→∞(φ*)−1(τ) = ∞, one has τ0 > 0. By Remark 2.4, we obtain

I(u) + 1 ≥ nα ε
2
τ0

for each n ∈ N, and hence I(u) = ∞, a contradiction.
In the same manner we can see that lim

t→∞
u(t) = 0.

Lemma 2.7. If [a, b] is an interval such that u([a, b]) ⊂ N \ {ξ} then it holds

|U(u(b))| − |U(u(a))| ≤ 2(I(u) + 1)2. (7)

Proof. We �rst note that

|U(u(b))| ≤ |U(u(a))| +

∣∣∣∣∣∣
b∫
a

d
dt U(u(t))dt

∣∣∣∣∣∣
≤ |U(u(a))| +

∣∣∣∣∣∣
b∫
a

(
∇U(u(t)), u̇(t)

)
dt

∣∣∣∣∣∣
≤ |U(u(a))| +

b∫
a

|∇U(u(t))||u̇(t)|dt

≤ |U(u(a))| + 2‖|∇U(u)|‖φ*‖|u̇|‖φ

Since

‖|∇U(u)|‖φ* ≤ 1 +
b∫
a

φ*(|∇U(u(t))|)dt ≤ 1 +
b∫
a

−V(t, u(t))dt

and
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‖|u̇|‖φ ≤ 1 +
b∫
a

φ(|u̇(t)|)dt

we obtain

|U(u(b))| ≤ |U(u(a))| + 2(I(u) + 1)2.

As an immediate consequence of (7) one has that u(t) ≠ ξ for t ∈ R provided that I(u) < ∞ (c.f. [7], Eq. (2.21)).
In fact, we obtain the following

Corollary 2.8. (c.f. [17]) If the action functional I is bounded on some set W ⊂ E, say I(W) ⊂ [0, β] then there
is ρ > 0 depending on β such that for every u ∈ W and t ∈ R one has |u(t) − ξ | ≥ ρ.

Set
Λ =

{
u ∈ E : lim

t→±∞
u(t) = 0, u(R) ⊂ R2 \ {ξ}

}
.

If I(u) < ∞ then u ∈ Λ. Consequently, u describes a closed curve in R2 \ {ξ} that starts and ends at 0.
Hence its homotopy class [u] represents an element of the fundamental group π1(R2 \ {ξ}).

Let us remind that two functions u0, u1 ∈ Λ are homotopic if and only if there exists a continuous map
h : [0, 1] → Λ such that h(0) = u0 and h(1) = u1. The rotation number (or winding number) rotξ (u) of u
around ξ is constant on every connected component ofΛ and induces an isomorphism rot* : π1(R2\{ξ})→ Z,

rot*([u]) = rotξ (u).

Equivalently, Λ is a sum of its path connected components labeled by the integers.
Similarily to [17] one can prove the following result.

Proposition 2.9. Let W ⊂ Λ be a set such that the functional I restricted to W is bounded. Then there exists
D ∈ N such that |rotξ (u)| ≤ D for all u ∈ W.

Let

Λ± = {u ∈ Λ : ± rotξ (u) > 0},

and

λ± = inf
u∈Λ±

I(u). (8)

Our main result is an immediate consequence of the following.

Theorem 2.10. If the assumptions of Theorem 1.2 are satis�ed then there exists u± ∈ Λ± such that I(u±) = λ± >
0. Moreover, u± is a classical homoclinic solution of (LS).

3 Proof of Theorem 2.10
The proof will be carried out for the "+" case. The proof for the "-" case is similar. We set λ = λ+. Let {un}∞n=1
be a minimizing sequence for (8). With no loss of generality we assume that for every n ∈ N,

λ ≤ I(un) ≤ λ + 1,

and by Proposition 2.9, for some d ∈ N,
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rotξ (un) = d.

Since d > 0, there are νn and θn > 1 such that un(νn) = θn · ξ . In particular, by Corollary 2.8

‖un‖∞ > |ξ |.

Furthermore, there are σn , µn and τn ∈ [σn , µn] such that:

a. un([σn , µn]) ⊂ R2 \ B |ξ|
2
(0),

b. |un(σn)| = |un(µn)| = 1
2 |ξ |,

c. |un(τn)| = ‖un‖∞

Hence, by Lemma 2.3,

(λ + 2)2 ≥ (I(un) + 1)2 ≥ C · length (un|[σn ,µn ])
> C(2‖un‖∞ − |ξ |) > C‖un‖∞,

and thus the sequence {‖un‖∞}n∈N is bounded. Furthermore, since by (6)

λ + 2 ≥ I(un) + 1 ≥ 12 δ · (φ
*)−1

(
1
τ

)
+ αετ

with δ ≥ |ξ |, there areM > m > 0 such thatm < τ < M. In particular, µn−σn > m for each n ∈ N. Consequently,
λ = inf{I(un); n ∈ N} ≥ αεm > 0. From (G3) we obtain∫

R

Φ(A · ω(t))dt ≤ A
∫
R

Φ(ω(t))dt

for 0 ≤ A ≤ 1 and ω ∈ LΦ. If we let A = (λ + 1)−1 then∫
R

Φ((λ + 1)−1u̇n(t))dt ≤ (λ + 1)−1
∫
R

Φ(u̇n(t))dt ≤ (λ + 1)−1I(un) ≤ 1,

which implies that ‖u̇n‖Φ ≤ λ + 1. In consequence, {un}∞n=1 is bounded in E.
Now, let C∞0 (R,R2) denote the space of smooth functions from R into R2 with compact supports.
We say that a set Z ⊂ Λ has the perturbation property and write Z ∈ P if for each u ∈ Z and for each

v ∈ C∞0 (R,R2) there exists δ > 0 such that if s ∈ (−δ, δ) then u + sv ∈ Z.
Let us remark that if u is a minimizer of I on a set Z ∈ P then

d
ds I(u + sv)|s=0 = 0 =

∞∫
−∞

((∇Φ(u̇(t)), v̇(t)) − (∇V(t, u(t)), v(t)))dt,

and consequently, u is a weak solution of (LS). A similar argument as in the proof of Proposition 3.18 in [20]
shows that u is a classical solution of (LS). Finally, using (LS), (V1) and (V2) as in [18] gives u̇(±∞) = 0.

Of course Λ± ∈ P. We expect that minimizing I over Λ+ and Λ− gives two solutions.
Let L∞loc(R,R2) be the space of Lebesgue measurable functions from R into R2 that are essentially

bounded on each compact subset of R.
Since E is re�exive, the sequence {un}∞n=1 converges along a subsequence to Q ∈ E weakly in E and, by

Proposition 2.2, strongly in L∞loc(R,R2). It follows from Fatou’s Lemma that I(Q) ≤ λ. Thus Q ∈ Λ. Finally, we
apply the following version of the shadowing chain lemma

Lemma 3.1. Let Z ∈ P be an arbitrary set all of whose elements have the same rotation number d ∈ Z. Set

z = inf{I(q) : q ∈ Z}.
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Under the conditions of Thm.1.2, there are a �nite number of homoclinic solutions: Q1, Q2, . . . , Ql ∈ Λ of (LS)
such that

z = I(Q1) + I(Q2) + . . . + I(Ql)

and

d = rotξ (Q1) + rotξ (Q2) + . . . + rotξ (Ql).

The proof is analogous to that of Lemma 3.2 in [17].
Since d > 0 there is at least one Qi with rotξ (Qi) > 0. In fact, this nontrivial solution is unique. If Qj is

another nontrivial solution then I(Qj) > 0. Thus I(Qi) < λ, which is a contradiction.
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