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Abstract. In this paper the issue of continuous systems estimation, insensitive 
to certain perturbations, is presented and discussed. Such an approach has ra-
tional advantages, especially when robust schemes are used to assist a target 
system responsible for industrial diagnostics. This requires that estimated model 
parameters are generated on-line, and their values are reliable and to a great ex-
tent accurate. Practical hints are suggested to challenge the consistency problem 
of estimates. Namely, the technique of instrumental variables can improve the 
asymptotic behavior of estimators. With a weighting mechanism, in turn, track-
ing the time-varying parameters of non-stationary processes is realistic. Yet, 
evident insensitivity to destructive outliers in the measurement data is guaran-
teed by the applied estimation routine in the sense of the least sum of absolute 
errors. Finally, premises for a proper selection of persistently exciting input sig-
nals, as well as the directions of further research are summarized in the paper. 

Keywords: Continuous Models, Robust Identification, Least-Squares, Instru-
mental Variable, Least Absolute Errors. 

1 Introduction 

In practical automation systems, the idea of control and diagnostics of industrial proc-
esses is based on dedicated discrete-time or continuous-time models. Identification of 
such models, and examination of the estimated parameters, deliver valuable diagnos-
tic information about the evolution of the respective supervised processes. Most often, 
detection of a hazardous situation in a monitored system, recognized from abrupt 
changes in the identified parameters, is not problematic. In the case of gradual 
changes in the model parameters, however, an early warning can protect the system 
from a potential serious damage. 

It is of fundamental importance that the employed identification procedure gener-
ates reliable and accurate estimates of the employed model. Otherwise, the diagnostic 
system will either produce false alarms, or ignore possible hazardous outcomes. Use-
ful identification methods insensitive to different perturbations (high frequency corre-
lated noises, DC offsets in additive disturbances or destructive outliers) are discussed 
in this paper. 
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It is still open to question, whether discrete-time or continuous-time models should 
be involved in diagnostic procedures utilizing algorithms for identification or change 
detection [3]. On the one hand, discrete-time models (with the regression data usually 
represented by shifted samples of registered input-output data) can easily be handled 
numerically, and parameter estimation of such models is straightforward. On the other 
hand, such ‘mathematical’ parameters are dimensionless, have no physical interpreta-
tion, and depend on the applied sampling frequency. When using the continuous-time 
models, in turn, the intuitive and physically motivated parameters have definite units, 
but dedicated numerical techniques are necessary to form the respective vectors of 
regression data. Because in today's era of digital computers the creation of regressors 
can be performed effectively and reliably, in this study, we analyze the approach 
based on ordinary differential equations and related continuous-time models. 

The paper is organized as follows. In Section 2 different techniques of numerical 
approximation of an original differential-equation model are presented. The discus-
sion is focused on the method involving certain finite-horizon integration operators 
(Sagara filters). The classical least-squares procedure, and its asymptotic properties 
are briefly recalled in Section 3. Basic details, important for any practical implemen-
tation of the identification algorithms, which are insensitive to different noises or 
disturbances, are given in Section 4. In Section 5, the paper is summarized, and prom-
ising directions of further investigations are outlined. 

2 Modeling of Continuous Systems 

To maintain a physical interpretation of estimated parameters, a continuous-time 
model of the supervised process can be taken into account. For single-input single-
output (SISO) systems an ordinary differential equation can be employed (n > m  0): 
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where ai and bi stand for the unknown parameters. In general, the system (1) is subject 
to initial conditions: u (m–1)(0) , … ,  u(0) , y

 (n–1)(0) , … , y(0), which are responsible for 
the system’s free response. For better readability of the further consideration, one can 
use the following transfer function (i.e. counterpart to the differential equation): 
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where i = 0 … n – 1. The Laplace signal transforms U(s) and Y(s) correspond to the 
input u(t) and output y(t), respectively, H(s) is the system transfer function, and F(s) 
represents the transformed system’s free response. Assuming that the modeled system 
(1) is stable, all roots in the denominator of (3) have negative real parts (the denomi-
nator polynomial is Hurwitz type). Then the system’s free response decays asymptoti-
cally to zero, and the output y(t) is bounded provided the input u(t) is bounded. 

Computer-aided identification of continuous systems relies on the recorded sam-
ples of the input and output signals. This approach, referred to as discrete identifica-
tion of continuous systems, calls for effective methods of numerical approximation of 
the dynamics (1). Namely, the derivatives have to be replaced by certain discrete 
‘measures’, enabling the ‘new’ model to maintain the original parameters. 

In the simplest way, the ‘discrete-continuous’ delta () operator [11] can be used to 
evaluate the consecutive derivatives represented in (1), and the differentials (dx(t), 
dx(2)(t), …) of a considered signal x(t) are replaced by the respective finite differences 
(x(kT) = x(kT + T) – x(kT),  2x(kT) = x(kT + 2T) – 2x(kT + T) + x(kT), …), for a given 
sampling time T standing for the time differentiate dt. The delta method, however, 
suffers from several drawbacks. With a high-pass nature of , for instance, additive 
noises that corrupt the measurement signals are amplified. Additionally, delta differ-
entiation of discontinuous input signals (e.g. square waves) becomes problematic. 
What is more, the discretized model formed with the aid of this non-causal operator 
cannot be identified on-line (future data x(kT + T), x(kT + 2T), … , must be known to 
evaluate the derivatives of x(t) at the given sampling instant t = kT). 

A solution made more robust to additive noises utilizes a low-pass operator of mul-
tiple integration (i.e. 1 / s

n) to transform the model (1). By performing this integration, 
equally on both sides of the original differential equation, an integral model (without 
derivatives) is obtained, leading (via numerical integration) to a discrete representa-
tion of (1). Unfortunately, this approach also brings about some implemental prob-
lems. First, the integral components themselves tend to infinity, even in the case of 
measurable (bounded) input-output signals. Second, the initial conditions of (1) can-
not be disregarded, as the n-times integrated free response does not decay to zero. As 
a consequence, the initial conditions have to be included in the identified integral 
model, which increases the complexity of modeling and computations. 

A promising solution that overcomes the above-mentioned problems was proposed 
by Sagara [10], where a finite-horizon integration filter is used 
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to rearrange the differential equation. Note that (6) describes the multiple nth order 
integration of a signal over the time interval of a fixed length (h). 

Discrete realization of (6) is straightforward by employing the methods of numeri-
cal integration. With a convenient rule of trapezoidal integration, for instance, the 
operation (6) subject to the rth derivative of a signal can be implemented as 
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with 

 rnrnT
r qqQ   )1()()( 1

2
1  , (8) 

where q–1 is the delay operator (q–1x(kT) = x(kT – T) ), and the integration horizon (h) 
is expressed as a multiplicity (L) of the sampling time (i.e. h = LT). 

Keeping in mind that simple procedures of discrete integration tend to accumulate 
numerical errors, an improvement was proposed by Kowalczuk [2]. With improved 
integration methods (i.e. splines) used in this processing, a robust version of the Sa-
gara filter (6) can be directly obtained based on the following polynomial Qr(q

–1): 
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where the so-called normal polynomials (N0(q
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Ultimately, the transformed model can be written down in a common regression form: 
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with index k representing the sampling instant kT,  (k) being a reference signal, e(k) 
denoting an equation error, and (k) and  standing for the regression data and model 
parameters, respectively. There are several evident benefits of the presented modeling 
strategy: (i) The regressors (12), obtained as the result of FIR filtering (7) of measured 
input-output signals, are bounded. (ii) System initial conditions can be disregarded in 
(11), since the influence of the filtered free response is entirely eliminated after the 
elapse of time nLT. (iii) For the integration horizon (h = LT) tuned so that the nor-
malized magnitude characteristics of the Sagara filter ( sin(0.5h) / (0.5h) ) and of 
the identified system ( | (a0 / b0 )H(j) | ) are closely matched, one obtains an efficient 
elimination of additive noises. (iv) As the regression model (11) – (13) retains the 
original parameterization of (1), any well-established estimation scheme can be used 
to estimate the original system parameters. Implementations of different identification 
algorithms, and their pertinent properties, are presented in the next section. 
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3 Classical Least-Squares Method 

In the simplest approach, the estimates of the regression model (1) can be obtained by 
a classical method of least-squares (LS), wherein the identification algorithm is based 
on minimizing of the following quadratic index [8]: 
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By setting the gradient of (14) to zero, one gets the LS estimator in an algebraic form 
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The above formula is mathematically simple, but its practical implementation suffers 
from cumbersome matrix inversion at each sampling instant. In order to solve this 
problem, the formulas in brackets are recursively prescribed, and the well-known 
"matrix inversion lemma" is used. As a result, the algorithm LS obtains the following 
(convenient) recursive representation: 
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It suffices, for implemental reasons, that the covariance matrix P(k) at the start-up of 
the algorithm gets a huge diagonal, e.g.: P(0) = diag (105 , … , 105). 

The asymptotic behavior of the routine LS can be concluded based on the algebraic 
LS formula. By substituting (11) into (15) one acquires 
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where, for stationary ergodic processes, the averaging in time can be approximated by 
probabilistic measures (i.e. correlation functions). It is evident from (18) that the LS 
estimates are asymptotically consistent, if the residual error is uncorrelated with the 
regression data ( E [(k) e(k)] = 0). This takes place, for instance, when the process 
e(k) is a sequence of zero-mean independent random variables (white noise). Unfor-
tunately, in most cases, the residuals are correlated, and their corresponding mean 
value is not necessarily zero. What is more, the parameters of the identified system 
(1) can be time-varying, and different perturbations (like destructive outliers) can 
appear in measurement data. In order to challenge these issues, specific techniques 
and hints are subsequently put into practice. D
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4 Practical Implementation of Robust Estimators 

In this section a practical implementation of the estimation procedure insensitive to 
noises, disturbances, and other perturbations, is discussed in detail. 

Dedicated solutions are proposed as a remedy to the problems of tracking time-
varying system parameters, and to the inconsistency of estimates invoked by corre-
lated noises and outliers in the measurement data. Finally, conditions imposed on the 
identifiability of the system are formulated, and suggestions concerning the selection 
of persistently exciting inputs are given. 

4.1 Tracking the Time-Varying Parameters 

In the case of non-stationary systems, when the coefficients ai and bi presented in the 
differential equation evolve in time, the classical LS procedures (15) or (16) – (17) 
cannot be directly applied. This is so, because in the basic algorithm LS all measure-
ment data is assumed to represent a common dynamics. In case of non-stationary 
systems, however, only actual data should be considered in the current evaluation of 
the identified parameters. The problem can be effectively overcome by re-defining the 
quality index (14), so that the impact of old data is much reduced 
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The parameter  (called the forgetting factor) used in the utility weighting mechanism 
(wl =  

k – l ) usually falls within the range of [0.9 , 1]. Minimization of the modified 
criterion (19) leads to the following algebraic solution: 
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and its recursive counterpart 
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both being realizations of the exponentially weighted least-squares routine (EW-LS). 
The tracking ability of the above algorithm depends on the length of the estimator’s 
memory, or the effective memory of the estimator equal to  = 1 / (1 – ). Clearly, the 
non-weighted estimator (21) – (22) can be obtained from (16) – (17) by substituting 
 = 1, which means that the basic LS algorithm has infinite memory ( = ). D
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4.2 Suppressing the Bias Influenced by Additive Noises 

In practical situations, the observed analog signals are corrupted with high frequency 
additive noise. Such disturbances can be almost entirely eliminated using tuned low-
pass filters. Unfortunately, basic discretization of the model (necessary in discrete-
time processing) introduces additive noise to sampled data. Note that the measure-
ment 'round-off' noise is a typical phenomenon resulting from the finite resolution of 
AD converters. Thus, a zero-mean disturbance sequence with variance dependent on 
the resolution of such a converter contaminates the sampled (discrete-time) signal. 

Suppose now that the sampled output signal y(k) is corrupted with an additive 
white noise v(k). Then the numerical mechanization of the regression data yields 

 )()(])()([ kvIkyIkvkyI n
i

n
i

n
i   (23) 

for all components (i = 0 … n) in the regression vector (12). As a result, the residual 
e(k) represented in the regression model (11) takes the form of a moving average 
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It is evident from (24) that with the correlated disturbance the LS estimates are certain 
to be asymptotically biased ( E [(k) e(k)]  0). The consistency of the estimates can be 
improved by employing the idea of an instrumental variable (IV). 

Assuming that such an instrumental (deterministic) vector (k) is used in place of 
the original regression vector, one acquires the following consistency formula: 
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With the instrument uncorrelated with the process e(k) ( E [(k) e(k)] = 0) ), the as-
ymptotic behavior of the estimator is much improved. It is evident from the above 
reasoning that the procedure IV can be derived from the LS routine by replacing (k) 
with (k) (while the row vector T(k) remains unmodified). This gives instantly the 
following algebraic form 
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of the intended instrumental variable routine (with the auxiliary weighting mechanism 
using the forgetting factor ). Commonly, a running-in-parallel procedure LS is used 
to support the recursive IV algorithm at the start-up phase. Eventually, for a suitably 
generated instrumental variable (k), the processing is continued using the proper 
formulas (27) – (28). 

Different manifestations of instrumental variables can be found in the literature 
[12]. In the case of continuous-time systems, however, a general method employing a 
noise-free evaluation of the output process y(k) can be applied [10]. In a practical 
solution the input u(k) is assumed to be deterministic, while a noise-free measure of 
y(k) results from the following auxiliary filtering (where an = 1): 

 )(

])1([])1(2[ˆ

])1([])1(2[ˆ

)(ˆ

0

11

0

11

ku

qTqa

qTqb

ky
n

i

iin
in

m

i

imnim
im


















  . (29) 

Clearly, the estimated system transfer function (2) involved in processing (29) is ac-
commodated to the discrete domain by using the well-known bilinear (Tustin’s) op-
erator: s –1

  (T/2)(1 + q
 –1) / (1 – q

 –1). Hence, the instrumental variable (k) is [10]: 
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where the noise-free output (29) substitutes the original measurement y(k) contami-
nated by noise v(k). Naturally, the variable (30), involving the deterministic quantities 
u(k) and (29), is uncorrelated with the residual e(k). 

It is worth noticing that the method IV performs properly provided the residual e(k) 
is a zero-mean process. What is more, neither correlation in the regression data, nor 
the probability distribution of e(k), can disturb the consistency of the IV estimates. 

4.3 Elimination of DC Offsets 

Usually, it is assumed that the equation error e(k) is a zero-mean process. It may hap-
pen, however, that a DC offset appears in the residual signals (disturbances) and 
therefore affects the accuracy of the estimates. In order to challenge this problem the 
regression model (11) can be generalized so as to embrace such offsets. In such a 
solution, the residual e(k) is assumed to be the sum of an offset e  and a zero-mean 
process )(~ ke . Thus, the extended model takes the common form (11) with 
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Note that by applying the method EW-LS, the tracking of non-stationary parameters 
along with a DC offset varying in time, can be effectively implemented. 
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4.4 Systems Identification Insensitive to Outliers  

Efficient elimination of outliers in measurements is probably the most challenging 
issue in the area of robust identification. It is well-known that the classical method LS 
(derived from minimization of a quadratic criterion) is sensitive to such errors in data. 
Contrary to this, an estimator in the sense of the least sum of absolute errors (LA) 
usually generates reliable estimates irrespective of sporadic outliers appearing in the 
recorded input-output signals. The procedure of least-absolute errors (LA) results 
from minimization of the following index [1, 4]: 
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where, as before, the weighting mechanism (  1) can be used for tracking variable 
parameters. As the quality function cannot be minimized analytically, an iterative 
procedure ( p = 0, 1, … ) of successive approximations can be put into practice [5]: 
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where the LS estimate (20) of  is used at the start-up (p = 0) of this iterative scheme. 
Note that estimates )(ˆ le  of the model errors e(l) are based on current estimates of . It 

can be proved that the index (33) calculated for a sequence of iteratively obtained 
estimates (35), is decreasing [5]. With this, the following condition (with a user-
defined threshold min) that terminates the iterative processing can be formulated as 

 min
//

LA
/1/

LA )ˆ()ˆ(  pp VV θθ  . (36) 

It should be taken into account that the iterative routine suffers from a numerical 
problem of small divisors in (35). This can be overcome by substituting close-to-zero 
estimates (34) of errors with an assumed boundary value (min > 0). 

An approximate recursive realization of the method LA can also be obtained. What 
is more, the concept of instrumental variables can be applied in an approximate LA 
realization. Based on similar-as-before rearrangements of the expressions in the 
brackets of (35), and by applying the "matrix inversion lemma", the resulting routines 
(involving a single iteration only) assume the following form: 

 
















)()1()()(

)1()()()1(
)1(

1
)(

T

T

kkkk

kkkk
kk

ψPφ

PφψP
PP


 , (37) 

 ])([sgn)()()1(ˆ)(ˆ kkkkk ψPθθ   , (38) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


10 

where )1(ˆ)()()( T  kkkk θφ . With (k) = (k) one has the scheme LA, and 

(k) = (k) leads to the routine IVabs. Note that generation of the variable (k) can be 
identical as in the classical estimator. A numerically convenient initiation of the re-
cursive scheme utilizes the LS (or IV) estimates at the start-up of identification. After 
starting-up of iterations, the LS (IV) assistance is switched off, and the processing is 
continued with the proper routine LA (IVabs). 

The analysis of the asymptotic behavior of the above approximate algorithms LA 
and IVabs resembles the respective considerations given in Section 4.2. For a suitably 
large k (i.e. in the limiting case of k   ) the averaging in time can be approximated 
by probabilistic measures (ergodicity). Thus the estimates can be expressed as 
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for the LA ((k) = (k) ) and IVabs ((k) = (k) ) methods, respectively. Assuming, for 
instance, that the residual e(k) is a zero-mean white noise sequence, the process 
sgn [e(k)] retains the white noise properties (the deterministic ‘sign’ function of the 
error modifies the probability distribution of the error only). Therefore, the respective 
correlation equals zero (E {(k) sgn [e(k)] } = 0 ), and the LA estimates are certain to 
be bias-free. In the case of the errors correlated with the regression data, in turn, the 
bias problem is overcome by introducing the instrumental variable (k). Since this 
deterministic instrument is neither correlated with e(k), nor correlated with sgn [e(k)], 
the result E {(k) sgn [e(k)] } = 0 verifies the asymptotic consistency of the considered 
IVabs estimates. 

4.5 Other Design Issues 

Among other design issues, the selection of a persistently exciting input u(k) needs to 
attract some attention. In order to guarantee the identifiability of the observed con-
tinuous-time system (1), certain conditions must be satisfied by the excitation signal 
used for identification. Loosely speaking, the input u(k) should be sufficiently excit-
ing, so as to extract full information from the examined process. Taking into consid-
eration the system’s frequency characteristics, the persistent excitation means that the 
spectral density of the process u(k) is non-zero in at least p points. It is intuitively 
evident that a sufficiently exciting input should be persistent enough to activate all the 
modes of the identified system. 
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There are many stochastic excitations: the white noise process and PRBS (pseudo 
random binary sequence) are the most representative. Employment of these signals 
requires, however, that a reliable pseudo-random number generator is available. 
Therefore, deterministic signals of a sufficient order can also be applied in practical 
identification procedures. For example, a rich selection of several harmonic signals is 
usually sufficient. By applying such periodic signals, the problem of the undesired 
DC offsets is overcome, and the noise-to-signal ratio is improved. Having in mind 
that a single sinusoid (sin k) is persistently exciting of order 2, a practical rule for 
the Sagara models (11) – (13) of order n can be put into practice [10]: "It suffices that 
the input u(k) is represented by a sum of at least n + 1 sinusoids with different (nor-
malized) frequencies () placed within the range of (0 , )". It should be assured, 
however, that the frequencies contained in a multi-harmonic excitation do not coin-
cide with the zeros of the FIR integrating filters (7). 

5 Conclusions 

In this study the methods of identification insensitive to perturbations (like noises, 
outliers, and DC offsets) have been discussed. First, a practical method of discrete 
modeling of continuous systems has been explained. With the aid of dedicated finite-
horizon (FIR) integrating filters a discrete regression model preserving the original 
system parameterization can be obtained. It is of major importance that the regressors 
of the resultant model are numerically ‘stable’, while the system free response (in-
duced by non-zero initial conditions) does not influence the modeling accuracy. 

Next, the well-known algorithm LS and its basic properties have been recalled. In 
order to improve the quality of parameter estimation, substantial modifications of the 
basic procedure need to be put into practice. Namely, tracking the time-varying sys-
tem parameters can be implemented by means of a weighting mechanism. A radical 
suppression of the asymptotic bias of estimates, in turn, results from the employment 
of instrumental variables. Yet, with the necessarily extended regression model, unde-
sired DC offsets in additive disturbances become irrelevant. Finally, the challenging 
problem of estimates heavily influenced by outliers in data, is effectively overcome 
by using an estimator in the sense of the least sum of absolute errors. In conclusion, 
practical suggestions concerning the selection of proper excitations are given. 

Also, a brief outline of some promising directions of further investigations in the 
area of identification of continuous dynamics can be given as follows: 

1. Identification of models with input delay: In this case the quality criterion being 
non-linear with regard to the estimated time delay creates the fundamental diffi-
culty. Some practical solutions, allowing for on-line identification of both the delay 
and system parameters, have been reported by Kowalczuk and Kozłowski [6, 7]. 

2. Identification of distributed parameter systems: The main problem is attributed to 
handling the models taking the form of partial differential equations. Using an ex-
tended Sagara filter (with finite-horizon integration in time and in space), however, 
a discrete-time counterpart model with the retained parameters follows at once [9]. 
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3. Identification of non-linear models: Existing methods are often dedicated for prac-
tical industrial applications. In the literature, the Hartley modulating functions sub-
ject to Hammerstein models are usually considered. For some models (differential 
equations with non-linear static parts, for instance), a dedicated solution involving 
a simple Taylor’s approximation can be sufficiently effective [5]. 

It is also worth noticing that some unconventional methods, such as artificial intelli-
gence approaches, including genetic algorithms, can also be successfully applied in 
systems implementing dedicated identification routines. 
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